测量标准

测量标准
测量标准

能源之星中LED照明测量标准及检测细节

更新日期:2012-03-30 14:29 浏览次数:103

详细介绍

为加速LED照明商品化,北美能源之星针对LED照明产品特性,订定迥异于传统照明

的测试规范,包含环境温度测试、积分球量测、配光曲线等,透过LED照明产品测试方式定义的一致性,区分出LED照明装置的优良,有利于质量升级。

美国能源之星(Energy Star)已陆续发布针对固态照明产品的检测规范定义,文件当中包含检测项目、检测方法依据的规范、须检测的样品数量及合格判定的规格数值,另外对于可进行测试的授权实验室也有明确说明。在能源之星对固态照明产品测试所引用的规范当中,异于传统照明的部分,包含ANSI C78.377-2008、北美照明协会(IESNA)LM-79-08、IESNA LM-80-08三份规范(图1),本篇文章将仅就ANSI C78.377-2008及IESNA LM-79-08的检测细节进行说明,并针对检测所需的仪器设备原理介绍。

图1 能源之星对固态照明之检测规范依据:ANSI C78.377-2008、IESNA LM-79-08、IESNA

LM-80-08

固态照明灯具色温等级较广

此规范包含美国国家标准中针对固态照明产品的光色特性规格定义,适用于室内使用的灯具,不包括户外灯具。其中,重点有两部分,其一是定义相对色温(CCT)的分级,其次是针对同一相对色温标称等级其允许的色温变异范围作定义。

规范中所述固态照明的光色规格要求,源自于荧光灯的光色分级规格,但有鉴于固态照明尚处于起步阶段,未如荧光灯发展已趋于成熟,因此在定义光色要求时,采取较大的变异范围。目前规范对固态照明灯具区分为八个色温等级,分别为2700K、3000K、3500K、4000K、4500K、5000K、 5700K及6500K(图2)。

图2 八个相对色温指定值在CIE 1931之区域定义

图2中六个椭圆区块为ANSI C78.376定义荧光灯的色温等级区块,其所采取的色温允许变异范围为七阶MacAdam椭圆范围。对于固态照明,将允许变异范围加大,图2中的八个菱形区块即为固态照明的八个色温等级色度坐标(x,y)范围。色温分级有助于固态照明供货商及使用者有共同的色温标准语言。另外,此规范也定义演色性(Color Rendering Index,

CRI),作为评估固态照明光色特性的另一指标。对于量测光色特性的方式,则对应到LM-79规范。

固态照明不适用传统量测IESNA定义新方法

IESNA LM79-08于2008年公布,为测试方法的标准规范,内容针对固态照明的发光效率(单位:每瓦流明数(lm/W))、光通量(单位:流明(lm))、光强度的空间分布、色度、色差、光色空间均匀性、相对色温及演色性等进行量测方式与对应设备要求定义。

先前传统照明多是将灯具及光源分开量测,但固态照明可能出现灯具及光源合为一体的情况,因此原先针对传统照明定义的规范并不适用。IESNA特别制定此规范,希望藉由定义量测程序方法,将表现固态照明特性的参数,具有量测可重现性,并统一固态照明产品光电特性的量测手法,避免因量测方式不同造成争议。

该规范适用于以发光二极管(LED)为主包含电子控制装置及散热机构,且使用交流或直流电源驱动的固态照明产品。此规范所涵盖的固态照明产品是一个结合灯具与灯源的照明产品,如整合式LED灯泡,不包含须额外使用电子控制装置或散热机构(如LED芯片、LED组件及LED模块)的固态照明产品,也不涵盖供LED光源使用但不包含LED光源贩卖形式的灯具。另外,此规范也不适用于确定个体间产品性能的差异。

测试环境温度须控制

此份规范定义量测时的环境温度为25±1℃,且量测时,温度量测点须距离灯具1公尺内,高度须与灯具同高并避免光源的辐射热影响。量测时固定灯具的治具,也须避免热传导

及阻碍空气的自然流动。此外,此规范量测的光电性能,不须将灯源或灯具进行1,000小时的点灯后才进行测试。

为确保待测灯具在测试过程中是稳定的,测试前灯具须进行热灯动作,使温度达到平衡,热灯时间则依灯具而定,如整合式LED灯泡约需30分钟就能达到平衡,大型灯具可能需1小时或更久的时间。

是否达到稳定的标准,可用光源输出如固定点的光强度或消耗功率的表现来判定。若热灯30分钟,在15分钟内至少取三个量测值,将最大值减最小值的差除以平均值,结果须小于0.5%,如此可判别灯具是否已热机完成,实际热灯时间须于检测报告中注明。量测过程中灯具的摆放方式须为灯具在正常使用下的姿态。

此份规范定义两种光通量的量测系统方法,一是使用积分球系统,另一种则为使用配光曲线仪系统。使用哪种系统须依据所要量测的量(颜色、光强度分布)及待测样品尺寸等来决定。

积分球量测系统不需暗房条件

此方法适用于量测小尺寸固态照明灯具的全光通量及颜色特性,它的优点是快速、且不需暗房即可量测,在球内量测时空气的扰动可降低,但对于包含散热装置的整合式灯具就要注意散热导致温度的上升。

LM-79对于积分球的选用有几项重点:首先是积分球的尺寸应要够大,以避免灯体发出的热能使温度升高,以及因文件板及待测灯体自行吸收所导致的量测误差。另针对积分球的

大小,若是量测小型灯泡(如传统灯泡、省电型灯泡),建议球体直径≧1公尺;量测4呎(约120公分)的荧光灯管、HID灯等较大灯型,建议球体直径≧1.5公尺;量测500W或更大功率的灯型,则建议球体直径≧2公尺。

规范中定义使用积分球各装置的几何架构如图3所示。共有两种,一种为4π,另一种为2π。在4π的几何架构,固态照明产品的总表面积不可超过球壁总面积的2%,例如,在一个2公尺积分球内,待测物若为一个球状物,其直径必须小于30毫米。若为线状产品,其纵向尺寸应小于球直径的三分之二。在2π架构,安装固态照明产品的开口直径应小于球直径的三分之一。另外固定灯具的治具不可导热,以避免影响球体温度。

图3 积分球装置之几何架构。(a)为4π架构,灯体放置于球体中心,(b)为2π架构,适用于前射发光型之光源,灯体放置于球体侧面。

内部涂层反射率则须达90~98%。积分球内的涂层反射率较高,于量测时可得到较高的讯号,且对于积分球内不均匀的空间响应及固态照明光强度分布变化所引起的误差也可降低。但反射率高时,球体开口尺寸大小对平均反射率的影响就须予以评估。

积分球内应装有辅助灯,其作用在于评估灯体自吸收的部分,以得到自吸收因子。档板

大小应尽量缩小,但须能防止球体所允许量测最大尺寸灯体的光线直射侦测器。而文件板的放置位置,一般建议为从侦测器算起,介于球半径三分之一至二分之一长度的距离为文件板位置。另外辅助灯也须有档板,作用一样是避免光线直射侦测器。

图4 常见用以校正用之石英钨丝白炽灯

测量全光光谱辐射通量的标准灯通常是石英钨丝白炽灯(图4)。它有较宽的连续光谱表现,因此用以校正可见光域的光谱辐射计。对于2π球体,仅需前半面发光的标准灯,作法可将石英钨丝白炽灯,加上反射罩使光线为前射型。对于4π球体,通常使用全向发光的标准灯,但也可用前射标准灯。

须注意的重点为标准灯的点灯摆放位置将影响结果,也就是说,如果标准灯送往校正单位进行量测时,其摆放位置为何,在传递至待校正的系统时,标准灯摆放的方式要相同。另外对于待测光源的光型分布与标准灯的光型分布差异大时也会影响量测值,例如,待测光源是窄角光型的分布,但标准灯为全向近乎等量的光型分布,若以此种标准灯进行校正,再量测窄角光型灯源,结果必定差异很大,因此可准备多种光型分布的标准灯进行校正,以量测不同光型分布的待测样品。以积分球形式量测可搭配两种侦测器,一种为V(λ)亮度计(积分球-亮度计系统),另一种为光谱辐射计(即光谱仪)(积分球-光谱辐射计系统)。

与亮度计共享可量测全光通量

积分球-亮度计系统所使用的V(λ)亮度计可用以量测全光通量,但对于亮度计探头上

的滤片,其光谱响应S(λ)对人眼的明视觉光谱视效函数V(λ)匹配不佳时,将导致量测上的误差,尤其是固态照明为白光光源时,多以蓝光激发黄色荧光粉产生,在蓝光波段的视效函数匹配不佳时,差异的比例就会加大,图5即说明视效函数匹配问题。亮度计探头的光谱响应与V(λ)曲线不匹配的程度,CIE用来表示f''''''''''''''''1,f''''''''''''''''1值越小两者间不匹配的程度越小。另外,使用V(λ)亮度计为侦测探头时,无法进行光色特性的量测。

图5 白光LED多以蓝光激发黄色荧光粉,在蓝光波段(图中箭号表示)处,亮度计探头的视效函数(虚线表示)响应与CIE V(λ)匹配不佳时,差异的比例就会加大。

撘配光谱仪可消除V(λ)失匹配误差

由光度量定义,只要测出被测光源的光谱功率分布,再与V(λ)加权积分,就可以求出相对应的光度量,这种测量光谱光度量的方法为分光法。用分光法可以消除探头的V(λ)失匹配和被测光源与标准光源的光谱功率分布不一致所带来的误差。光源的光谱辐射功率分布

由光谱辐射计测量,分光法测量光度量的精度主要取决于光谱辐射计的线性动态范围、重复性、光谱波长误差、杂散光和标定误差等。

藉由量得的光源光谱辐射功率分布即可进行光色特性数值的计算,包含色度、相对色温及演色性(CRI)。

此类系统必须参照一个有校准到全可见光域分光辐射通量标准灯来进行校正。其量测原理为通过与参照标准ΦREF (λ)比较,可得到被测固态照明产品的总分光辐射通量ΦTEST (λ),关系式如公式(1)。

公式(1)

公式(2)中,yTEST (λ)为待测样品在此系统下的光谱辐射计的读值、yREF(λ)为参照标准灯在此系统下的光谱辐射计的读值,α(λ)则为自吸收因子。

公式(2)

yaux,TEST (λ)为不点亮待测样品,点亮辅助灯,在此系统下的光谱辐射计的读

值;yaux,REF (λ)则为不点亮参照标准灯,点亮辅助灯时,在此系统下的光谱辐射计读值。从测得的ΦTEST (λ)(单位:W/奈米)总分光辐射通量,可使用公式(3)计算总光通量ΦTEST (单位:流明)。

公式(3)

欲获得光源光型分布信息非使用配光曲线量测不可

配光曲线量测系统可提供待测光源灯具光强度在空间中的分布,进而透过积分运算得到光通量,此时的光通量可经计算得到全光通量、区域光通量的信息。

此系统也可支持较大型灯具量测。配光曲线量测系统须有暗房、良好的环境温度控制及避免空气扰动,尤其对于对温度敏感的固态照明灯具尤其重要。因配光曲线仪为量测空间中各点的光强度值再进行运算,相较于积分球,配光曲线量测系统的量测很耗时,但对于必须得知光源光型分布的情况,就不得不使用此系统来量测。

配光曲线量测系统所使用的侦测器与前面所述积分球量测系统一样,可搭配亮度计或光谱辐射计进行量测,于是配光曲线仪-亮度计系统及配光曲线仪-光谱辐射计系统应运而生。LM-79特别要求使用亮度计的f''''''''''''''''1须小于3%。不论是哪种系统都是量测灯源各方向的光强度值,再进行积分而得出光通量值。特别的是,若须要得知各角度的颜色分布,如能源之星针对固态照明要求量测各角度的光色差值时,就一定要使用光谱辐射计,才可得知待测灯源的光色特性。

C-γ配光曲线仪符合LM-79规范

配光曲线仪可分为A-α、B-β、C-γ三种形式,详见图6~8。为确保量测时的光源摆

放姿态即为使用时的姿态,仅有C-γ符合需求,LM-79因此规定仅可使用C-γ形式的配光曲线仪。C-γ型配光曲线仪包含移动侦测器探头及移动反光镜的类别。

图6 配光曲线仪A-α量测形式示意图

图7 配光曲线仪B-β量测形式示意图

图8 配光曲线仪C-γ量测形式示意图

对于大型灯具,若要符合侦测位置须达最大发光尺寸直径十倍距离远的要求(LM-79第10.0节说明宽发光角光源为五倍,窄角光源须更远),碍于实际执行空间的限制,便必须使用反光镜。此时应注意镜子本身存在一轻微极化的因素,若量测发出极化光源的固态照明产品的光通量时,就会造成很大的误差,因此推荐使用不带镜子的配光曲线仪。有些配光曲线仪会在旋转背上直接装设侦测器,如此即不须透过反光镜,当然,若灯具过大则无法使用。

图9 配光曲线仪测试光通量示意图

此外,也须注意配光曲线仪在环境杂散光的处理。包含灯具光源在机构件上的反光、灯具本体的反光、地面墙面反光等,都应加以评估并使用适当的架构,如在侦测期前装置光陷阱(Light Trap)避免反射杂光进入侦测器,影响量测值。

配光曲线仪架构发展久远

藉由量测光强度分布I(θ,Φ)如图9所示,光通量可由公式(4)求得。若以亮度探头量测照度值E(θ,Φ)进行校正,光通亮的计算方式可由公式(5)计算出来。其中γ为相对于亮度探头参考平面的旋转半径。量测光强度时,γ须要有足够的长度。

公式(4)

公式(5)

常见几种配光曲线仪的运作架构,有中心旋转反射镜式及圆周运动反射镜式。这两种架构都已有几十年的历史了,中心旋转反射镜式其运作方式如图10,待测灯具必须在相当大的空间范围内绕着反射镜反向且同步旋转,在暗室中上部温度高及下部温度低的现象,温差有时达到2~5℃,此时对温度变化和气流敏感的灯具如固态照明灯具,极可能出现不稳定的现象,为降低气流流动对灯具的影响,在运行时须放慢速度,量测时间也就增加了。

图10 中心旋转反射镜式之配光曲线仪架构示意

圆周运动反射镜式其运作方式如图11,待测灯仅自转不须做大范围的绕行,相对于中心旋转反射镜式的配光曲线较为稳定,但根据CIE-70的规定,入射到侦测器的主光线应被限制在2.5度内,因此须要将量测距离拉长才可满足此要求,但对于光线较弱的小型光源,如此长的量测距离,可能受限侦测器的灵敏度,不易量测。

图11 圆周运动反射镜式之配光曲线仪架构示意

工研院量测中心目前使用配光曲线仪为图12的架构,灯具仅缓步自转,且量测时灯具为使用时的摆放姿态,稳定性佳。量测时有两种模式,一为透过双面反射镜提供大型灯具的远距离量测;另一模式不透过反射镜提供小型灯具如嵌灯、E27灯等的近距离(约1公尺)的量测。

图12 工研院量测中心之配光曲线仪及其量测光源路径示意

配光曲线仪的校正

使用配光曲线仪进行光强度分布的测试,须使用照度或光强度标准灯进行国际标准追溯。若量测全光通量则须使用全光通量标准灯进行标准追溯,原则上标准灯的光型分布建议与待测灯源的光型相似。

LM-79特别说明使用配光曲线仪量得的光强度分布数据,须依照IES LM-63规范定义的格式,形成IES电子文件,以方便后续于照度分度上的模拟计算使用。

发光效率ηv的计算如下列公式(6)所述,为待测固态照明产品的总光通量ΦTEST除以总消耗功率PTEST,此指标是用以评估固态照明电光效能转换的重要指标。

公式(6)

固态照明在颜色特性的量测上包含色度坐标、相对色温、演色性,对于固态照明其颜色特性在不同的空间角度可能是不同的,LM-79规范在第12.1至12.2节当中进行定义。

第12.1节为使用积分球-光谱辐射计系统进行分光辐射通量的量测,再计算出颜色特性,此时量得的固态照明颜色特性为空间分布的平均表现。

第12.2节为使用前述配光曲线仪的机构方式,搭配光谱辐射计或是色度计进行空间颜色特性分布量测。这个方式适用于无法使用积分球进行量测,如大型灯具。重要的是,此方法可量得固态照明光源的空间颜色差异。若要得到空间平均的颜色特性,就将空间中各点的颜色数据进行平均即可得到。

在量测θ=0°和90°(或更多的θ角)的色度坐标和光强度时,首先在每个θ角上取平均,表示为x(θi)、y(θi)以及I(θi),这里的θi=0°、10°、20°等直到180°。然后平均色度坐标xa由下列加权平均式子算出,量测示意图如图13。

图13 图中为使用配光曲线仪量测固态照明颜色特性示意图,该灯具为仅朝下半面发光

之形式。

公式(7)

平均色度坐标ya 也是使用相同的算法。此计算方式是近似算法但对于实际应用已算是足够正确。严格说来,若要很精确的进行颜色特性的空间积分须要经由三刺激值计算X、Y、Z。

在使用光谱辐射计进行颜色特性的量测时,LM-79定义光谱辐射计的量测波长范围至少为380~780奈米,这是可见光的波长范围,扫描间隔为5奈米或是更小的间距,如此才可确保量测的精确性。

在两个空间垂直平面(ψ=0o,ψ=90o)量测,空间平均色度坐标是由前述公式(7)取得。LM-79中所定义的固态照明灯具空间色差Δu''''''''''''''''v'''''''''''''''' 为从计算空间平均色度坐标的所有量测点中,对空间平均色度坐标的最大差异(即在

CIE(u''''''''''''''''v'''''''''''''''')坐标图中,两点间最大距离)所决定的。

量测方法一致性可推动产业发展

固态照明的发展目前正如火如荼的进行,为使固态照明取代传统照明能顺利推动,美国

能源之星正积极展开相关计划,期望藉由对固态产品特性量测方式定义的一致性,使产品能有一致的手法来评估,而得以分出固态照明产品的优劣,使此产业有正向推动力。国内业者要推动固态照明产业除了国内内需市场、大陆市场,另一部分应是欧美市场。而了解能源之星对固态照明的验证量测方法并进行测试验证,将有助于质量的提升。

中华人民共和国农业部部标准米质测定方法

中华人民共与国农业部部标准米质测定方法 2010-1-30 1适用范围 本标准适用于食用稻米品质得测定。 2引用标准 GB 2905谷类、豆类作物种子粗蛋白质测定法(半微量凯氏法) GB 3523 谷类、油料作物种子水分测定法 GB 4801 谷类籽粒赖氨酸测定法染料结合赖氨酸(DBL)法 GB 5495 粮食、油料检验稻谷出糙率检验法 GB 7648 水稻、玉米、谷子籽粒直链淀粉测定法 NY 122 优质食用稻米 3样品得准备 3、1稻谷在收获晒干后须存放三个月以上,待理化性状稳定后,方可进行分析。 3、2 加工得稻谷须扬净稻草、瘪粒,并除去砂石、泥块、铁屑等混杂物。稻谷品种纯度不得低于99、0%。 3、3 待测样品须放于干燥通风处或有空调得实验室内1周左右,使样品得水分含量为13%±1%,含水量得测定根据GB 3523。 4碾磨品质得测定 4、1 出糙率得测定 4.1.1 常样法 4.1.1、1 仪器设备 实验室用谷物脱壳机 4.1.1、2 测定方法 a、根据待测样品谷粒得厚度,调节脱壳机滚轮(或辊子)得间距(一般在0、50~ 1.00mm之间),使样品经二次处理后,基本上脱壳完全。 b、机器空转数圈,以清除机内残留得稻谷与米粒。

c、称取130.0g稻谷,倒入进样漏斗中,打开电源开关,调节进样闸口,使样品均匀进入机内脱壳。 d、经二次脱壳后,检出样品中残留得谷粒并称其糙米与谷粒得重量,精确到0.1g。 4.1.1、3 结果得表述 出糙率按公式(1)计算:?出糙率(%)={(糙米重(g)/〔试样谷重(g)-未脱壳谷重(g)〕}×100 (1) 重复测定一次,求出二次出糙率得平均值、前后二次测定结果得相对相差不应大于1%、4.1.2 小样法?按GB 5495方法测定、 ?4、2 精米率得测定 4.2.1 仪器设备 JMJ-100型精米机或其她同类型号得实验室精米机、?4、2、2 测定方法?4、2、2、1 称取100g糙米,精确到0.1g,放入精米机得碾米室内、 4、2、2、2 调节碾米室盖得压力至3kg左右,再调节定时器得碾米时间,使碾米精度达国家标准一等米得水平、 4、2、2、3 碾磨后得米样经手工除去糠块,再用1.5mm直径得筛子除去胚片与糠屑、?4、2、2、4 待米样冷却至室温后,称精米重,精确到0.1g、 4、2、3结果得表述 精米率按公式(2)计算:?精米率(%)=〔精米重(g)/糙米重(g)〕×出糙率…………………… (2)?重复测定一次,求出精米率平均值、二次测定结果得相对相差应小于1、0 %、 4、3 整精米率得测定 4、3、1 仪器设备 整米分离机或具不同圆孔直径得筛子一套、 4、3、2 测定方法?4、3、2、1 精米样品得制备 精米样品制备得方法基本上同4、2、2,但掌握碾米得精度为糙米去糠率得10%±0、5%、4、3、2、2 整精米样品得分离?借助于整米分离机或筛子,自以上精米样品中人工分离出整精米(整精米系指肉眼观察无破损得完整精米粒),称重,精确至0.1g、 4、3、3结果得表述 整精米率按公式(3)计算: 整精米率(%)=〔整精米重(g)/糙米重(g)〕×出糙率 (3) 重复测定一次,求出整精米率平均值、两次测定结果相对相差应不超过2、0%、 5 外观品质得测定 5、1 长宽比得测定 5、1、1 仪器设备?谷物轮廓仪,照相放大机或微粒子计、?5、1、2 测定方法?从整精米样品中随机取出整精米10粒,在谷物轮廓仪上读出米粒得长度与宽度,以毫米为单位,读数精确至0.1mm、精米得长度系指整精米两端间得最大距离;宽度系指米粒最宽处得距离、 5、1、3 结果得表述?求出长度与宽度得平均值,按公式(4)计算其长宽比:

MLSS和MLVSS的标准测定方法

MLSS和MLVSS的标准测定方法 仪器和实验用品 1.定量滤纸 2.马弗炉 3.烘箱 4.干燥器,备有以颜色指示的干燥剂 5.分析天平,感量0.1mg 实验步骤(括号内为实际操作) 1.定量滤纸在103-105℃烘干,干燥期内冷却,称重,反复直至获得恒重或称重损失小于前次称重的4%;重量为m0;(干燥8小时后放入干燥器冷却后称重为最终值或Φ12.5的滤纸直接以1g计)2.将样品100ml用1中的滤纸过滤,放入103-105℃的烘箱中烘干取出在干燥器中冷却至平衡温度称重,反复干燥制恒重或失重小于前次称重的5%或0.5mg(取较小值),重量为m1; SS=(m1- m0)/0.1(干燥8小时后放入干燥器冷却后称重为最终值)3.将干净的坩埚放入烘箱中干燥一小时,取出放在干燥其中冷却至平衡温度,称重,重量为m2; 4.将2中的滤纸和泥放在3中的坩埚中,然后放入冷的马弗炉中,加热到600℃灼烧60分钟,在干燥器中冷却并称重,m3;(从温度达到600℃开始计时) vss=[( m1+m2- m0)- m3]/0.1

MLSS:单位容积混合液内含活性污泥固体物质的总量(mg/L),MLVSS 指混合液挥发性悬浮固体。生活污水一般MLVSS/MLSS=0.7。测MLSS 需要定性滤纸(不能用定量的)、电子分析天平、烘箱、干燥器等。取100ml混合液用滤纸过滤,待烘箱中温度升到103-105之间的设定值后,将滤干后的滤纸放入烘箱烘2小时,取出置于干燥器中放置半小操作时。称量后减去滤纸重量,并且测滤纸的重量也要采用上述同样的步骤。该实验必须严格按照上述操作,否则会入偏差。 MLSS及MLVSS的常用测定方法 1. 定义: MLSS :称混合液悬浮固体。是指曝气池混合液体活性污泥的浓度,即在单位容积混合液内所占有的活性污泥固体物的总重量。MLVSS:称混合液挥发性悬浮固体。指MLSS(混合液悬浮固体)中的有机物量称为MLVSS。 2. 指标含义: MLSS、MLVSS是间接计量活性污泥微生物量的指标。 3. 水样的采集、保存及注意事项 采样地点定于曝气池出口处;曝气池水深3.1米,故应在液面下0.78

木门常规标准和测量方法

木门常规标准和测量方法

木门常规尺寸和测量安装标准 木门,门框,门套线的常规标准; 门扇净尺寸:卧室:2000*800*40MM;厨房:2000*750*40MM:卫生间:20 00*700*40MM 门框外边尺寸:卧室:2040*868**40MM;厨房:2040*818*40MM:卫生间:2040*768*40MM 门洞水平垂直标准尺寸:卧室:2055*888MM;厨房:2055*838MM:卫生间:2055*788MM 门套线:普通木线尺寸为宽70*厚12MM,欧式木线为宽100*厚20MM 一、门洞的测量 1、门洞宽度测量:水平测量门洞左右的距离,选取三个以上的测量点进行测量,其中最小值(减门框调整余量20MM)为门框外边尺寸。 2、门洞墙体厚度的测量:水平测量墙体厚度,选取三个以上的测量点进行测量,其中最大值为墙体厚度,如果墙面需要做其他装修,则门洞墙体厚度需要增加装修材料厚度(比如卫生间或厨房墙面需要贴瓷砖或做大理石)。 3、门洞高度测量:找到现场定准的水平线垂直测量门洞上下距离,选取三个以上的测量点进行测量,其中最小值(减门框调整余量15MM)为门框外边尺寸(在测量过程中要注意地面处理情况,预留出地面装修材料的厚度以备所须)。 4、特殊墙的处理:转角墙丁字墙门洞安装前应通知客户先在无门垛的一边做“假墙”根据线条宽度确定做假墙宽度尺寸,最低宽度尺寸不得少于50mm。

二、安装前(产品)运输存放 1、套装门属油漆类产品,出厂前都做了抛光处理;在装卸车及搬运过程中容易造成门扇、门框的碰伤;所以对在搬运过程中要认真负责,轻拿轻放。 2、货物运抵现场时,应按照产品安装顺序进行拆包,并清点所以产品及配件的实物和数量是否与合同相符。 3、货到现场门框按门框尺寸整齐摆放,门扇要平放或横放,平放要求底层要平整,每扇堆放间隙处用木方或木板隔开,横放必须要有支架,门扇绝对不允许靠墙竖放而造成木门变形。 4、门框到现场必须按编号一次性分到位。 5、门扇,门框应在室内用垫板垫平叠放;门框与门扇分开叠放,禁止斜放和在门扇及其他材料上堆放重物注意防潮.严禁与酸碱物一起存放;检查清理现场,看门洞或门框的预留尺寸是否符和设计要求。 三、安装技术要求 木门安装是木门的最后一道关,安装质量将直接影响木门的整体效果,如果由于安装的不规范造成门扇、门框的损伤、划伤、碰伤等,而要现场返修,将大大增加维修成本,安装要求如下: 1、门框的安装 1)一般情况下都是先安装门框,再安装门扇最后安装套线,门框的安装要保持垂直度误差在1mm以内,门框安装时宽度居中安装。 2)现场有底框的安装方法采用镀锌直角铁码连接,每半边安装3个铁码(特殊高度的门框安装5-7),若现场的底框安装不符合安装条件,就需要做如下处理: a必须加固原底框;

中华人民共和国国家标准《室内照明测量方法》要点

中华人民共和国国家标准《室内照明测量方法》 发布时间: GB5700-85 Measurementmethodsforinteriorlighting 1总则 1.1为统计照明的测量方法,确保测量的准确性,特制订本方法。 1.2测量目的 1.2.1检验照明设施与所规定标准的符合情况。 1.2.2调查照明设施与设计条件的符合情况。 1.2.3进行各种照明设施的照明比较的调查。 1.2.4测定照明随时间变化的情况,确定维护和改善照明的措施,以保障视觉工作要求和节约能源。 1.3测量内容 1.3.1室内有关面上各点的照度。 1.3.2室内各表面上的反射系数。 1.3.3室内各表面和设备的亮度。 1.4适用范围 1.4.1本标准适用于各种建筑室内照明的测量。 1.4.2本标准不适用道路和室外场地以及各种交通工具(火车、轮船、飞机等)的照明测量。 1.4.3采用本标准时,尚应符合有关规范和标准等条文的规定。 2测量仪器 2.1照度计 2.1.1用于照明测量的照度计宜为光电池式照度计。按接收器的材料,照度计可分为硒光电池式和硅光电池式的照度计。 2.1.2照明测量宜采用精确度为二级以上的照度计(指针式或数字式)。 2.1.3照度计的检定应按JJG245—81《光照度计》进行。 注:光照度计又称照度计。 2.2亮度计 2.2.1照明测量主要采用光电式亮度计,接收器可用光电池(硒、硅)、光电管、光电倍增管做成。 2.2.2亮度计的检定应按JJG211一80《亮度计》进行。 3照度测量 3.1一般照明时测点的平面布置 3.1.1预先在测定场所打好网格,作测点记号,—般室内或工作区为2~4m正方形网格。对于小面积的房间可取1m的正方形网格。 3.1.2对走廊、通道、楼梯等处在长度方向的中心线上按l~2m的间隔布置测点。 3.1.3网格边线一般距房间各边0.5~lm 3.2局部照明时测点布置 局部照明时,在需照明的地方测量。当测量场所狭窄时,选择其中有代表性的一点;当测量场所广阔时,可按3.1所述布点。 3.3测量平面和测点高度 3.3.1无特殊规定时,一般为距地0.8m的水平面。 3.3.2按需要规定的平面和高度。 3.3.3对走廊和楼梯,规定为地面或距地面为15cm以内的水平面。

工时测定方法

文件编号 C1-3-001 生效日期 2010年10 月18日 版次修订 A/2 制 定 审 查 批 准 标准工时制定管理规定 一、目的 为了能够准确的制定计件产品单价,计算成品成本,设定生产能力,编订生产计划,评 价作业效率,选定最佳作业方法等。 二、适用范围 技术中心、生产部、财务部、营销中心 三、制定标准工时的时机 新产品或生产工艺经过调整的产品,在原材料、设备、工艺稳定之后,批量生产达到50 ㎡时,需制定出标准工时。 四、制定方法 标准工时就是在标准作业条件下,中等熟练作业人员按正确的工艺以正常的努力完成一 道工序所需要的时间。 1、工时的测定方法:采用秒表直接测定。 2、制定标准工时的步骤: 2.1选择中等熟练的工人(入厂6-12个月)。 2.2确定工作开始的准备时间。 2.3确定测量的次数和人次 ,制定好测量表格。 2.4测量每一工作时间并做好记录。 2.5对各工作时间加以评比,并计算出平均实测工时。 2.6决定宽放率。 2.7计算并订定标准工时。 3、计算公式: 标准工时=实测工时*(1+宽放率) 实测工时=实际测量工时的加权平均值

4、宽放率的计算与范围 4.1宽放率=宽放时间/规定工作时间*100% 4.2管理宽放时间:在工厂现有条件下完成工作不可避免的耽误时间,如:设备调整、物 料准备、整理整顿等。 4.3生理宽放时间:如上厕所、喝水等。 4.4疲劳宽放时间:长时间工作会产生疲劳,因恢复体力而花费的时间。 4.5管理宽放率:3%—5% 4.6生理宽放率:5%—7%(8小时—12小时) 4.7疲劳宽放率:5%—10% 5、注意事项: 5.1选择5位不同中等熟练工人测量,每人测量至少一次,计算出他们的平均数(对异常 数据要适当处理) 5.2对工作时间的测量一定要准确,特别是工作准备时间的测量。 5.3对宽放率的选择要合适。不同的工作,宽放率的比例是不一样的。 举例:贴网组的雨滴摆板工序 选择5位不同的中等熟练工人A B C D E 每位工人开始摆板的准备工作时间分别为0.15小时,0.17小时,0.15小时,0.18小时, 0.13小时。 确定5位工人做同样的工作,每人测一次,制定好测量表。 每位工人摆1平方米雨滴所花费的时间如下: A工人 8小时 B工人 8.2小时 C工人 8.3小时 D工人 8.1小时 E工人 8.4小时 计算出平均工时: 选定的5位工人摆 1平方米雨滴花费的时间分别为: A工人:0.15小时+8小时=8.15小时

绝缘电阻的正确测量方法及标准

绝缘电阻的正确测量方法 一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝

缘纸上。 2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 绝缘阻值判断 (1)、所测绝缘电阻应等于或大于一般容许的数值,各种电器的具体规定不一样,最低限值: 低压设备0.5MΩ, 3-10KV 300MΩ、 20-35KV为400MΩ、 63-220KV为800MΩ、 500KV为3000MΩ。 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω=0.001MΩ,每千伏1 MΩ。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

戒指尺寸标准及测量方法

戒指尺寸标准及测量方法 无论是我们要为自己选一枚戒指,还是给心爱的人买一枚戒指,我们肯定都会想到同一个问题那就是:“她戴多少码数的戒指?我的戒指尺寸是多少?”只有知道了准确的戒指尺寸号,我们才能安心的选购戒指,不然绕了一大圈,好不容易买好戒指,送到对方手里时才发现戒指尺寸太大,或者太小,这样的美中不足真的很让人扫兴。所以关于戒指尺寸,以下这些你应该有所了解。 稍微对戒指尺寸有所了解的新人会发现,戒指尺寸不只有一种标准,国际上很多国家都有不同的戒指尺寸标准、还有香港的、大陆的戒指尺寸都有不同版本的标准,甚至不同戒指品牌都有自己的戒指尺寸标准。在国内,戒指尺寸流行着大陆尺码和香港尺码两个版本,但一般以港码最为常见。 戒指尺寸对照表(香港码) 号数(港码) 直径(mm) 周长(mm) 7-----------14.5---------46 8-----------15.1---------47.5 9-----------15.3---------48 10----------16.1---------50.5 11----------16.6---------52 12----------16.9---------53 13----------17.0---------53.5 14----------17.7---------55.5 15----------18.0---------56.5 16----------18.2---------57 17----------18.3---------57.5 18----------18.5---------58 19----------18.8---------9 20----------19.4---------61

COD标准测定方法-国标GB11914-89化学需氧量的测定

COD 标准测定方法:国标 GB11914-89 化学需氧量的 测定
2011-7-20 8:45:00 来源:姜堰市银河仪器厂
1 应用范围 本标准规定了水中化学需氧量的测定方法。 本标准适用于各种类型的含 COD 值大于 30mg/L 的水样,对未经稀释的水样的测 定上限为 700 mg/L。超过水样稀释测定。 本标准不适用于含氯化物浓度大于 1000 mg/L(稀释后)的含盐水。 2 定义 在一定条件下,经重铬酸钾氧化处理时,水样中的溶解性物质和悬浮物所消耗的重 铬酸钾盐相对应的氧的质量浓度。 3 原理 在水样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回 流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾有西欧爱 好的硫酸亚铁铵的量换算成消耗氧的质量浓度。 在酸性重铬酸钾条件下,芳烃及吡啶难以被氧化,其氧化率较低。在硫酸因催化作 用下,直链脂肪族化合物可有效地被氧化。 4 试剂 除非另有说明,实验时所用试剂均为符合国家标准的分析纯试剂,试验用水均为蒸 馏水或同等纯度的水。 4.1 硫酸银(Ag2SO4),化学纯。 4.2 硫酸汞(Hg SO4),化学纯。 4.3 硫酸(H2SO4),ρ=1.84g/Ml。 4.4 硫酸银-硫酸试剂:向 1L 硫酸(4.3)中加入 10g 硫酸银(4.1),放置 1~2 天使 之溶解,并混匀,使用前小心摇动。 4.5 重铬酸钾标准溶液: 4.5.1 浓度为 C(1/6K2Cr2O7)=0.250mol/L 的重铬酸钾标准溶液:将 12.258g 在 105℃ 干燥 2h 后的重铬酸钾溶于水中,稀释至 1000mL。 4.5.2 浓度为 C(1/6K2Cr2O7)=0.0250mol/L 的重铬酸钾标准溶液:将 4.5.1 条的溶液 稀释 10 倍而成。 4.6 硫酸亚铁铵标准滴定溶液 4.6.1 浓度为 C〔(NH4)2Fe(SO4)2· 6H2O〕≈0.10mol/L 的硫酸亚铁铵标准滴定溶液:

标准工时测定方法

标准工时测定方法 一、标准工时定义 标准工时指对于必要能力受过充分训练的作业人员,在适当的速度和作业环境下执行作业所需要的时间。 即是在下列条件下,完成一单位作业所需的时间: 1.采用标准作业及标准设备 2.在标准化的作业条件下 3.作业者均具备制程所要求的熟练度和适应度 4.在不妨害生理健康的情況下熟练度与适应度 5.以企业所设定的正常作业速度,完成一個单位作业量 二、标准工时的角色 三、标准工时的构成 四、宽放时间种类 a. 生理宽放:又称私事宽放。 标准工时 标准准备时间 标准主体时间 净准备时间 宽放时间 净作业时间 宽放时间 一般时间 特殊时间 特殊时间 一般时间 标准工时 工厂管理 外包价格的決定 标准价目格的決定 的決定 设备管理 设备机种的选定 设备台数的決定 设备定位的決定 生产管理 生产计划 日程计划 作业管理 适当的人员配置 作业制程改善 效率管理 工程管理 价格管理 效率与生产性能的评价 奖励津帖的策略 价格的预估

b.疲劳宽放:分为体力疲劳和精神疲劳。 c.管理宽放:又称连接宽放。 五、标准工时测定方法 a.秒表测时法 b.PTS测时法(多采用MTM法) c.MOD测时法 标准工时测定方法有很多种,各IE作业者由于喜好及运用熟练程度不同而选择不同的动作方法。以上三种方法各有优缺点,实际操作中往往结合运用。 a.秒表测时法 秒表测时法是最古老、最常用的测时方法,目前多数企业广泛采用。 1.局限性 1>必须在生产效率达到一定水平时采集到数据才有效。 2>评比比较困难,人为因素较多。 3>采集数据周期比较长,时间成本耗费较大。 2.优势性 1>采集数据简单,较为直接,操作比较简单。 2>IE人员能更多了解生产实际,采集数据更据有说服力。 3.具体操作方法 1>操作要素 测时人员必须了解被测对象(包括:a.工件的制作流程;b.作业的工作方法和 作业标准;c.进行作业的人和设备。)

电器安规标准及测量方法

电器安规标准及量测方法 1、相关法规、标准要求。 GB4706.1—1998 家用和类似用途电器的安全 GB/T3797—2005 电气控制设备 GB19212.1—2003 电力变压器﹑电源装置和类似产品的安全(第一部分:通用要求和试验) GB/T 2423.10-1995 电工电子产品环境试验-试验Fc和导则:振动(正弦) GB/T17626.2-1998 电磁兼容试验与测量技术静电放电抗扰度试验 GB/T17626.1-1998 电磁兼容抗扰度试验总论勺 GB/T17626.4-1998 电磁兼容电快速瞬变脉冲群抗扰度试验 GB/T17626.11-1998 电磁兼容电压暂降﹑短时中断和电压变化的抗扰度试验 2、电缆或软线横截面积与电流关系。 3、保护性接地端子或接地触点与被接地的金属部件之间的连接应是低电阻的。

用一个空载电压不超过12V的电源提供一个等于1.5倍额定输入电流或等于25A的电流(二者中取较大值),依此从接地端子或接地触点与每个易触及的金属部件之间通过,持续1min,测量期间的电阻值应不大于0.1Ω。试验按照接地电阻测试仪的操作规程进行,符合GB19212.1—2003第24.4条规定。 4、灰尘﹑固体异物和潮湿有害进入的防护 电控系统各独立部件的外壳具有和标在铭牌上的IP代码相一致的防飞尘﹑固体异物和潮湿进入的防护等级,要求的防护等级为IP20 (表示防护等级的代号由特征字母IP和后加两位数字组成。其中的两位数字分别表示符合表1和表2规定的条件),符合GB19212.1—2003第17.2条规定。 表1 第一位特征数字代表的防护等级 表2 第二位特征数字代表的防护等级

标准工时与效率改善

标准工时与效率改善 开课信息: 课程编号:KC7357 开课日期(天数)上课地区费用 2014/9/20-21 广东-广州市3280 更多: 无 招生对象 --------------------------------- 工艺工程师,精益制造工程师,IE工程师,生产主管,生产经理,工程经理,人力资源管理人员等 【主办单位】中国电子标准协会培训中心w w w. W a y s. O r g. C n 【协办单位】深圳市威硕企业管理咨询有限公司 课程内容 --------------------------------- 课程背景 在中国,随着廉价的劳动力慢慢退出历史,如何降低成本、提高效率、以最低成本实现顾客价值最大化,是每个企业管理者必须关注的问题。随着企业精细化管理的到来,标准工时已被应用于企业的各个领域,他是企业实施TPM、精益生产、六西格玛等内部改善的基础,标准工时已被誉为企业数字化管理的基石! 如何制定标准工时? 如何测定标准工时? 如何根据标准工时改善公司的产能及交期? 如何利用标准工时实施绩效管理与改善?

如何依据标准工时,开展效率改善? 如何利用标准工时,推动企业的整体改善? 以上问题及困惑将由冠卓IE改善高级讲师带领您共同探讨。冠卓基于多年的企业改善咨询辅导经验,特别推出此全新课程。课程搜集了大量企业真实改善案例及企业在运用标准工时过程中可能出现的问题及误区,实用性高、专业性强。课程不仅能够带给学员专业实用的工具及知识,更将指导学员如何有效在企业中进行实施和应用。 课程目标 了解标准工时的构成、测量方法、影响因素、制定步骤,宽放率及标准工时的改善; 了解劳动定额的制定,生产绩效的影响因素及改善,从而提高生产效率; 提供标准工时、劳动定额的制定,绩效与生产效率的基本知识,训练技术与管理人员怎么将这些知识应用到本企业中(最好能事先由企业提供部分案例) 课程内容 第一单元:标准工时的定义与作用 时间研究的定义 游戏一:扑克牌游戏 标准工时的定义及分类 标准工时制定的基本条件 合格工人 作业标准 正常的环境和条件 普通熟练程度和正常速度

测试方案验收标准及方案

第八章测试方案 8.1 网络测试方案 一个高品质的网络要通过业务设计和定位、网络设计、设备选型、工程建设、方案验证和持续优化、维护管理6个环节来保证,其中设备选型、方案验证和优化主要通过选型测试和网络测试实现。为此中国电信于2004年初和2005年初分别组织了CN2项目的设备选型测试和网络验收测试。两次测试被业界认为是全球高端路由器和传统互联网向下一代多业务融合承载网转型的路演。 以网络需求为导向 以网络需求为导向,根据网络运营对设备的要求制订测试内容是测试中坚持的最基本方法。“萝卜青菜,各有所爱”,对选型测试来说,因为被选的设备最终是被某个特定网络所用的,所以必须根据网络的“口味”进行评价选择。将测试定位在网络而不是设备,也是运营商测试与设备厂商内部测试或第三方单位测试的本质区别,CN2的测试工作只有紧扣网络才是有意义的。 CN2网络是以盈利为目标的“精品网”,中国电信上下各级对她有很多的憧憬:能够承载商业大客户、语音、视频、数据等业务的统一多业务承载网络,具有高安全性和QoS保证。这样的网络要求设备具备六个方面的能力,包括:高可扩展性、高可用性、多业务融合承载能力、区分服务提供能力、可管理性和安全性。分析这些能力要求,就转换为一个完整的测试和评估指标体系,包括:设备可用性及其控制/转发平面的稳定性、交换容量和路由/标签/组播容量、流量转发能力、快速路由收敛和快速重路由(FRR)能力、服务质量保证(QoS)能力、MPLSVPN和组播业务能力、IPv6能力、网络管理和安全能力等。 根据网络需求制订测试内容之后,在具体的测试项目中,中国电信不断深入分析需求细节,定义测试指标和参数,设计测试方法。以IGP的快速路由收敛测试为例,因为CN2的需求是在ISIS域内,任何单电路或单路由器发生故障后,全网ISIS协议必须在一秒以内收敛。因此,根据CN2网络的工程技术施工规范,在设备上配置快速收敛机制和相关时间参数。分析CN2的网络结构,将一个充分

国标测试方法

一.性能标准测量条件 1 测量环境 温度相对湿度大气压 180C~280C 45%~75% 86Kpa~106Kpa 开启电源后,产品应在以上环境条件下至少稳定30min 后进行测量。 2 AM/FM 数字调谐器性能测试端子 AM/FM 数字调谐器性能测试应在功放输出端进行,功放输出端应接4Ω测试专用负载。 3 AM/FM 性能测试时的标准测试状态 AM/FM 性能测试应在以下标准状态下进行(各通道): 1)标准输出状态: —功放输出功率:0.5 W —功放输出电压:+ 1.4 V —负载:4.0 Ω 2)准测试频率点: —FM 测试频率点:90.1MHz、98.1MHz、106.1 MHz。 —AM 测试频率点:603kHz 999kHz 1404kHz。 4 测试电路 AM/FM 与音频功放性能测试电路连接见图6。 二.AM/FM 数字调谐器的性能测量 Ⅰ.AM 性能测量 AM/FM 数字调谐器性能测试端的要求按一(2)条的有关规定。 1.频率范围 1)测试电路如图6所示,将被测机调至AM状态,把选台钮调至最低端,AM信号发生器频率设置在产品的企业标准规定的频率低端(如:531kHz),调制度30%,调制频率1kHz,信号发生器输出电平暂设34dBμV; 2)将被测机音量开至最大,均衡器调到中间位置,调节AM 信号发生器频率微调使被测机输出达到最大,此时AM 信号发生器的频率即为被测机低端频率; 3)把选台钮再调至最高端,AM 信号发生器频率设置在产品的企业标准规定的频率高端(如:

1602kHz),调制度、调制频率、输入电平不变,调整AM 信号发生器频率微调设置使被测机输出达到最大,此时AM 信号发生器的频率即为被测机的高端频率。 2.中频 1)测试电路如图6所示,把AM 信号发生器频率设置在450KHz,调制度30%,调制频率1kHz,被测机输入电平设置为74dBμV; 2)将被测机调至最低端频率,然后旋转AM 信号发生器频率微调至输出电压最高,此时信号发生器上的频率即为被测机的中频频率。 3.噪限灵敏度(20dB S/N) 1)测试电路如图6所示,AM 信号发生器频率设置在603kHz,调制频率1kHz,被测机输入电平暂设40dBμV; 2)将被测机频率调至603kHz 处,调节音量控制器至标准输出电压; 3)除去信号发生器的调制信号,测试此时的信噪比S/N,若S/N﹥20dB 时,则降低输入信号电平;若S/N﹤20dB 时,则增加输入信号电平; 4)重复上述3)的步骤,直至信噪比S/N = 20dB,则此时的输入信号电平即为该点所测的噪限灵敏度; 5)同理,在999kHz、1404kHz 频率点的测试,重复上述各步骤的测试方法即可。 4.锁台灵敏度 1)测试电路如图6所示,将AM 信号发生器频率设置于999KHz,调制度30%,调制频率1kHz,被 测机输入信号电平暂设为30dBμV; 2)将被测机进行信号搜台,观察被测机是否可以停在999KHz 频率点上; 3)调节AM 信号发生器输出电平,重新进行步骤2),找出被测机能停在999KHz 频率点时的信号发生器的最低输出电平; 4)此时AM 信号发生器的输出电平即为被测机在999KHz 频率点的锁台灵敏度; 5)同理,重复上述步骤,在603KHz,1404KHz 频率点的测试方法相同。 5.信噪比 1)测试电路如图6所示,将AM 信号发生器频率设置于603kHz,调制度30%,调制频率1kHz,被测机输入信号电平设为74dBμV; 2)然后将被测机频率调至603kHz,调节其音量控制器使达到标准电压输出电压; 3)除去AM 信号发生器的调制信号,调节毫伏表的dB 档,使其指示不超过1.4V 的标准输出,则此时毫伏表的dB 读数,即为603KHz 频率点的信噪比; 4)同理,重复上述步骤,在999KHz、1404KHz 频率点的信噪比测试方法相同。 6.中频抑制 1)测试电路如图6所示,先测试在603KHz 频率点的噪限灵敏度; 2)将AM 信号发生器频率调至450KHz,调制度与调制频率不变,增加其输出电平使被测机的输出电平为标准输出电平; 3)此时输入电平dB 数减去噪限灵敏度时的输入电平dB 数,即为被测机的中频抑制。 7.镜像抑制 1)测试电路如图6所示,先测试在1404KHz频率点的噪限灵敏度; 2)调整AM 信号发生器的输入频率加两个中频(即:1404KHz +2×中频),再增加输入信号电平使 被测机的输出电平为标准输出电压; 3)此时的输入电平dB数减去噪限灵敏度时的输入电平dB 数,即为被测机的镜像抑制。 8.选择性

测量方法的分类

测量方法的分类 测量是以确定量值为目的的一系列操作,采用各种手段将被测量与同类标准量进行比较,从而确定出被测量大小的方法称为测量方法。测量方法对测量工作是十分重要的,它关系到测量任务是否能完成。因此要针对不同测量任务的具体情况进行分析后,找出切实可行的测量方法,然后根据测量方法选择合适的检测技术工具,组成测量系统,进行实际测量。对于测量方法,从不同的角度出发,有不同的分类方法。按测量手段和获得测量结果的方法不同进行分类,主要有直接测量、间接测量和组合测量三种测量方法。 1. 直接测量、间接测量和组合测量 (1)直接测量 在使用仪表进行测量时,对仪表读数不需要经过任何运算,就能直接表示测量所需要的结果,称为直接测量。例如,用磁电式电流表测量电路的支路电流,用弹簧管式压力表测量锅炉压力,汽车油位表、暖气管道的压力表等等就是直接测量。直接测量的优点是测量过程简单而迅速,测量结果直观,缺点是测量精度不容易做到很高。这种测量方法是工程上大量采用的方法,如图1-5所示。 图1-5 各种直接测量的实例 (a) 各种卡尺;(b) 温度计;(c) 血压计 (2)间接测量 有的被测量无法或不便于直接测量,但可以根据某些规律找出被测量与其他几个量的函数关系。这就要求在进行测量时,首先对与被测物理量有确定函数关系的几个量进行测量,然后将测量值代入函数关系式,经过计算得到所需的结果,这种方法称为间接测量。例如,对生产过程中的纸张或地板革的厚度进行测量时无法直接测量,只得通过测量与厚度有确定函数关系的单位面积重量来间接测量。因此间接测量比直接测量来得复杂,但是有时可以得到较高的测量精度。 例如:测量一根导体的电阻率,根据公式l R d 4/ 2πρ ,只需测量导体的直径、长度

《标准》测试方法与注意事项

附件6: 2014年《国家学生体质健康标准》各项目 测试方法 一、身高、体重 (一)测试方法 受试者赤足,立正姿势站在身高计的底板上(上肢自然下垂,足跟并拢,足尖分开成60度角)。足跟、骶骨部及两肩胛区与立柱相接触,躯干自然挺直,头部正直,耳屏上缘与眼眶下缘呈水平位。测试人员站在受试者右侧,待水平压板接触到受试者头顶向上弹起时,测试人员读数并记录。 身高读数以厘米为单位,精确到小数点后一位。 体重读数以千克为单位,精确到小数点后一位。 (二)注意事项 1、测量身高时应严格掌握“三点靠立柱”、“两点呈水平”的测量姿势要求;水平压板与头部接触时,头顶的发辫、发结要放开,饰物要取下,随身携带的手机、钥匙、背包等物品要放下。 2、测量体重时受试者站在秤台中央,上下杠杆秤动作要轻。 3、测量身高、体重前,受试者应避免进行剧烈体育活动和体力劳动。 二、肺活量 (一)测试方法 被测试者面对仪器站立、手持吹气口嘴,进行深吸气(避免耸肩提气,应该象闻花式的慢吸气)。受试者进行一两次较平日深一些的呼吸动作后,更深得吸一口气,屏住气向口嘴处慢慢呼出至不能再呼为止,防止此时从口嘴处吸气,测试中不得中途二次吸气。吹气完毕后,液晶屏上最终显示的数字即为肺活量毫升值。每位受试者需要重测时,每次间隔15秒,记录测试的最大值作为测试结果。以毫升为单位,不保留小数。

(二)注意事项 1、受试者不必紧张,尽全力以中等速度和力度吹气效果最好。 2、电子肺活量计的计量部位的通畅和干燥是仪器准确的关键,测试时,切记不要堵住吹气筒(手柄)下方的通气孔,以免仪器不读数。 3、测试人员要注意观察仪器显示屏,仪器无反应时,要提示学生加大吹气力度;仪器停止读数时,提示学生停止吹气。 4、导气管存放时不能弯折。 三、坐位体前屈 (一)测试方法 受试者两腿伸直,两脚平蹬测试纵板坐在平地上,两脚分开约10~15厘米,上体前屈,两臂伸直前,用两手中指尖逐渐向前推动游标,直到不能前推为止。测试计的脚蹬纵板内沿平面为0点,向内为负值,向前为正值。记录以厘米为单位,保留一位小数。 (二)注意事项 1、测试开始前,受试者积极做好准备活动。以拉伸下肢和髋关节相关肌肉为主,避免爆发式用力,防止运动损伤的出现。 2、身体前屈,两臂向前推游标时两腿不能弯曲。 3、受试者应匀速向前推动游标,不得突然发力。 四、立定跳远 (一)测试方法 受试者两脚自然分开站立,站在起跳线后,脚尖不得踩线。两脚原地同时起跳,不得有垫步或连跳动作。学生犯规时需要重测。测试结束后,记录成绩,以厘米为单位,不计小数。 (二)注意事项 1、测试开始前,受试者积极做好准备活动。以拉伸大腿、膝盖和脚踝部关节以及相关肌肉为主,同时可采取转体运动等徒手操活动腰腹部肌肉,防止运动损伤的出现。 2、发现犯规时,此次成绩无效。学生试跳均无成绩者,应允许再跳,直至取得成绩为止。

标准工时测定与制定方法

标准工时测定与制定方法 一、目的 制定合理的标准工时是科学管理的最基本工作,也是最重要的工作。无标准工时就无管理的第一步。通过标准工时的应用使参加与工作的全部人都可以客观准确地计划、实施并评价工作结果,以及用作记件工资基准。 二、标准工时制定: 本方法采用马表测定的直接时间法所产生之结果, 予以规划、观测及评价;亦即以数学、自然科学及社会科学的专门知识与技巧, 以工程的分析及设计之原则与方法来完成。 1、标准工时的意义: 标准工时是在标准的工作方法、材料、工具、设备和工作环境下, 依完成额定的单位1件之数量所需要的人工时间。标准工时的意义不只在提供公司人工成本, PMC计划生产管制或制程安排的依据;同时保障员工公平合理的工作量达到同工同酬,多劳多得提高效率的目的。 2、标准工时测定之进行步骤: a: 决定观测作业之对象; b: 记录作业条件、材料、工具、作业人员等数据; c: 检讨作业方法, 经改进后确定其标准作业程序; d: 将各项作业依其要素加以分别, 确定其顺序; e: 以马表观测, 将每一作业要素之时间值加以测定并记录; f: 迭计要素作业时间并求其循环时间; g: 评定被观测者之作业速度, 技术,努力度修正观测值, 以求基本时间; h: 决定计算放宽率, 并最后决定标准工时。 3、实际工作时间说明 a、工作时间: 上班时间: 08:00~20:30 总时间: 750 min 用餐/中休:150min 实际工作时间: 600 min=10Hr b、宽放时间: 因各工作岗位性质、环境、作业条件和作业范围、作业姿势、作业的精细不同,为了公平合理的测评标准工时,需根据不同评价补偿宽放时间如; (1)补偿根据作业人员的去卫生间,喝水,擦汗等个人的需要中断作业的时间,个人的因素认定为是属于标准的是处理生理需求的行为;

COD标准测定方法 最新

COD标准测定方法:国标GB11914-89化学 需氧量的测定 1 应用范围 本标准规定了水中化学需氧量的测定方法。 本标准适用于各种类型的含COD值大于30mg/L的水样,对未经稀释的水样的测定上限为700 mg/L。超过水样稀释测定。 本标准不适用于含氯化物浓度大于1000 mg/L(稀释后)的含盐水。 2 定义 在一定条件下,经重铬酸钾氧化处理时,水样中的溶解性物质和悬浮物所消耗的重铬酸钾盐相对应的氧的质量浓度。 3 原理 在水样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾有西欧爱好的硫酸亚铁铵的量换算成消耗氧的质量浓度。 在酸性重铬酸钾条件下,芳烃及吡啶难以被氧化,其氧化率较

低。在硫酸因催化作用下,直链脂肪族化合物可有效地被氧化。 4 试剂 除非另有说明,实验时所用试剂均为符合国家标准的分析纯试 剂,试验用水均为蒸馏水或同等纯度的水。 4.1 硫酸银(Ag2SO4),化学纯。 4.2 硫酸汞(Hg SO4),化学纯。 4.3硫酸(H2SO4),ρ=1.84g/Ml。 4.4硫酸银-硫酸试剂:向1L硫酸(4.3)中加入10g硫酸银(4.1), 放置1~2天使之溶解,并混匀,使用前小心摇动。 4.5重铬酸钾标准溶液: 4.5.1浓度为C(1/6K2Cr2O7)=0.250mol/L的重铬酸钾标准溶液: 将12.258g在105℃干燥2h后的重铬酸钾溶于水中,稀释至1000mL。 4.5.2浓度为C(1/6K2Cr2O7)=0.0250mol/L的重铬酸钾标准溶液: 将4.5.1条的溶液稀释10倍而成。 4.6 硫酸亚铁铵标准滴定溶液 4.6.1 浓度为C〔(NH4)2Fe(SO4)2·6H2O〕≈0.10mol/L的硫酸亚 铁铵标准滴定溶液:溶解39g硫酸亚铁铵〔(NH4) Fe(SO4)2·6H2O〕于水中,加入20ml硫酸(4.3),待其溶液冷2 却后稀释至1000ml。

室温下泊松比的标准测量方法

室温下泊松比的标准测量方法 1.概述 1.1本测试方法是在室温下,通过结构材料的张力测试测定泊松比。这种测试方法局限于矩形截面试件且材料应力的蠕动与载荷引起的应变相比是忽略不计的。 1.2标准数值的单位采用英尺-磅。 1.3这个标准目的不是专注于安全事项,目的不是专注于安全事项,而是和它的用途有关。本标准的使用者在使用本标准时,应先制定适当的安全预防措施和健康保护措施,并判断调整具体的限制,这是使用者的责任。 2. 参考文献 2.1美国试验材料学会标准: E4 载荷测量器械的方法措施。 E6 力学测试方法的相关术语。 E8 金属材料的张力测试的测量方法。 E82伸长计分类的确认方法。 E111 杨氏模量,切线模量和弦线模量的测试方法。 E1012 张力载荷下,样品对齐的确定方法。 3. 术语 3.1定义: 3.1.1泊松比:在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。 3.1.2讨论—在比例极限内,横向应变与相应的纵向应变之比决定于平均应力且测试的应力范围内,不应该视为泊松比。如果这个比例已经有了,无论如何,这个泊松比数值已经超过了比例极限,应力范围应当给出。 3.1.3讨论—如果材料不是各向同性,那么泊松比有好几个数值。如果泊松比由以下方法测出,当杨氏模量与剪切模量之比E/G,由下列等式代替时,会有很大的不同。由各向同性材料推导的泊松比应当怀疑其准确性。 () μ- E G =/21 (1)

其中E和G的测量精度要远远大于泊松比的期望精度。 4. 重要性及应用 4.1 当单轴力作用于一个物体,它会在力的方向产生变形。但是侧向的扩张或收缩取决于张力还是压力。如果物体是均质且各向同性,在力的作用下,物体保持弹性。横向应变与轴向应变保持恒定的关系,这个恒定值叫做泊松比。它是材料的内在性质,就像杨氏模量和剪切模量一样。 4.2泊松比用来结构设计,所有维向因为受力发生变化都要考虑在内。应用结构分析的通用理论。 4.3在本测试中,泊松比的数值来源于单轴应力引起的应变。 5.一般考虑 5.1泊松比精度的确定常常决定于横向应变测量的精度,因为,这些测量的错位百分比常常大于轴向应变测量,因为测量的是一个比例而不是绝对值,仅仅需要精确知道伸长计校准系数的相对值。而且,一般来说,施加力的数值不需要精确。经常很方便的同时地确定泊松比杨氏模量和比例极限。 说明1:图中每个符号表示了在每个试件的两边,一对伸长计的位置 图1 伸长计的三种可能位置 6.仪器 6.1力—力的施加通过重力或通过E4校准的测量机械。 6.2伸长计—应当使用在文献E83中提到的B1级或更好,除非在产品说明书中另有说明。 说明1—如果产品说明书中有例外,那么不要使用E83中提到的伸长计型号,

相关文档
最新文档