含绝对值不等式专题训练

含绝对值不等式专题训练
含绝对值不等式专题训练

《绝对值与含绝对值的不等式》专题训练

1.绝对值小于3的整数的个数是( )

A .2

B .3

C .4

D .5

2.有理数中绝对值等于它本身的数是( )

A .0

B .正数

C .负数

D .非负数

3.一个数的绝对值是正数,这个数是( )

A .不等于0的有理数

B .正数

C .任意有理数

D .非负数

4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a-b+c=( )

A .-1

B .0

C .1

D .2

5. 不等式-2x-4≥0的解集在数轴上表示正确的是( )

A .

B .

C .

D .

6. 绝对值2(x+1)<3x 的解集在数轴上表示出来正确的是( )

A .

B .

C .

D .

7.-5的绝对值是

8. 绝对值是10的数有

9、解绝对值不等式|2x+1|>3,并用区间表示

10、已知a 、b 互为倒数,c 和d 互为相反数,x 绝对值是3,求x 2+(c+d )2011+(ab )2012的值.

11、已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,求a+b+x 3-cdx 的值.

12.解下列不等式

(1)3813x -<; (2)3214x -≥; (3)11223

x +>; (6)11252x +≤.

一元二次方程

1、关于x的一元二次方程x2-ax-3a=0的一个根是-2,求a的值和另一个根

2、已知x=1是一元二次方程x2+bx+5=0的一个解,求b的值及方程的另一个根.

3、当t取什么值时,关于x的一元二次方程2x2+tx+2=0有两个相等的实数根?

4、已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,求m的取值范围.

5、已知关于x的一元二次方程kx2-4kx-5=0有两个不相等的实数根,求k的取值范围。

6、若(m+1)x|m|+1+6x-2=0是关于x的一元二次方程,求m的值。

7、若关于x的一元二次方程ax2-2x+6=0有两个实数根,求a的取值范围.

8、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,求k的取值范围

9、当m取何值时,关于x的一元二次方程x2-2x+(m-1)=0没有解?

10、关于x的方程(k-3)x|k-1|-5x=2是一元二次方程,求k的值.

11、已知m,n是一元二次方程x2-2x-2019=0,求(m+1)(n+1)的值。

12、已知|a?1|+(b+2)2=0,求一元二次方程bx2-x+a=0的解.

13、若α、β是一元二次方程x2+2x-6=0的两根,求α+β和αβ的值。

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

中职数学含绝对值的不等式教案

含绝对值的不等式教案 一、条件分析 1.学情分析 本课是开学第一课,学生对上学期的知识已经比较陌生,而本课的内容要以上学期的不等式内容为基础,是不等式内容的提升,所以本课先复习上学期的内容,让学生顺利过渡到新知识中来。 2.教材分析 本节教材首先分别讨论含有绝对值的等式的三种情况,从而推导出含有绝对值的不等式的公式,然后例题加以巩固。由于我校学生基础薄弱,对于理论性的知识掌握不牢固,所以我们在教授的时候从简单的具体的例子推导含有绝对值的不等式的公式,由浅入深,层层递进,符合学生的认知。 二、三维目标 知识与技能目标 } A层: 1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想; 5.通过研究含有绝对值不等式,培养分类讨论的思想方法,培养抽象概括能力和辩证思维能力. B层: 1.理解绝对值的概念; ? 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想. C层:

1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式. 过程与方法目标 ( 复习法、讲授法、练习法、自讲法 情感态度与价值观目标 激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时培养辩证思维能力。 三、教学重点 含有绝对值不等式的解法 四、教学难点 将含有绝对值的不等式等价转化为不含绝对值的不等式 五、主要参考资料: ( 中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。 六、教学进程: 1.复习导入 绝对值的含义 在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5,-5的绝对值是5。 正数的绝对值是它本身。负数的绝对值是它的相反数。0的绝对值还是0。 2.讲授新课 (1)求下列各数的绝对值 ¥ 3、- 4、1 2、1- 2

数学含绝对值不等式的解法练习题

《含绝对值的不等式解法》标准化作业 一、选择题 1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6 C. a +6 D. a -6 2.不等式|8-3x |≤0的解集是( ) A. B. R C. {(1,-1)} D. ??? ???38 3.绝对值大于2且不大于5的最小整数是( ) A. 3 B. 2 C. -2 D. -5 4.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( ) A. {x |-1<x <5} B. {x |x ≤0或x ≥2} C. {x |-1<x ≤0} D. {x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是( ) A. 11 B. 10 C. 16 D. 15 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. 二、填空题 1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 . 2.不等式121 1<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ . 三、解答题 1.解不等式3≤|x -2|<9 2.解不等式 x 2 - 2|x |-3>0 3.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求: (1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选D. 0040)1()1(|1||1|11 1 22

【解析】原不等式等价于不等式组①221(2)0x x x ≥??---解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x <<

绝对值不等式知识点及典型练习题

绝对值不等式知识点及典型练习题 1. 解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方。 2. 注意利用三角不等式证明含有绝对值的问题。 ||a|-|b||£|a+b|£|a|+|b|;||a|-|b||£|a-b|£|a|+|b|;并指出等号条件。 3. (1)|f(x)|g(x)?f(x)>g(x)或f(x)<-g(x).(无论g(x)是否为正)。 (3)含绝对值的不等式性质(双向不等式) 左边在时取得等号,右边在时取得等号。 例1 解不等式 分析:不等式(其中)可以推广为任意都成立,且为代数式也成立。 解:原不等式又化为 ∴原不等式的解集为 点评:可利用去掉绝对值符号。 例2 解不等式||x+3|-|x-3||>3。 解法一:分区间去绝对值(零点分段法): ∵||x+3|-|x-3||>3。 ∴(1)Tx<-3; (2)T3/23 ∴ 原不等式的解为x<-3/2或x>3/2。 解法二:用平方法脱去绝对值: 两边平方:(|x+3|-|x-3|)2>9,即2x2+9>2|x2-9|; 两边再平方分解因式得:x2>9/4Tx<-3/2或x>3/2。

例3 解不等式|x2-3|x|-3|£1。 解:∵|x2-3|x|-3|£1。 ∴-1£x2-3|x|-3£1 ∴T ∴ 原不等式的解是:£x£4或-4£x£ 点评:本题由于运用了x∈R时,x2=|x|2从而避免了一场大规模的讨论。 例4 求使不等式|x-4|+|x-3|1 点评:本题对条件进行转化,变为最值问题,从而简化了讨论。 例5 证明:

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<<或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准. 例解不等式 -+≥.8 321 2 ||||x x

绝对值不等式解法问题—7大类型专题

绝对值不等式解法问题—7大类型 类型一:形如型不等式 解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当时, 或 2、当 ,无解 使的解集 3、当时, ,无解 使成立的的解集. 例1不等式的解集为() A. B. C. D. 解: 因为,所以. 即 , 解得:

, 所以,故选A. 类型二:形如型不等式 解法:将原不等式转化为以下不等式进行求解: 或 需要提醒一点的是,该类型的不等式容易错解为: 例2 不等式的解集为() A. B. C. D. 解: 或 或,故选D 类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即: , 或 例3设函数,若,则的取值范围是 解:

,故填:. 类型四:形如型不等式 解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即: 例4不等式的解集为 解: 所以原不等式的解集为 类型五:形如型不等式 解法:先利用绝对值的定义进行判断,再进一步求解,即: ,无解 例5解关于的不等式 解:

(1)当时,原不等式等价于: (2)当时,原不等式等价于: (3)当时,原不等式等价于: 或 或 综上所述 (1)当时,原不等式的解集为: (2)当时,原不等式的解集为: (3)当时,原不等式的解集为: 类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理

即可解得,即: ; ; 例6不等式对任意的实数恒成立,则实数a 的取值范围是() A. B. C. D. 解: 设函数 所以 而不等式对任意的实数恒成立 故,故选择A 类型七:形如 , , 1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解

含绝对值的不等式-公开课教案

含绝对值的不等式 教学目标 1.认知目标 (1)掌握|x|a(a>0)型的绝对值不等式的解法; (2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集 2.能力目标 (1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力; (3)采用分析与综合的方法,培养学生逻辑思维能力; (4)通过学生练习和老师点拨,培养学生的运算能力 3.情感目标 培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性 4.德育教育 我们为什么而读书 教学重点:|x|a(a>0)型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题.

教学过程设计 教师活动学生活动设计意图 一、导入新课 【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 口答 a (a>0) |a|= 0 (a=0) -a (a<0) 绝对值的概念是解|x|>a与 |x|0)型绝对值不等 式的基础,为解这种类型的 绝对值不等式做好铺垫. 二、新课 【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来. 【讲述】求绝对值等于2的数可以用方程|x|=2来表示,这样的方程叫做绝对值方程.显然,它有两个解一个是2,另一个是-2. 【绝对值的意义】在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值. 【提问】如何解绝对值方程. 【设问】 1 解绝对值不等式|x|<2,并用数轴表示它的解集。 2 解绝对值不等式|x|>2,并用数轴表示它的解集。 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式|x|<2的解集就是表示数轴上到原点的距离小于2的点的集合;不等式|x|>2的解集就是表示数轴上到原点的距离大于2的点的集合。【巩固旧知识】 1.数轴的含义和几何意义 学生口答 归纳:数轴是一条规定了 原点、方向和单位长度的直 线。原点、方向和单位长度称 为数轴的三要素。 【笔答并点拨】 注意观察数轴上所表示的 集合,理解和区分两种情况 根据绝对值的意义自然引出 绝对值方程|x|=a(a>0)的 解法. 由浅入深,循序渐进,在 |x|=a(a>0)型绝对值方程 的基础上引出|x|0)型 绝对值方程的解法. 针对解|x|>a(a>0)绝对值不 等式学生常出现的情况,运 用数轴质疑、解惑. 落实会正确解出|x|0) 与|x|>a(a>0)绝对值不等式 的教学目标.

高考中常见的七种含有绝对值的不等式的解法

常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ???<<-∈2 1x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ???+-≤--≥-?2 12212x x x x 1111≤≤-?? ??≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

绝对值不等式的解法教学设计教学内容

绝对值不等式的解法 教学设计

《绝对值不等式的解法》教学设计 富源四中朱树平 课题:绝对值不等式的解法 科目数学教学对象学生课 时 1 提供者朱树平单位富源四中 一、教学目标 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力 二、教学内容及模块整体分析 含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。 三、学情分析 学生基础差,少讲多练,以基础题为主。 四、教学策略选择与设计 讲练结合,多媒体展现。 五、教学重点及难点 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题. 六、教学过程 教师活动学生活动设计意图 提问的方式总结前面学过的知识问题: 你能一眼看出下面两个不等式的解集吗? ⑴1 x< ⑵ 1 x> 让学生熟练 掌握 一般地,可得解集规律: 形如|x|a (a>0)的含绝对值的不等式的解集: 不等式|x|a的解集为 {x|x<-a或x>a } 课堂练习一: 试解下列不等式: 熟练地掌握 方法 (1)|32|7 x -≥ 仅供学习与交流,如有侵权请联系网站删除谢谢2

注:如果0 a≤,不等式的解集易得. 利用这个规律可以解一些含有绝对值的不等式. 解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()() f x a a f x a f x a (0) >>?><- 或; ⑵()() (0) f x a a a f x a <>?-<<; ⑶()()() f x g x f x g x f x g x ()()() >?><- 或; ⑷()() ()()() f x g x g x f x g x ?> ???? 更熟练的掌 握一般情况 试解不等式 |x-1|+|x+2|≥5 利用|x-1|=0,|x+2|=0的零 点,将数轴分为三个区间, 然后在这三个区间上将原不 等式分别化为不含绝对值符 号的不等式求解.体现了分 类讨论的思想. {} 23 ≥≤ x x x- 或熟练掌握零点分段法在解不等式中的应用。 学习小结: 解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。 主要方法有: 1、同解变形法:运用解法公式直接转化; 2、分类讨论去绝对值符1、解不等式|2x-4|-|3x+9|<1 2、对任意实数x,若不等式|x+1|-|x-2|>k 恒成立,则k的取值范围是() ()3 A k<()3 B k<-()3 C k≤()3 D k- ≤ 3.不等式有解的条件是 2 (2)|3|4 x x -< (3)|32|1 x-> 43 x x a -+-< 仅供学习与交流,如有侵权请联系网站删除谢谢3

含绝对值不等式专题训练

《绝对值与含绝对值的不等式》专题训练 1.绝对值小于3的整数的个数是( ) A .2 B .3 C .4 D .5 2.有理数中绝对值等于它本身的数是( ) A .0 B .正数 C .负数 D .非负数 3.一个数的绝对值是正数,这个数是( ) A .不等于0的有理数 B .正数 C .任意有理数 D .非负数 4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a-b+c=( ) A .-1 B .0 C .1 D .2 5. 不等式-2x-4≥0的解集在数轴上表示正确的是( ) A . B . C . D . 6. 绝对值2(x+1)<3x 的解集在数轴上表示出来正确的是( ) A . B . C . D . 7.-5的绝对值是 8. 绝对值是10的数有 9、解绝对值不等式|2x+1|>3,并用区间表示 10、已知a 、b 互为倒数,c 和d 互为相反数,x 绝对值是3,求x 2+(c+d )2011+(ab )2012的值. 11、已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,求a+b+x 3-cdx 的值. 12.解下列不等式 (1)3813x -<; (2)3214x -≥; (3)11223 x +>; (6)11252x +≤.

一元二次方程 1、关于x的一元二次方程x2-ax-3a=0的一个根是-2,求a的值和另一个根 2、已知x=1是一元二次方程x2+bx+5=0的一个解,求b的值及方程的另一个根. 3、当t取什么值时,关于x的一元二次方程2x2+tx+2=0有两个相等的实数根? 4、已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,求m的取值范围. 5、已知关于x的一元二次方程kx2-4kx-5=0有两个不相等的实数根,求k的取值范围。 6、若(m+1)x|m|+1+6x-2=0是关于x的一元二次方程,求m的值。 7、若关于x的一元二次方程ax2-2x+6=0有两个实数根,求a的取值范围. 8、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,求k的取值范围 9、当m取何值时,关于x的一元二次方程x2-2x+(m-1)=0没有解? 10、关于x的方程(k-3)x|k-1|-5x=2是一元二次方程,求k的值. 11、已知m,n是一元二次方程x2-2x-2019=0,求(m+1)(n+1)的值。 12、已知|a?1|+(b+2)2=0,求一元二次方程bx2-x+a=0的解. 13、若α、β是一元二次方程x2+2x-6=0的两根,求α+β和αβ的值。

高考中常见的七种含有绝对值的不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-02 222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 (2007年广东高考卷)设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ? ??+-≤--≥-?212212x x x x 111 1≤≤-????≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

绝对值不等式的解法教学设计.doc

《绝对值不等式的解法》教学设计 富源四中朱树平 课题:绝对值不等式的解法 数学学生课 科目教学对象 1 时 提供者朱树平单位富源四中 一、教学目标 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力 二、教学内容及模块整体分析 含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。 三、学情分析 学生基础差,少讲多练,以基础题为主。 四、教学策略选择与设计 讲练结合,多媒体展现。 五、教学重点及难点 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题. 六、教学过程 教师活动学生活动 问题 : 你能一眼看出下面两个不等式的解集吗设计意图 让学生熟练掌 提问的方式总结前面学过的知识 一般地,可得解集规律: 形如 |x|a (a>0) 的含绝对值的不等式的解集 : 不等式 |x|a的解集为{x|x<-a或x>a }

(2) | x 2 3x | 4 注:如果 a ≤ 0 ,不等式的解集 易得 . 利用这个规律可以解一些含有绝对值的不等式 . (3) | 3 x 2 | 1 解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化: 试解不等式 |x-1|+|x+2| ≥ 5 利用 |x-1|=0 , |x+2|=0 的零点, 将数轴分为三个区间,然后在这 三个区间上将原不等式分别化为 不含绝对值符号的不等式求解.体现了分类讨论的思想. ⑴ f x a(a 0) f x a 或 f x a ; ⑵ f x a(a 0) a f x a ; ⑶ f x g(x) f x g(x)或f x g(x); 更熟练的掌握 ⑷ f x g(x) g(x) f x g(x); 一般情况 ⑸ f x g x f x 2 g x 2 熟练掌握零点 分段法在解不 等式中的应 用。 x x ≥2或x ≤ 3 学习小结 : 1、解不等式 |2 x-4|-|3 x+9|<1

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

高考知识点绝对值不等式

第1节绝对值不等式 最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a. 知识梳理 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 (2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②|ax+b|≥c?ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.

诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.() (2)不等式|x-1|+|x+2|<2的解集为?.() (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.() (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.() (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.() 答案(1)×(2)√(3)×(4)×(5)√ 2.不等式|x-1|-|x-5|<2的解集是() A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5) 解析①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当10,|x-1|

相关文档
最新文档