NaI(Tl)闪烁谱仪实验报告材料

NaI(Tl)闪烁谱仪实验报告材料
NaI(Tl)闪烁谱仪实验报告材料

实验5:NaI(Tl)闪烁谱仪

实验目的

1. 了解谱仪的工作原理及其使用。

2. 学习分析实验测得的137Cs

γ谱之谱形。

3. 测定谱仪的能量分辨率及线性。

1. 调整谱仪参量,选择并固定最佳工作条件。

2. 测量137Cs 、65Zn 、60Co

等标准源之γ能谱,确定谱仪的能量分辨率、刻度

能量线性并对137Cs

γ谱进行谱形分析。

3. 测量未知γ源的能谱,并确定各条γ射线的能量。

原理

)1(T NaI 闪烁谱仪由)1(T NaI 闪烁体、

光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)、定标器等电子学设备组成。图1为)1(T NaI 闪烁谱仪装置的示意图。此种谱仪既能对辐射强度进行测量又可作辐射能量的分析,同时具有对

γ射线探测效率高(比G-M 计数器高几十倍)和分辨时

间短的优点,是目前广泛使用的一种辐射探测装置。

当γ射线入射至闪烁体时,发生三种基本相互作用过程,见表1第一行所示:(1)光电效应;(2)康普顿散射;(3)电子对效应。前两种过程中产生电子,后一过程出现正、负电子对。这些次级电子获得动能见表1第二行所示,次级电子将能量消耗在闪烁体中,使闪烁体中原子电离、激发而后产生荧光。光电倍增管的光阴极将收集到的这些光子转换成光电子,光电子再在光电倍增管中倍增,最后经过倍增的电子在管子阳极上收集起来,并通过阳极负载电阻形成电压脉冲信号。γ射线与物质的三种作用所产生的次级电子能量各不相同,因此对于一条单能量的γ射线,闪烁探测器输出的次级电子脉冲幅度仍有一个很宽的分布。分布形状决定于三种相互作用的贡献。

表1 γ射线在NaI(Tl)闪烁体中相互作用的基本过程

根据γ射线在)1(T NaI 闪烁体中总吸收系数随γ射线能量变化规律,γ射线能

量MeV E 3.0<γ时,光电效应占优势,随着γ射线能量升高康普顿散射几率增加;在MeV E 02.1>γ以后,则有出现电子对效应的可能性,并随着γ射线能量继续增加而变得更加显著。图2为示波器荧光屏上观测到的137Cs 0.662MeV 单能γ射线的脉冲波形及谱仪测得的能谱图。

在γ射线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层

电子填补K 层空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光电子。上述两个过程是几乎同时发生的,因此它们相应的光输出必然是叠

加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非r E 减去该层电子结合能)。谱峰称为全能峰。为便于分析γ射线在闪烁体中可能发生的各种事件对脉冲谱的贡献,及具体实验装置和其周围物质可能产生的对谱形的影响。表2列举了十二种情况供参考。

一台闪烁谱仪的基本性能由能量分辨率、线性及稳定性来衡量。探测器输出脉

冲幅度的形成过程中存在着统计涨落。既使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图3所示。通常把分布曲线极大值一半处的全宽度称半宽度即FWHM ,有时也用E ?表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即

V

V

E E ?=

?=η ( 1

)(V E 和)(V E ??分别为谱线的对应能量(幅度值)和谱线的半宽度(幅度分布

的半宽度)。标准源137Cs 全能峰最明显和典型,因此经常用137Cs0.662MeV 的γ射线的能量分辨高的闪烁体,使用光电转换效率高的光阴极材料,以及提高光电子第一次被阴极收集的效率等均有利于改善能量分辨率。

在我们实验需考虑到下列一些因素,进行必要的调整,以期达到一台谱仪可能实现的最好的分辨率。

(1)闪烁体与光电倍增管光阴极之间保持良好的光学接触;

(2)参考光电倍增管高压推荐值,并作适当调整,使得在保持能量线性条件下,输出脉冲幅度最大;

(3)合理选择单道分析器的道宽,如单道分析器最大分析幅度为10伏时,道宽宜用0.1伏;

(4)根据放射源的活度,选择合适的源与闪烁体之间的距离。

显然,利用γ谱解析核素的或能量相近的γ射线时,受到了谙仪能量分辨率的限制。这时就需要借助于实验上得到的单能γ谙的经验规律,例如半宽度随着γ射线能量变化的经验规律,以及各种数学处理方法来解决。

能量线性指谱仪对入射γ射线的能量和它产生的脉冲幅度之间的对应关系。一般

NaI(T1)闪烁仪在较

宽的能量围(100keV

到期1300keV)是近

似性的。这是利用该谱

仪进行射线能量分析

与判断未知放射性核

素的重要依据。通常,

在实验上利用系列γ

标准源,在确定的实验

条件下分别测量系列

源γ谱。由已知γ射线

能量全能峰位对相应

的能量作图,这条曲线即能量刻度曲线。典型的能量刻度曲线为不通过原点的一条直线,即

0)(E Gx x E p p += ( 2 )

式中p x 为全能峰位;0E 为直线截矩;G 为增益即每伏(或每道)相应的能量。能量刻度亦可选用标准源137Cs (0.662)MeV)和60Co(1.17、1.33MeV)来作。实验中欲得到较理想的线性,还需要注意到放大器及单道分析器甄别阈的线性,进行必要的检验与调整。此外,实验条件变化时,应重新进行刻度。

显然,确定未知γ射线能量的正确性取决于全能峰位的正确性。这将与谱仪的稳定性、能量刻度线的原点及增益漂移有关。事实上,未知源总是和标准源非同时测量的,因此很可能他们的能量对应了不同的不同的原点及增益。当确定能量精度要求较高时,需用电子计算机处理,调整统一零点及增益,才能得到真正的能量与全能峰峰位的对应关系。至于全能峰峰位的确定,本实验可在记录足够数目的计数后由图解法得到。

装置

实验装置方块图见图1。

NaI (Tl )闪烁谱仪,FH1901,1套;

多道分析器,FH419G1,1台;

脉冲示波器,SBM-10,1台;

标准γ源,137Cs、65Zn、60Co,各一个;

未知γ源,1个。

步骤

1.按图1连接仪器。用示波器观察137Cs及60Co的脉冲波形,调节并固定光电倍增管的高压。

2.调节放大器的放大倍数,使137Cs 0.662MeV的γ射线的全能峰落在合适的甄别阈位置上,例如8V。选择并固定单道分析器道宽,例如0.1V,测量137Cs

全能谱及本底谱。

3.改变放大器放大倍数,使137Cs、65Zn、60Co之全能峰合理地分布在单道分析器阈值围。依次测量这三个γ源的能谱。

4.在步骤3实验条件下,测量未知γ源能谱。

5.实验结束前,再重复测量137Cs 0.662MeV的γ射线的全能峰,以此检验谱仪的稳定性。

五.实验数据处理

Co源能谱曲线

1号峰General model Gauss1:

f(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds):

a1 = 1020 (977, 1062)

b1 = 736.6 (734.3, 738.9)

c1 = 55.15 (50.99, 59.3) Goodness of fit:

SSE: 1.05e+004

R-square: 0.9831

Adjusted R-square: 0.9789 RMSE: 36.22

2号峰General model Gauss1:

f(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds):

a1 = 700.7 (662.8, 738.6)

b1 = 866.6 (864, 869.2)

c1 = 58.63 (54.64, 62.62)

Goodness of fit:

SSE: 3.11e+004

R-square: 0.9783

Adjusted R-square: 0.9761 RMSE: 39.43

全能峰1道址:736.6,全能峰2道址:866.6

Cs源高斯拟合

General model Gauss1:

f(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds):

a1 = 4245 (4090, 4400)

b1 = 292.6 (291.7, 293.6)

c1 = 32.54 (31.16, 33.91)

Goodness of fit:

SSE: 1.008e+006

R-square: 0.987

Adjusted R-square: 0.9861

RMSE: 177.4

全能峰道址:292.6

未知源高斯拟合

General model Gauss1:

f(x) = a1*exp(-((x-b1)/c1)^2)

Coefficients (with 95% confidence bounds):

a1 = 422.9 (400.4, 445.4)

b1 = 35.76 (34.32, 37.2)

c1 = 32.32 (30.1, 34.54)

Goodness of fit:

SSE: 3.348e+004

R-square: 0.9493

Adjusted R-square: 0.9461

RMSE: 32.34

全能峰道址:35.76

半高宽点m1=36.592,m2=34.928.,能量分辨率4.65%

能量定标曲线

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.001159 (0.0009563, 0.001361)

p2 = 0.3218 (0.1845, 0.459) Goodness of fit:

SSE: 4.6e-005

R-square: 0.9998

Adjusted R-square: 0.9996

RMSE: 0.006782

全能峰对应的能量MeV 全能峰对应的道址

1.17 736.6

1.33 866.6

0.662 292.6

未知源0.3632 35.76

六.实验结果误差分析

此次实验得到的能量定标曲线还是不错的,线性相关系数达到0.9998.说明道址和能量的线性相关性比较好,得出未知源是Ba的可信度比较高。但是没有观察到X射线峰和反散射峰可能是因为阈值比较高。

七.实验思考题

1.如何从示波器上观察到的137Cs脉冲波形图,判断谱仪能量分辨率的好坏?

2.某同学实验结果得到137Cs能量分辨率为6%,试述怎样用实验来判断这一分

辨率之真假?

3.若有一单能γ源,能量为2MeV,试预言其谱形。

4.试根据你测量137Cs、65Zn、60Co能谱,求出相应于0.662、1.11和1.33MeV γ射线全能峰的半宽度,并讨论半宽度随γ射线能量变化的规律。

5.试述60Co 1.17MeV这条γ射线相应的能量分辨率,能否直接从其全能峰半宽度求出,为什么?

6.在你测得的137Cs 0662MeV γ射线全能峰峰位处,作一垂线为对称轴,将会发现对称轴低能边计数明显地多于相应的高能边的计数,试参照表2分析

全能峰不完全对称的原因。

1.将探测器信号输入到示波器中,出现脉冲,脉冲越宽,能量分辨率越差。

2.找到一个源与137Cs全能峰能量相差6%,两个源一起测能谱,看能否区分开这两个全能峰,若能说明,6%可靠。

3.谱仪的能量分辨率与入射粒子能量有关,能量越大,分辨率越好。因此会在2MeV形成一个全能峰值,并且和137Cs一样有反散射峰和X射线峰,康普顿平台。

4.半高宽见数据分析,能量越高,半宽度越大。

5.不能。此时有康普顿平台的影响,将峰抬高。

6.康普顿散射影响。

实验五全站仪的认识与使用.doc

实验五全站仪的认识与使用 一、实验目的 1、了解全站仪的基本构造及性能,熟悉各操作键的名称及其功能,并熟悉使用 方法。 2、掌握全站仪的安置方法和角度测量、距离测量与坐标测量的基本使用方法。 二、计划与设备 1、每组全站仪1套(含脚架1个、目标杆1根,棱镜1套),记录板1 块,自备:铅笔。 三、实验方法及步骤 1.全站仪的构造 (1)通过教师讲解和全站仪使用说明书,了解全站仪的基本结构及各操作部件 的名称和作用。 (2)了解全站仪键盘上各按键的名称及其功能、显示符号的含义并熟悉角度测量、距离测量和坐标测量模式间的切换。

2、全站仪的操作步骤 (1)装电池(2)开机定标(照准部水平方向旋转一周,望远镜绕横轴旋转一周)(3)安置仪器(同经纬仪的)粗略对中,精确对中,粗平,精平,精确对中 (4)瞄准(5)读数 垂直角和水平角的倾斜改正 当启动倾斜传感器功能时,将显示由于仪器不严格水平而需对垂直角和水平角自动施加的改正数。 为确保精密测角,必须启动倾斜传感器。当系统显示仪器补偿对话框时,表示仪器 倾斜已超过自动补偿范围(± 3.5,必′须)人工整平仪器。

。 WinCE(R)系列全站仪的补偿设置有:关闭补偿、单轴补偿和双轴补偿三种选项。 双轴补偿:改正垂直角指标差和竖轴倾斜对水平角的误差。当任一项超限时,系统会出现仪器补偿对话框,提示用户必须先整平仪器。 单轴补偿:改正垂直角指标差。当垂直角补偿超限时,系统才出现补偿对话框。 关闭补偿:补偿器关闭。 3.全站仪测量 (1)角度测量 1)首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为距 离模式。 2)盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′〃0,0顺时针旋转 照准部,瞄准右目标B,读取显示读数。 3)同样方法可以进行盘右观测。 4)如果测竖直角,可在读取水平度盘的同时读取竖盘的显示读数。 (2)距离测量

全站仪的放线过程完整版

全站仪的放线过程 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

全站仪的放线过程学习的来 全站仪的厂家很多,主要的厂家及相应生产的全站仪系列有:瑞士徕卡公司生产的TC 系列全站仪;日本 TOPCN (拓普康)公司生产的 GTS 系列;索佳公司生产的SET 系列;宾得公司生产的 PCS 系列;尼康公司生产的 DMT 系列及瑞典捷创力公司生产的 GDM 系列全站仪。我国南方测绘仪器公司 90 年代生产的 NTS 系列全站仪填补了我国的空白,正以崭新的面貌走向国内国际市场。 全站仪的工作特点: 1、能同时测角、测距并自动记录测量数据; 2、设有各种野外应用程序,能在测量现场得到归算结果; 3、能实现数据流; 一、TOPCON 全站仪构造简介 图1为宾得全站仪 PTS-V2 ,图2为尼康 C-100 全站仪,图3为智能全站仪GTS-710,图4为蔡司Elta R系列工程全站仪,图5为徕卡TPS1100系列智能全站仪。 二、全站仪的功能介绍 1、角度测量(angle observation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则: 1)当精度要求不高时: 瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。 2)当精度要求高时:——可用测回法( method of observation set )。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。 2、距离测量( distance measurement ) PSM 、PPM 的设置——测距、测坐标、放样前。 1)棱镜常数(PSM )的设置。 一般: PRISM=0 (原配棱镜),-30mm (国产棱镜) 2)大气改正数( PPM )(乘常数)的设置。 输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。 (1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”( MEAS )。 3、坐标测量( coordinate measurement ) (1)功能:可测量目标点的三维坐标( X , Y , H )。 (2)测量原理

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

实验报告全站仪精密角度测量实验报告范文_0787

2020 实验报告全站仪精密角度测量实验报告范文_0787 EDUCATION WORD

实验报告全站仪精密角度测量实验报告范文 _0787 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、 系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰 富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 为期四天的综合实验结束了,在这四天里我们主要做了全站仪综合实验,回弹综合实验和钢筋位置及楼板检测实验。在全站仪的综合试验中我们学习了坐标测量,面积测量以及放样,在回弹综合实验中我们主要学习了用回弹法测量混凝土强度,在钢筋位置及楼板检测实验中我们主要学习了用钢筋仪检测板、柱钢筋位置及保护层厚度的检测。虽然只有四天的综合实验,但是我感觉自己收获了不少知识。在暑假认知实习的时候自己也接触到了全站仪,但是没有自己操作过,这次实验自己学会用全站仪。这次的综合实验都是在施工现场最常用了,做好,学好这些实验对我们工程管理专业的学生来讲非常重要,因为只有掌握好技术才能进行好管理。这次的实验自己也是用心学习了,虽然只做了三天,可是收益匪浅,在老师和组长的带领下,我们组员一起学习,

研究,最终将实验进行好。记忆最深的是我们那天早上用全站仪放样,整整一个上午,然后用钉子打好桩,我们总共放了十二个点,等待着老师下午的验收。可是下午去的时候,只看到操场的跑道上躺着一堆堆的钉子,后来老师说不检查了,其实我们挺失落的,但是我们真的学到了知识,这比什么都重要!通过实验,使我们对理论知识有了更深的认识,也锻炼了我们的操作能力。 通过本次综合性的试验,我了解到综合实验的应用,特别是在两天的全站仪测量试验,刚开始拿到仪器时还手忙脚乱不知所措。但经过坐标测量、面积测量、点放样,我基本了解一些:全站仪是一种光机电算一体化的高新技术测量仪,测距部分有发射,接受与瞄准组成共轴系统,测角部分由电子测角系统完成,是一种具有高精度,高效率,各种测量功能的外业数据采集设备,大大减轻外业人员的劳动强度。作为在实际施工中最常见、最基本的测量仪器,了解其基本功能,熟练掌握其基本操作,将对今后的工作产生积极影响。 通过本次试验,我了解到钢筋保护层厚度,钢筋位置和钢筋直径的检测方法,认识到钢筋仪工作的基本原理和使用方法。钢筋仪的基本操作方法较为简单,在检测过程中使用方便,操作简洁。由于本次试验为提供检测构件的相关施工图纸,故无法对检测结果进行综合性分析,也无法对被检测构件的钢筋保护层厚度等各项指标进行检测。但通过实际操作和后期试验总结,对工程检测过程有了感性的认识。

用闪烁谱仪测γ射线能谱

实验题目: 用闪烁谱仪测γ射线能谱 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型Cs 137的γ射线能谱图。图的纵轴代表单位时间内的脉冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全部能量,所以光电峰的能量就代表γ射线的能量,对Cs 137,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率

(1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰 M e V E 17.11=γ、MeV E 33.12=γ等能量值,先分别测量两核素的γ能谱,得到光电峰所对应的多道分 析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应 MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

全站仪坐标法测设缓和曲线实验报告

实验11 带缓和曲线的曲线测设 一、实验目的与要求 1. 掌握缓和曲线测设要素的计算 2. 掌握缓和曲线主点里程桩号的计算 3. 掌握缓和曲线主点的测设方法 4. 掌握用切线支距法,偏角法进行带缓和曲线的曲线的详细测设 二、实验内容 1. 根据给定的数据计算测设要素和主点里程。 2. 测设带缓和曲线的曲线主点。 3. 用切线支距法进行带缓和曲线的曲线详细测设。 4. 用偏角法进行带缓和曲线的曲线详细测设。 三、实验步骤简要 1.计算 ①按给定的设计数据计算测设要素:T H 、L H 、E H 、D H 、L Y 、q 、p 、T d 、β0 、β ②计算主点ZH 、HY 、QZ 、YH 、HZ 的里程桩号。 ③根据切线支距法计算曲线详细测设数据。 ④根据偏角法计算曲线详细测设数据. 2.测设步骤 1).主点测设 ①ZH 点的测设: 在JD i 上架设仪器完成对中整平,将望远镜瞄准JD i-1,制动照准部。拨动水平度盘变换手轮,将水平度盘读数变换为0o00′00″。保持照准部不动,以望远镜定向。从JD i 出发在该切线方向上,量取切线长T H ,得到直缓ZH 点,打桩定点。 ②HY 点的测设: 保持照准部不动,以望远镜定向。从ZH 出发在该切线方向上,量取X 0得到垂足,在该垂足上用十字架定出垂直于切线方向的垂线,并从垂足沿该垂线方向量取Y 0得到HY 点,打桩定点。 ③QZ 点测设: 先确定分角线方向。当路线左转时,顺时针转动照准部至水平度盘读数为 2 180α - ?

时,制动照准部,此时望远镜视线方向为分角线方向。当路线右转时,顺时针转动照准 部至水平度盘读数为2180α +?时,制动照准部,然后倒转望远镜,此时望远镜视线方向 为分角线方向。 在分角线方向上,从JD i 量取外距E H ,定出QZ 并打桩。 ④HZ 点的测设 转动照准部,将望远镜瞄准JD i+1,制动照准部,望远镜定向。从JD i 出发在该切线方向上,量取切线长T H ,得到缓直点HZ ,打桩定点。 ⑤YH 点的测设: 保持照准部不动,以望远镜定向。从HZ 点出发在该切线方向上,向JD i 量取X 0得到垂足,在该垂足上用十字架定出垂线方向,并从垂足沿该垂线方向量取Y 0得到YH 点,打桩定点。 2)切线支距法进行带缓和曲线的曲线详细测设 ①切线支距法先测设缓和曲线上各点,其测设方法与圆曲线切线支距法相同。 ②在切线上由ZH 始量Td ,即可确定HY 或YH 点的切线。利用该切线,按圆曲线切线支距法测设圆曲线部分。 ③曲中点QZ 测设后和原主点放样所得QZ 位置进行比较,横向误差不大于0.1米,纵向误差不超过± (L 为曲线长度),则满足精度要求 四、仪器和工具 经纬仪、钢尺、皮尺、花杆、木桩、铁锤、测钎、十字架、竹桩、记录板、小红纸。 五、注意事项 1. 测设时注意校核,保证准确性和精度,尤其是主点位置不能错。 2. 切线支距法测设曲线时,为了避免支距过长,一般由ZH 点或HZ 点分别向QZ 点施测。

伽马能谱与相对论验证

伽马能谱与相对论验证 【摘要】 本实验先通过γ能谱对多道分析仪进行定标,再通过测量β-粒子动量的磁谱仪和测量β-粒子动能的能谱仪,记录多道分析仪所在峰值道数和探测器与源之间间距2R ,根据公式p=eBR 得到粒子动量。再根据公式 2042 0220c m c m p c E E E k -+=-=得到粒子动能。画出动量-动能关系图,并与 相对论理论值和经典理论值进行比对,对相对论进行验证。 【关键词】 β-粒子 多道分析仪 磁谱仪 能谱仪 相对论 【引言】 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系,能量与质量的普遍联系等一系列重要结果。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适合于低速运动物体,当物体的运动接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁仪的测量原理和使用以及其他核物理的实验方法。 【实验原理】 一、γ闪烁能谱 1、γ光子及其与物质的相互作用 通过核衰变或核反应形成的原子核,往往处于不稳定的高激发态。处于高激发态能级上的原子核E2,在不改变原子核组成的情况下,跌回到较 低的激发态E1,原子核发出γ涉嫌或内转换电子。因此γ射线的能量为 E γ=E2-E1。放射性原子核放出的γ射线的能量通常在几千电子伏与几兆电子伏之间。γ射线由不在店的γ光子组成,静止质量为零。γ光子和物质相互作用主要有三种效应:光电效应、康普顿效应、电子对效应。 (1)光电效应 入射的γ光子把全部能量转移给原子中的束缚电子,而把束缚电子打 出来形成光电子,这就是光电效应 K i E E E γ=- (1) γ射线产生光电效应的几率随着物质原子序数的增大而增大,随着γ射线能量 增大而减小 (2)康普顿效应 入射的γ光子与院子的外层电子发生非弹性碰撞,一部分能量转移给电 子,使它脱离院子成为反冲粒子,同时γ光子被散射,这种过程称为康普顿散射效应 '1(1cos )E E γ γαθ= +- (2-1)

大物实验报告光的等厚干涉

大学物理实验报告 实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3:45开始 地点:基础实验大楼313 一、实验目的: 1.观察牛顿环和劈尖的干涉现象。 2.了解形成等厚干涉现象的条件及特点。 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理:

在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。(2)调节叉丝方位

全站仪的认识与使用

实验全站仪的认识与使用 1.目的和要求 (1)熟悉全站仪的构造。 (2)熟悉全站仪的操作界面及作用。 (3)掌握全站仪的基本使用。 2.计划与仪器工具 (1)实验时数为2学时。每组4-6人。 (2)每组配备全站仪1台,棱镜1块,伞1把。自备2H铅笔。 3.方法与步骤 (1)全站仪的认识 全站仪由照准部、基座、水平度盘等部分组成,采用编码度盘或光栅度盘,读数方式为电子显示。有功能操作键及电源,还配有数据通信接口。 (2)全站仪的使用(以拓普康全站仪为例进行介绍) 1)测量前的准备工作 ①电池的安装,注意测量前电池需充足电,把电池盒底部的导块插入装电池的导孔,按电 池盒的顶部直至听到“咔嚓”响声。向下按解锁钮,取出电池。 ②仪器的安置。在实验场地上选择一点,作为测站,另外两点作为观测点,将全站仪安置于点,对中、整平,在两点分别安置棱镜。 ③竖直度盘和水平度盘指标的设置。竖直度盘指标设置,松开竖直度盘制动钮,将望远镜纵转一周(望远镜处于盘左,当物镜穿过水平面时),竖直度盘指标即已设置,随即听见一声鸣响,并显示出竖直角。水平度盘指标设置,松开水平制动螺旋,旋转照准部360°,水平度盘指标即自动设置。随即一声鸣响,同时显示水平角。至此,竖直度盘和水平度盘指标已设置完毕。注意:每当打开仪器电源时,必须重新设置仪器的指标。 ④调焦与照准目标。操作步骤与一般经纬仪相同,注意消除视差。 2)角度测量 ①首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为角度测量模式。 ②盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′00〃,顺时针旋转照准部,瞄准右目标B,读取显示读数。 ③同样方法可以进行盘右观测。 ④如果测竖直角,可在读取水平度盘的同时读取竖盘的显示读数。 3)距离测量 ①首先从显示屏上确定是否处于距离测量模式,如果不是,则按操作键转换为距离测量模式。 ②照准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成距离测量,得出距离,HD为水平距离,VD为倾斜距离。 4)坐标测量 ①首先从显示屏上确定是否处于坐标测量模式,如果不是,则按操作键转换为坐标模式。 ②输入本站点O点及后视点坐标,以及仪器高、棱镜高。 ③瞄准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出点的坐标。

全站仪实验报告

全站仪实验报告 全站仪综合试验报告 一、实验题目 全站仪的应用 二、实验目的 1、测距 综合试验实验报告 熟知全站仪的基本构造、操作原理、操作流程、主要功能等,旨在加强同学们理论联系实践的动手能力,为毕业出去工作打下坚实的基础。 三、实验基本原理 (1)光电测距仪发出红外光束到目标点位处调平后的棱镜经反射回来,全站仪计算发出光束的时间点到返回的时间点,从而计算光束运行轨迹的长度,因为光在不同介质中的运行速度的不同,所以要求精确测量时应避免大雾、高温、和空气潮湿的天气,全站仪中有测温度和测气压的装置,测得温度和气压后生成一个改正系数,在全站仪每次测距时都参与计算,尽管如此,全站仪仍然不能把所有气象因素都计算在内,所以在进行要求精度较高的测量时应选在晴朗、空气质量较好的天气进行。 (2)大气折光对测距的影响:光越靠近地面时折光越大,仪器支起应高出地面1m 以上,特别在高温天气,靠近地面处的气浪非常大,造成的折射率也非常大,要避免在这种天气进行高精度 测量。(适用所有仪器)

(3)棱镜常数:光在玻璃中的折射率为1.5,1.6,在空气中近似等于1,光在玻璃中传播比空气中慢很多,所以光经过棱镜中所用时间较空气中长,测得距离会比实际增大一定的距离,增大的部分为棱镜常数,这个在说明书中有所标注。 2、测角 3、误差 与经纬仪的原理是一样的仍旧采用度盘,从度盘采用电扫描和电子元件进行自动读数和液晶显示,以便把测得的角度生成电子数据,为全站仪内部计算提供数据。 因为常用全站仪的光电测距测距中误差为?5mm左右,(我国现行城市测量规范将测距仪划分为两级,即,一级:为中误差小于5mm,二级为中误差大于5mm小于10mm),梭镜对中的高度误差,以及竖直角测量误差等各项因素的影响,所累积的误差是很大的,所以不宜用全站仪进行要求高程精度比较高的测量工作。 4、全站仪内部运算 在进行坐标放样和坐标测量工作中,全站仪在已知点建站后,用另一通视的已知点做为后视,然后测距,测距后全站仪根据这两个已知点自动进行内部运算,计算出这条边的坐标方位角,此时以这条边为起始边就可以进行测量工作了。(后方交会的原理是一样的) (1) 坐标正算:进入坐标测量模式,照准立于未知点上的棱镜,十字丝竖丝对准对中杆中心,对准棱镜测距,全站仪根据已知点到未知点的距离,以及起始边到未知边的夹角计算未 知边的坐标方位角,根据测得的距离和坐标方位角计算坐标增量,从而求得未知点坐标。 (2)坐标反算:进入到放样测量模式,根据要放样已知点和建站的已知点计算出坐标方位角,再计算所求边与已知边的夹角,和两点的距离进行坐标方样。另外全站仪还可以进行对边测量,悬高测量,面积测量等。 5、竖轴倾斜的自动补偿

大物实验报告-光的等厚干涉

大学物理实验报告实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3: 45开始 地点:基础实验大楼313

一、实验目的: 1?观察牛顿环和劈尖的干涉现象。 2?了解形成等厚干涉现象的条件及特点。 3?用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚 度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理: 在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现 象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45 °玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)

转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第 24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触, 形成劈尖,然后置于读数显微镜载物台上。( 2)调节叉丝方位 和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。(3)用读数显微镜测出20条暗条纹间的垂直距离I,再测出棱边到细丝所在处的总长度L,求出细丝直径do (4) 重复步骤3,各测三次,将数据填入自拟表格中。求其平均值o 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射 镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。

全站仪测量实习报告

全站仪测量实习报告 姓名: 学号: 日期: 一、实习目的 一方面是为了验证课堂理论、巩固和深化课堂所学知识,另一方面是为了掌握全站仪的操作方法、掌握全站仪和计算机之间进行数据传输的方法、掌握将测量数据转换成图的方法。 二、实习内容 测量**校区局部较平坦地区,并利用软件成图。 三、实习组织 (1)实习时间:7天(7月8号至7月14号) (2)组织:B-1组 四、实习设备 每组借全站仪1台,数据电缆1根,脚架2个,棱镜杆1根,棱镜2个,钢卷尺1卷;另外需自备:太阳伞、铅笔、橡皮、草图用纸等。 五、实习方法及步骤 1.野外数据采集 首先在校园内选择控制点位置,然后从从已知坐标的控制点开

始,安置全站仪对中整平,量取仪器高,建立控制点坐标文件,并输入坐标数据,然后根据导线通过后视依次建立和获取各个控制点的坐标,接下来根据每一个控制点对其周围的地物进行坐标测量,并且绘制草图,标记各个坐标与其相应的地物点的联系。在整个过程中,要及时检查数据的正确性,一旦发现错误,要立即更改。 2.全站仪数据传输 先利用数据传输电缆将全站仪与电脑进行连接,然后运行数据传输软件、进行数据传输、进行数据格式转换。将传输到计算机中的数据转换成内业处理软件能够识别的格式。 3、计算机成图 参照草图,在计算机内业成图软件中绘制相应地物,整饰完后保存。 六、注意事项 1、开工前应检查仪器箱背带及提手是否牢固; 2、开箱后提取仪器前,要看准仪器在箱内放置的方式和位置,装卸仪器时,必须握住提手,切不可拿仪器的镜筒,否则会影响内部固定部件,降低仪器的精度。仪器用毕,先盖上物镜罩,并擦去表面的灰尘。装箱时各部位要放置妥帖; 3、在作业前应作好准备工作,将全站仪的电池充足电。 4、在阳光照射下观测,应给仪器打伞,并带上遮阳罩。在阴雨天气进行作业时,也应打伞遮雨,以免影响观测精度; 5、当测站之间距离较远,搬站时应将仪器电源关闭后卸下,再装箱背着

r射线能谱实验报告

实验报告 系 级 姓名 日期 No. 评分: 实验题目:γ能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型 Cs 137 的γ射线能谱图。图的纵轴代表单位时间内的脉 冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全 部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率 (1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改

变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰MeV E 17.11=γ、MeV E 33.12=γ等能量值,先 分别测量两核素的γ能谱,得到光电峰所对应的多道分析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B 道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左右。对η的影响因素很多,如闪烁体、光电倍增管等等。 (3)物质对γ射线的吸收 当γ射线穿过物质时,一旦与物质中的原子发生三种相互作用,原来的光子就消失或通过散射改变入射方向。通常把通过物质且未经相互作用的光子所组成的射线称为窄束γ射线(或良好几何条件下的射线束)。实验表明,单能窄束γ射线的衰减遵循指数规律: (8)

全站仪的使用实验报告

实验三认识全站仪 实验时间:2016年11月21日星期一 实验地点:校庆广场 实验目的: (1)认识并且熟习全站仪的应用步骤; (2)了解全站仪的零部件和构造:a.手柄,b.粗瞄准镜,c.物镜,d.水平制动螺旋,e.水平微动螺旋,f.整平脚螺旋,g.基座固定钮,h.显示屏,i.键盘,j.光学对中器,k.望远镜把手,l.目镜调焦螺旋,m.仪器中心标志,n.目镜,o.数据通信接口,p.底板,q.圆水准校正螺旋,r.圆水准器,s.键盘,t.管水准器,u.垂直微动螺旋,v.垂直制动螺旋,w.望远镜调焦螺旋,x.电池NB-3D,y.电池锁紧杆;(3)全站仪的基本测量:角度测量(水平角设置,竖直角显示变换,角度单位变换,自动改正视准轴误差、横轴误差和指标差,竖轴倾斜的自动补偿)、距离测量(全站仪具有光电测距仪的测距系统,除了能测量仪器至反射棱镜的距离外,还可以根据全站仪的类型、反射棱镜的数目和气象条件,改变其最大测距,以满足不同的测量目的和作业要求,测距模式的变换,可以设置测距精度,各种改正功能,斜距归算功能); (4)坐标测量和放样(设站,坐标测量和放样)。 实验步骤:做闭合导线测量; (1)选址(场地面积足够大,有至少两个已知点,地面最好比较平坦、坚硬);

(2)找点(找至少四个点并且每两个点之间的距离不少于30米闭合,其中一个已知点作为其中的一个点); (3)架好仪器并且整平; (4)测点。 实验总结:认识了全站仪的结构与部件,学会了全站仪的基本操作。全站仪的使用需要团队之间的合作,通过这次试验促进了我们之间的默契,加强了团结意识,加深了团队精神。实验中我们也经历了一些失败与挫折,但是通过我们的合作与请教老师,我们解决了全部的问题,增长了知识与技能。总之,这次试验我受益匪浅。

闪烁谱仪测γ射线能谱(牛雷)

实验题目: 用闪烁谱仪测γ射线能谱 4+ 实验目的: 本实验的目的是学习用闪烁谱仪测量 γ射线能谱的方法,要求掌握闪烁谱仪 的工作原理和实验方法,学会谱仪的能量标定方法,并测量γ射线的能谱。 实验原理: 根据原子核结构理论,原子核的能量状态是不连续的,存在着分立能级。处 在能量较高的激发态能级2E 上的核,当它跃迁到低能级1E 上时,就发射γ射线(即波长约在1nm ~ 0.1nm 间的电磁波)。放出的γ射线的光量子能量 12E E hv -=,此处h 为普朗克常数,ν为γ光子的频率。由此看出原子核放 出的γ射线的能量反映了核激发态间的能级差。因此测量γ射线的能量就可以了解原子核的能级结构。测量γ射线能谱就是测量核素发射的γ射线强度按能量的分布。 闪烁能谱仪是利用某些荧光物质,在带电粒子作用下被激发或电离后,能发射 荧光(称为闪烁)的现象来测量能谱的。这种荧光物质常称为闪烁体。 闪烁γ能谱仪可测得γ能谱的形状,图2.2.1-6所示是典型 Cs 137 的γ射线能谱 图。图的纵轴代表单位时间内的脉冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对

应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。C E 即为康普 顿边界,对应反冲电子的最大能量。 数据处理: 1)测量Cs 137的γ能谱光电峰位置与线性放大器放大倍数间的关系 Y A x i s T i t l e X Axis Title X:放大倍数 Y:道址 由图知 Cs 137 的γ能谱光电峰位置与线性放大器放大倍数间有线性关系,斜率为9.77333 2) 测量 Cs 137 和Co 60放射源的γ射线能谱,用已知的光电峰能量值来标定谱仪的 能量刻度,然后计算未知光电峰的能量值。

全站仪的使用实验报告

全站仪的使用实验报告 篇一:全站仪综合试验报告 一、实验题目 全站仪的应用 二、实验目的 1、测距 综合试验实验报告 熟知全站仪的基本构造、操作原理、操作流程、主要功能等,旨在加强同学们理论联系实践的动手能力,为毕业出去工作打下坚实的基础。 三、实验基本原理 (1)光电测距仪发出红外光束到目标点位处调平后的棱镜经反射回来,全站仪计算发出光束的时间点到返回的时间点,从而计算光束运行轨迹的长度,因为光在不同介质中的运行速度的不同,所以要求精确测量时应避免大雾、高温、和空气潮湿的天气,全站仪中有测温度和测气压的装置,测得温度和气压后生成一个改正系数,在全站仪每次测距时都参与计算,尽管如此,全站仪仍然不能把所有气象因素都计算在内,所以在进行要求精度较高的测量时应选在晴朗、空气质量较好的天气进行。 (2)大气折光对测距的影响:光越靠近地面时折光越

大,仪器支起应高出地面1m以上,特别在高温天气,靠近地面处的气浪非常大,造成的折射率也非常大,要避免在这种天气进行高精度测量。(适用所有仪器) (3)棱镜常数:光在玻璃中的折射率为1.5-1.6,在空气中近似等于1,光在玻璃中传播比空气中慢很多,所以光经过棱镜中所用时间较空气中长,测得距离会比实际增大一定的距离,增大的部分为棱镜常数,这个在说明书中有所标注。 2、测角 3、误差 与经纬仪的原理是一样的仍旧采用度盘,从度盘采用电扫描和电子元件进行自动读数和液晶显示,以便把测得的角度生成电子数据,为全站仪内部计算提供数据。 因为常用全站仪的光电测距测距中误差为±5mm左右,(我国现行城市测量规范将测距仪划分为两级,即,一级:为中误差小于5mm,二级为中误差大于5mm小于10mm),梭镜对中的高度误差,以及竖直角测量误差等各项因素的影响,所累积的误差是很大的,所以不宜用全站仪进行要求高程精度比较高的测量工作。 4、全站仪内部运算 在进行坐标放样和坐标测量工作中,全站仪在已知点建站后,用另一通视的已知点做为后视,然后测距,测距后全

测量放样实训报告

测量放样实训报告 一、实训目的: 练习用全站仪配钢尺测设建筑物的平面位置。 二、实训任务: 根据基础平面图,1:1放样出图纸平面上的点位。作为施工依据。 三、实训基本原理简述: 建筑物平面位置的测设采用全站仪主菜单下前方交会法进行。分为一二级控制点,首级控制点用全站仪放样测出,其余二级点由极坐标法测出。 四、实训过程: 1、设站。>在控制点上摆设仪器,对中整平。 >设置测站参数,输入测站坐标,仪器高。 2、定向。>望远镜瞄准后视方向。 >设置后视参数,输入后视坐标 >完成后视后,可直接测量一下后视点坐标,作为校核。 3、放样。>输入放样点的坐标,确认后仪器会显示距离及角度参数。 >按显示屏提示转动望远镜,当水平角偏差为0时固定。 >指示跑棱镜者走到视线方向,按仪器给出的距离,估计他应该去到的位置。 >测量一次。仪器会显示距离的差值,一般负数表示往仪器方向移动,正数则往相反方向移动。 >再测量一次。重复这个步骤,直到距离差值符合要求为止。 五、仪器及设备: 苏州一光全站仪一套,棱镜一套,5M钢尺一把,记号贴若干,直尺一把。

六、精度要求: 坐标检测误差不得超过±5MM。 七、心得: 这次学习过程中发现,全站仪的智能运算大大缩短了计算的时间,比起用手算来说,全站仪的作用还是挺强大的,而且大大提高了工程上的效率,所以在施工单位多见是全站仪。在摆正上比起水准仪复杂点,但比经纬仪来说要的时间短。刚开始测量时感觉有点生疏,接触了就慢慢熟悉了,有一句话说得好,熟能生巧,像这种技术活我想还是那句话:铁杵磨成针,熟能生巧,一切在于多操作 八、人员任务分配: 一级控制点A,B,C,D由尤文祥观测,李若宸辅助。张天怡,朱媛媛架设棱镜,拉尺定点。 一级控制点E、F由李若宸观测并测设三个二级控制点,朱媛媛辅助。张天怡,尤文祥拉尺定点。 六个二级控制点由朱媛媛观测,张天怡辅助。李若宸,尤文祥拉尺定点。 六个二级控制点由张天怡观测,尤文祥辅助。朱媛媛,李若宸拉尺定点。 剩余点位和画轴线由尤文祥完成。 放样实训报告编写:李若宸 组员:李若宸;尤文祥;朱媛媛;张天怡。

相关文档
最新文档