一组空气污染数据的主成分分析

一组空气污染数据的主成分分析
一组空气污染数据的主成分分析

一组空气污染数据的主成分分析

【说明】下面的多元统计分析练习题摘自R.A. Johnson等编写的《应用多元统计分析(第五版)》,原书为:Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis(5th Ed). Pearson Education, Inc. 2003。我看的是中国统计出版社(China Statistics Press)2003年发行的影印本。

第一题为原书第1.6题,即第1章的第6题,第二题为原书第8.12题,即第8章的第12题。

第二题用的是第一题的数据。

1 习题

1.6. The data in Table 1.5 are 42 measurements on air-pollution variables recorded at 12:00 noon in the Los Angeles area on different days.

(a)Plot the marginal dot diagrams for all the variables.

(b)Construct the x, S n, and R arrays, and interpret the entries in R.

TABLE 1.5 AIR-POLLUTION DATA

Wind (x1)Solar

radiation (x2)CO (x3)NO (x4)NO2 (x5)O3 (x6)HC (x7)

8 98 7 2 12 8 2 7 107 4 3 9 5 3 7 103 4 3 5 6 3 10 88 5 2 8 15 4 6 91 4 2 8 10 3

8 90 5 2 12 12 4

9 84 7 4 12 15 5 5 72 6 4 21 14 4

7 82 5 1 11 11 3

8 64 5 2 13 9 4 6 71 5 4 10 3 3

6 91 4 2 12

7 3

7 72 7 4 18 10 3 10 70 4 2 11 7 3 10 72 4 1 8 10 3 9 77 4 1 9 10 3 8 76 4 1 7 7 3

8 71 5 3 16 4 4

9 67 4 2 13 2 3 9 69 3 3 9 5 3

9 88 4 2 7 6 3

8 80 4 2 13 11 4

5 30 3 3 5 2 3

6 83 5 1 10 23 4

8 84 3 2 7 6 3

6 78 4 2 11 11 3

8 79 2 1 7 10 3

6 62 4 3 9 8 3

10 37 3 1 7 2 3

8 71 4 1 10 7 3

7 52 4 1 12 8 4

5 48

6 5 8 4 3

6 75 4 1 10 24 3

10 35 4 1 6 9 2

8 85 4 1 9 10 2

5 8

6 3 1 6 12 2

5 8

6

7 2 13 1

8 2

7 79 7 4 9 25 3

7 79 5 2 8 6 2

6 68 6 2 11 14 3

8 40 4 3 6 5 2

Source: Data courtesy of Professor G.C. Tiao.

8.12. Consider the air-pollution data listed in Table 1.5. Your job is to summarize these data in fewer than p=7 dimensions if possible. Conduct a principal component analysis of the data using both the covariance matrix S and the correlation matrix R. What have you learned? Does it make any difference which matrix is chosen for analysis? Can the data be summarized in three or fewer dimensions? Can you interpret the principal components?

2 部分解答

2.1 部分统计参数

利用Excel计算的平均值(x)和标准差

Wind Solar radiation CO NO NO2O3HC Average 7.5 73.857143 4.547619 2.1904762 10.047619 9.4047619 3.0952381 Stdev 1.5811388 17.335388 1.2337209 1.0873574 3.3709837 5.5658345 0.6917466

Excel给出的协方差矩阵S

Wind

Solar

radiation CO NO NO2O3HC

Wind 2.4404762

Solar

radiation -2.714286 293.36054

CO -0.369048 3.8163265 1.4858277

NO -0.452381 -1.353741 0.6575964 1.154195

NO2-0.571429 6.6020408 2.2596372 1.0623583 11.092971

O3-2.178571 30.057823 2.7545351 -0.791383 3.0521542 30.24093

HC 0.1666667 0.6088435 0.138322 0.1723356 1.0192744 0.5804989 0.4671202 Excel给出相关系数矩阵R

Wind radiation CO NO NO2O3HC Wind 1

Solar radiation -0.101442 1

CO -0.193803 0.1827934 1

NO -0.269543 -0.073569 0.5021525 1

NO2-0.109825 0.115732 0.5565838 0.2968981 1

O3-0.253593 0.3191237 0.4109288 -0.133952 0.1666422 1

从相关系数矩阵可以看出,CO与NO、NO2相关性明显,O3与Solar radiation、CO相关性明显。后面的主成分分析将CO与NO、NO2归并到一个主成分,将O3与Solar radiation 归并到一个主成分,将HC、Wind归并到一个主成分。HC与Wind的相关系数并不高,但从正相关的角度看,二者的数值倒是最高的。方差极大正交旋转之后,HC与CO、NO、NO2归并到一个因子,因为HC与NO2的相关系数较高,与CO、NO的相关系数高于其他变量。

2.2 主成分分析之一——数据未经标准化

下面是从相关矩阵R出发,SPSS给出的结果。原始数据未经标准化。所谓从R出发,就是在SPSS的Factor Analysis: Extraction—Analysis选项中选中Correlation Matrix。

SPSS给出的相关系数矩阵(Correlation Matrix),与Excel计算的结果一样。

公因子方差(Communalities)表如下。公因子方差变化于0.544~0.795之间,相差不

是很大。但是,公因子方差值没有达到0.8以上的,可见每一个变量体现在三个主成分中的信息都不超过80%。

特征根与方差贡献(Total Variance Explained)如下表。可见提取三个主成分可以解释原来7格变量的70.384%。

E i g e n v a l u e

主成分载荷矩阵(Component Matrix )见下表。

将上表从SPSS 中复制到Excel 中,进行涂色分类,结果如下表所示。

主成分分类如下:

?第一主成分的主要相关变量:CO、NO、NO2。

?第二主成分的主要相关变量:Solar radiation、O3。

?第三主成分的主要相关变量:Wind、HC。

在主成分载荷图(Component Plot)中,三个变量分别落入三个不同的主成分代表的区域。

主成分得分表如下。最后一栏对几个典型的样本给出了简单的解释。注意解释的时候看清主成分载荷矩阵中载荷值的正负号。

Cases f1 f2 f3 典型的说明

S1 0.61591 -0.8186 -0.38418

S2 0.03194 -0.36015 -0.26343

S3 -0.34752 -0.54481 -0.49701

S4 0.2425 -0.30293 1.80367 样本4代表的区域Wind、HC污染严重

S5 -0.12729 -0.91941 -0.4042

S6 0.72612 -0.19278 1.21954

S7 2.03686 0.89982 1.4607 样本7和8代表的区域与CO、NO、NO2污染有

明显的关系

S8 2.57309 0.77732 -0.34124

S9 0.09802 -0.81736 0.30334

S10 0.50664 0.78803 0.88735

S11 0.3904 0.97744 -1.48345

S12 0.14485 -0.45848 -0.27016

S13 1.92477 0.88883 -0.66029

S14 -0.50662 0.63139 0.91242

S15 -0.89378 -0.17036 1.19632

S16 -0.66037 -0.39862 0.93758

2.3 主成分分析之二——数据未经标准化

下面是从协方差矩阵S出发,SPSS给出的结果。原始数据未经标准化。所谓从S出发,就是在SPSS的Factor Analysis: Extraction—Analysis选项中选中Covariance Matrix。

公因子方差(Communalities)表如下。在未经处理的(Raw)公因子方差一栏,其Initial 数值都是原始数据的方差。不过与前面Excel给出的协方差矩阵有所不同,Excel给出的是总体方差,SPSS给出的是抽样方差。例如以Wind的Initial值为例,2.4404762×42/41=2.5,或者2.5×41/42=2.4404762(对照前面的协方差矩阵)。

重标的(Rescaled)结果是Extraction值与Initial值之比。

公因子方差的合计结果如下:

Raw Rescaled

Initial Extraction Initial Extraction

WIND 2.5 0.0306651 1 0.012266

Solar radiation 300.51568 300.13367 1 0.9987288

CO 1.5220674 0.0601666 1 0.0395295

NO 1.1823461 0.0067502 1 0.0057091

NO2 11.363531 0.1790059 1 0.0157527

O3 30.978513 3.8459428 1 0.1241487

HC 0.4785134 0.0016671 1 0.0034839

合计348.54065 304.25786 7 1.1996188

特征根与方差贡献(Total Variance Explained)如下表。在Raw一栏中显示,提取一个主成分似乎可以解释原来7格变量的87.295%。但重标之后显示的数值却是17.137%。

根据公因子方差表和合计结果,重标之前,全部的方差解释为

304.25786/348.54065*100=87.295%;

重标之后,全部的方差解释为

1.1996188/7*100=17.137%。

E i g e n v a l u e

主成分载荷矩阵(Component Matrix )见下表。可以看来,由于变量Solar radiation 的方差很大,它绝对地控制了第一主成分。

2.4 主成分分析之三——数据经过标准化

下面是从协方差矩阵S出发,SPSS给出的结果。原始数据经过标准化。可以看到所有的结果重标前后一样,并且与从相关矩阵R出发计算的结果一样。

公因子方差(Communalities)表如下,重标前后的结果一样。

特征根与方差贡献(Total Variance Explained)如下表。重标前后结果一样。

E i g e n v a l u e

主成分载荷矩阵(Component Matrix )见下表,重标前后一样。可以看到,第一主成分的相对重要性受到标准化的极大影响。结论自然是:如果在极其不同的范围内测量变量,或者测量单位的量纲不同,变量必须经过标准化。否则,应该从相关系数矩阵出发开展主成分分析。

2.5 因子分析——方差极大旋转

数据经过标准化,从任意矩阵出发,在因子分析中进行方差极大旋转(Varimax),载荷矩阵如下。

载荷矩阵和因子分类结果如下表。

可以看到,旋转之后三个因子的方差贡献差别缩小了。

2.6 回答问题

?What have you learned?

?Does it make any difference which matrix is chosen for analysis?

?Can the data be summarized in three or fewer dimensions?

?Can you interpret the principal components?

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

主成分分析法精华讲义及实例

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())], T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j V ar Y V ar l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l =

及 (,)0,1,2,..., 1.T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,) T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特 征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,, p e e e 则 X 的第 i 个主成分为 1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3) 此时 (),1,2,...,,(,)0,. T i i i i T i k i k V ar Y e e i p C ov Y Y e e i k λ?=∑==??=∑=≠?? 1.3 总体主成分的性质 1.3.1 主成分的协方差矩阵及总方差 记 12(,,...,) T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且 12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ= 由此得主成分的总方差为 1 1 1 ()()()()(),p p p T T i i i i i i V ar Y tr P P tr P P tr V ar X λ ==== =∑=∑=∑= ∑∑∑ 即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差

主成分分析-实例

§8 实例 实例1 计算得 1x =71.25,2x =67.5 分析1:基于协差阵∑ 求主成分。 369.6117.9117.9214.3S ?? = ??? 特征根与特征向量(S无偏,用SPSS ) Factor 1 Factor 2 11x x - 0.880 -0.474 22x x - 0.474 0.880 特征值 433.12 150.81 贡献率 0.7417 0.2583 注:样本协差阵为无偏估计11(11)1n n n S X I X n n ''= --, 所以,第一、二主成分的表达式为 112212 0.88(71.25)0.47(67.5) 0.47(71.25)0.88(67.5)y x x y x x =-+-?? =--+-? 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。1y 越大,综合成绩越好。(综合成分) 第二主成分的两个系数异号(反映了两科成绩的均衡性)。不妨将英语称为文科,数学称为理科。2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。(结构成分)

问题:英语的权数为何大?如何解释? 分析2: 基于相关阵R 求主成分。因为 1x =71.25,2x =67.5 所以相关阵 11R ? =? ? ? 解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为: Factor 1 Factor 2 11 1x x s - 0.707 0.707 22 2 x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率 0.709 0.291 所以,第一、二主成分的表达式为 12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --? =+=+?? ? --?=-=-?? 1122120.039(71.25)0.052(67.5) 0.039(71.25)0.052(67.5)y x x y x x =-+-?? =---? 112212 0.0390.052 6.273 0.0390.0520.671y x x y x x =+-?? =-+? * 2*11707.0707.0x x y += *2*12707.0707.0x x y -= 基于相关阵的更说明了: 第一主成分是英语与数学的加权总分。 第二主成分是对两科成绩均衡性的度量。 此例说明:基于协差阵与基于相关阵的主成分分析的结果不一致。结合此例的实际背景,经对比分析可知,基于协差阵的主成分分析更符合实际。

主成分案例分析

主成分案例分析 主成分分析案例 ---我国各地区普通高等教育发展水平综合评价 (一)案例教学目的 主成分分析试图在力保数据信息丢失最少的原则下,对多变量的截面数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。本案例运用主成分分析方法综合评价我国各地区普通高等教育的发展水平。通过本案例的教学,力图使学生加深对主成分分析的统计思想和实际意义的理解,明确主成分分析方法的适用环境,掌握主成分分析软件实现操作方法,提高学生思考、分析和解决实际问题的能力。 (二)案例研究背景 近年来,我国普通高等教育得到了迅速发展,为国家培养了大批人才。但由于我国各地区经济发展水平不均衡,加之高等院校原有布局使各地区高等教育发展的起点不一致,因而各地区普通高等教育的发展水平存在一定的差异。对我国各地区普通高等教育的发展水平进行综合评价,明确各地区的差异,有利于管理和决策部门从宏观上把握各地区普通高等教育的发展现状,更好的指导和规划高教事业的健康发展。 (三)案例研究过程 1、建立综合评价指标体系 高等教育是依赖高等院校进行的,高等教育的发展状况主要体现在高等院校的相关方面。遵循选取评价指标的目的性和可比性原则,从高等教育的五个方面选取十项评价指标,具体如下:

2、数据资料 指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以各地区相应的人口数得到十项指标值见表1。其中:x为每百万人口高等院校数;x为每十万人口高等院校毕业生数;x123为每十万人口高等院校招生数;x为每十万人口高等院校在校生数;4 x 为每十万人口高等院校教职工数;x 为每十万人口高等院校专职56 教师数;x为高级职称占专职教师的比例;x为平均每所高等院校的78 在校生数;x为国家财政预算内普通高教经费占国内生产总值的比9 重;x为生均教育经费。 10 表1-1 我国各地区普通高等教育发展状况数据地区 x x x x x x x x x x 12345678910北京1 5.96 310 461 1557 931 319 44.36 2615 2.2 13631 上海2 3.39 234 308 1035 498 161 35.02 3052 0.9 12665 天津3 2.35 157 229 713 295 109 38.4 3031 0.86 9385 陕西4 1.35 81 111 364 150 58 30.45 2699 1.22 7881 辽宁5 1.5 88 128 421 144 58 34.3 2808 0.54 7733 吉林6 1.67 86 120 370 153 58 33.53 2215 0.76 7480 黑龙江7 1.17 63 93 296 117 44 35.22 2528 0.58 8570 湖北8 1.05 67 92 297 115 43 32.89

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

SPSS进行主成分分析的步骤 图文

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示: 单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果: KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显着性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下: 根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U与因子载荷矩阵A以及特征值λ的数学关系如下面这个公式: 故可以由这二者通过计算变量来求得主成分载荷矩阵U。 新建一个SPSS数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables)的公式分别如下二张图所示: 计算变量得到的两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵):所以可以得到两个主成分Y1和Y2的表达式如下: Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6 Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6 由上面两个表达式,可以通过计算变量来得到Y1、Y2的值。需要注意的是,在计算变量之前,需要对原始变量进行标准化处理,上述Y1、Y2表达式中的X1~X9应为各原始变量的标准分,而不是原始值。(另外需注意,本操作需要在SPSS原始文件中来进行,而不是主成分载荷矩阵的那个SPSS数据表中。) 调用描述统计:描述模块(Analyze-Descriptive Statistics-Descriptives),将各个原始变量放入变量框,并勾选Save standardized values as variables框,如下图所示: 得到各个原始变量的标准分如下图(部分): Z人均GDP即为X1,Z固定资产投资即为X2,其余类推。 调用计算变量模块(Transform-Compute Variables),输入公式如下图所示: 计算出来的主成分Y1、Y2如下图所示:

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 公司销售净利率(X1)资产净利率(X2)净资产收益率(X3)销售毛利率(X4) 歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科技红河光明贵州茅台中铁二局红星发展伊利股份青岛海尔湖北宜化雅戈尔福建南纸43.31 17.11 21.11 29.55 11.00 17.63 2.73 29.11 20.29 3.99 22.65 4.43 5.40 7.06 19.82 7.26 7.39 12.13 6.03 8.62 8.41 13.86 4.22 5.44 9.48 4.64 11.13 7.30 8.90 2.79 10.53 2.99 8.73 17.29 7.00 10.13 11.83 15.41 17.16 6.09 12.97 9.35 14.3 14.36 12.53 5.24 18.55 6.99 54.89 44.25 89.37 73 25.22 36.44 9.96 56.26 82.23 13.04 50.51 29.04 65.5 19.79 42.04 22.72 第一,将EXCEL中的原始数据导入到SPSS软件中; 注意: 导入Spss的数据不能出现空缺的现象,如出现可用0补齐。 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。 所做工作: a. 原始数据的标准化处理

R语言主成分分析的案例

R 语言主成分分析的案例
R 语言也介绍到案例篇了,也有不少同学反馈说还是不是特别明白一些基础的东西,希望能 够有一些比较浅显的可以操作的入门。其实这些之前 SPSS 实战案例都不少,老实说一旦用 上了开源工具就好像上瘾了,对于以前的 SAS、clementine 之类的可视化工具没有一点 感觉了。本质上还是觉得要装这个、装那个的比较麻烦,现在用 R 或者 python 直接简单 安装下,导入自己需要用到的包,活学活用一些命令函数就可以了。以后平台上集成 R、 python 的开发是趋势,包括现在 BAT 公司内部已经实现了。 今天就贴个盐泉水化学分析资料的主成分分析和因子分析通过 R 语言数据挖掘的小李 子: 有条件的同学最好自己安装下 R,操作一遍。 今有 20 个盐泉,盐泉的水化学特征系数值见下表.试对盐泉的水化学分析资料作主成分分 析和因子分析.(数据可以自己模拟一份)
其中 x1:矿化度(g/L);

x2:Br?103/Cl; x3:K?103/Σ 盐; x4:K?103/Cl; x5:Na/K; x6:Mg?102/Cl; x7:εNa/εCl.
1.数据准备
导入数据保存在对象 saltwell 中 >saltwell<-read.table("c:/saltwell.txt",header=T) >saltwell
2.数据分析

1 标准误、方差贡献率和累积贡献率
>arrests.pr<- prcomp(saltwell, scale = TRUE) >summary(arrests.pr,loadings=TRUE)
2 每个变量的标准误和变换矩阵
>prcomp(saltwell, scale = TRUE)
3 查看对象 arests.pr 中的内容
>> str(arrests.pr)

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

主成分分析法实例

1、主成分法: 用主成分法寻找公共因子的方法如下: 假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系: 11111221221122221122....................p p p p p p p pp p Y X X X Y X X X Y X X X γγγγγγγγγ=+++?? =+++??? ?=+++? 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到 X 得转换关系为: 11112121212122221122....................p p p p p p p pp p X Y Y Y X Y Y Y X Y Y Y γγγγγγγγγ=+++?? =+++??? ?=+++? 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为: 111121211 2121222221122................. ...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++??=++++????=++++? 上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根 i λ/i i i F Y λ=, 1122m m λγλγλγ,则式子变为:

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 第一,将EXCEL中的原始数据导入到SPSS软件中; 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。

数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。 所的结论: 标准化后的所有指标数据。 注意: SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。 factor过程对数据进行因子分析(指标之间的相关性判定略)。 【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;

【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框; 【3】设置“抽取”,勾选“碎石图”复选框; 【4】设置“旋转”,勾选“最大方差法”复选框; 【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框; 【6】查看分析结果。 所做工作: a.查看KMO和Bartlett 的检验 KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析; Bartlett 球度度检验的Sig值越小于显著水平0.05,越说明变量之间存在相关关系。 所的结论: 符合因子分析的条件,可以进行因子分析,并进一步完成主成分分析。 注意: 1.KMO(Kaiser-Meyer-Olkin) KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。 Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般; 0.6表示不太适合;0.5以下表示极不适合。 2.Bartlett 球度检验: 巴特利特球度检验的统计量是根据相关系数矩阵的行列式得到的,如果该值较大,且其对应的相伴概率值小于用户心中的显著性水平,那么应该拒绝零假设,认为相关系数矩阵不可能是单位阵,即原始变量之间存在相关性,适合于做主成份分析;相反,如果该统计量比较小,且其相对应的相伴概率大于显著性水平,则不能拒绝零假设,认为相关系数矩阵可能是单位阵,不宜于做因子分析。 Bartlett 球度检验的原假设为相关系数矩阵为单位矩阵,Sig值为0.001小于显著水平0.05,因此拒绝原假设,说明变量之间存在相关关系,适合做因子分析。 所做工作: b. 全部解释方差或者解释的总方差(Total Variance Explained)

主成分分析操作步骤

主成分分析操作步骤 1)先在spss中录入原始数据。 2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中。

3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中的“系数”。(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。 点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。

点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进行因子旋转,则其结果即为主成分分析) 点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。 点击【选项】:选择“按列表排除个案”。

4)结果解读 5)A. 相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。通过相关系 数可以看到各个变量之间的相关,进而了解各个变量之间的关系。 相關性矩陣 食品衣着燃料住房交通和通讯娱乐教育文化相關食品 1.000 .692 .319 .760 .738 .556 衣着.692 1.000 -.081 .663 .902 .389 燃料.319 -.081 1.000 -.089 -.061 .267 住房.760 .663 -.089 1.000 .831 .387 交通和通讯.738 .902 -.061 .831 1.000 .326 娱乐教育文化.556 .389 .267 .387 .326 1.000 B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和 通讯最多,而娱乐教育文化损失率最大。 Communalities 起始擷取 食品 1.000 .878 衣着 1.000 .825 燃料 1.000 .841 住房 1.000 .810 交通和通讯 1.000 .919 娱乐教育文化 1.000 .584 擷取方法:主體元件分析。 C. 总方差的解释:系统默认方差大于1的为主成分。如果小于1,说明这个主 因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差 为3.568,第二主成分的方差为1.288,前两个主成分累加占到总方差的80.939%。 說明的變異數總計 元件 起始特徵值擷取平方和載入 總計變異的% 累加% 總計變異的% 累加% 1 3.568 59.474 59.474 3.568 59.474 59.474 2 1.288 21.466 80.939 1.288 21.466 80.939 3 .600 10.001 90.941 4 .358 5.97 5 96.916 5 .142 2.372 99.288 6 .043 .712 100.000 擷取方法:主體元件分析。

主成分分析在SPSS中的操作应用(详细步骤

主成分分析在SPSS中的操作应用(2) SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。 用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入 “A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F1=0.353ZX1+0.042ZX2-0.041ZX3+0.364ZX4+0.367ZX5+0.366ZX6+0.352ZX7+0.364ZX

浅析主成分分析法及案例分析

主成分分析

在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 主成分分析的主要作用体现在五个方面,第一,主成分分析能降低所研究的数据空间的维数。第二,可通过因子负荷的结论,弄清X变量间的某些关系。第三,可用于多为数据的一种图形表现方法。第四,可由主成分分析构造回归模型,即把各个主成分作为新自变量代替原来自变量做回归分析。第五,用主成分分析筛选回归变量。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

相关文档
最新文档