空间向量其运算测试题

空间向量其运算测试题
空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题

1 抛物线2

81x y -

=的准线方程是 ( ) A . 321=x B . 2=y C . 32

1

=y D . 2-=y

2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF

的等差中项,则动点P 的轨迹方程是 ( )

A .

22

1169x y += B .

22

11612x y += C .22

143x y += D .22

134

x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4)

B .(8,-16,4)

C .(8,16,4)

D .(8,0,4)

2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →

= ( )

A .a +b -c

B .a -b +c

C .-a +b +c

D .-a +b -c

4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →

C.MA →+MB →+MC →

=0

D.OM →+OA →+OB →+OC →

=0

6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →

+ BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.

其中能够化简为向量BD 1→

的是 ( ) A .①② B .②③ C .③④ D .①④

7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20

9

8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( )

A .4

B .15

C .7

D .3

9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →

>0,则该四边形 为 ( )

A .平行四边形

B .梯形

C .长方形

D .空间四边形

11. 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a , AD →=b ,AA 1→=c ,则下列向量中与BM →

相等的向量是( ) A .-12a +1

2

b +c

B .12a +12b +c

C .-12a -12b +c

D .12a -1

2

b +c

11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,ΔABM 为等腰三角形,且顶角为

120°,则E 的离心率为

A .5

B .2

C .3

D .2

M 是椭圆22

1259

x y +

=上的点,1F 、2F 是椭圆的两个焦点,1260F MF ∠=o ,则12F MF ? 的面积等于 .

已知双曲线过点()

4,3,且渐近线方程为1

2

y x =±

,则该双曲线的标准方程为 . 14.已知向量a =(-1,2,3),b =(1,1,1),则向量a 在b 方向上的投影为________. 16.如果三点A (1,5,-2),B (2,4,1),C (a,3,b +2)共线,那么a -b =________. 19.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).

(1)求以向量AB →,AC →

为一组邻边的平行四边形的面积S ;

(2)若向量a 分别与向量AB →,AC →

垂直,且|a |=3,求向量a 的坐标.

21. 已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →

.

(1)求a 与b 的夹角θ的余弦值;

(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.

(本小题満分12分) 已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。 (1) 求双曲线C 的方程;(2) 若直线l :2+

=kx y 与双曲线C 恒有两个不同的交

点A 和B ,且2>?OB OA (其中O 为原点),求k 的取值范围。

1.D 提示:4a +2b =4(3,-2,1)+2(-2,4,0)=(12,-8,4)+(-4,8,0)=(8,0,4).

2. D 提示: A 1B →=A 1A →+AB →

=-c +(b -a )=-a +b -c .

3\ D 提示:向量的夹角是两个向量始点放在一起时所成的角,经检验只有AC AB =1

2.

4. C 提示:MA →+MB →+MC →=0,即MA →=-(MB →+MC →

),所以M 与A 、B 、C 共面. 5\ 解析 C ∵a +b ,a -b 分别与a 、b 、2a 共面,∴它们分别与a +b ,a -b 均不 能构成一组基底.

6. A 提示:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD →1;②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1

BD 1→;③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→

=B 1D 1→≠BD 1→

,故选A.

7. D 提示:∵k a -b =(k +1,-k -2,k -1),a -3b =(4,-7,-2),(k a -b )⊥(a -3b ),

∴4(k +1)-7(-k -2)-2(k -1)=0,∴k =-20

9.

8\解析 D ∵b +c =(2,2,5),∴a ·(b +c )=(2,-3,1)·(2,2,5)=3.

9. 解析 D 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边 形的外角和是360°,这与已知条件矛盾,所以该四边形是一个空间四边形. 10. 解析 A OG 1→=OA →+AG 1→=OA →+23×12(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →

)]

=13(OA →+OB →+OC →),由OG =3GG 1知,OG →=34OG 1→=14

(OA →+OB →+OC →

),

∴(x ,y ,z )=????

14,14,14.

11\ A 解析 由图形知:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →

)=-12a +1

2b +c .

12. B 解析 ①中a 与b 所在的直线也有可能重合,故①是假命题;②中当a =0,b ≠0 时,找不到实数λ,使b =λa ,故②是假命题;可以证明③中A ,B ,C ,M 四点共 面,因为13OA →+13OB →+13OC →=OM →,等式两边同时加上MO →,则13(MO →+OA →)+1

3(MO →

OB →)+1

3(MO →+OC →)=0,即MA →+MB →+MC →=0,MA →=-MB →-MC →,则MA →与MB →,MC →

共面,又M 是三个有向线段的公共点,故A ,B ,C ,M 四点共面,所以M 是△ABC 的重心,所以点M 在平面ABC 上,且在△ABC 的内部,故③是真命题.

13. 解析 AB →=(3,4,5),AC →=(1,2,2),AD →=(9,14,16),设AD →=xAB →+yAC →

.即(9,14,16)

=(3x +y,4x +2y,5x +2y ),∴?

????

x =2,

y =3,从而A 、B 、C 、D 四点共面.

14.

43

3 解析 向量a 在b 方向上的投影为:|a |·cos a ,b =14×-1+2+314×3

=433. 15. 3 解析 因为OA →+AG →=OG →,OB →+BG →=OG →,OC →+CG →=OG →,且AG →+BG →+CG →

=0, 所以OA →+OB →+OC →=3OG →

.

16. 1 解析:AB →=(1,-1,3),BC →

=(a -2,-1,b +1),若使A 、B 、C 三点共线,须满 足BC →=λAB →

,即(a -2,-1,b +1)=λ(1,-1,3),所以

????

?

a -2=λ,-1=-λ,

b +1=3λ,解得a =3,b =2,所以a -b =1.

17. 解析 (1)EF →·BA →=1

2

BD →·BA →

=12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=1

4.

(2)EF →·BD →=12BD →·BD →

=12cos 0°=1

2

.

(3)EF →·DC →=12BD →·DC →=12|BD →||DC →|cos 〈BD →,DC →〉=12cos 120°=-1

4.

18. 解析 ∵BC →=AC →-AB →

∴OA →·BC →=OA →·AC →-OA →·AB →

=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120°=24-16 2. ∴cos 〈OA →,BC →

〉=OA →·BC →

|OA →|·|BC →|=24-1628×5

=3-225.

∴OA 与BC 夹角的余弦值为3-22

5.

19. 解析 (1)∵AB →=(-2,-1,3),AC →

=(1,-3,2),

∴cos ∠BAC =AB →·AC →|AB →||AC →|

=714×14=1

2,

∴∠BAC =60°∴S =|AB →||AC →

|sin 60°=7 3.

(2)设a =(x ,y ,z ),则a ⊥AB →

?-2x -y +3z =0, a ⊥AC →

?x -3y +2z =0,|a |=3?x 2+y 2+z 2=3, 解得x =y =z =1或x =y =z =-1, ∴a =(1,1,1)或a =(-1,-1,-1).

21. 解析 ∵A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →

∴a =(1,1,0),b =(-1,0,2).

(1) cos θ=a·b |a||b|=-1+0+0

2×5=-1010,

∴a 与b 的夹角θ的余弦值为-

10

10

. (2) ∵k a +b =k (1,1,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),

∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0, 则k =-5

2

或k =2.

解:(Ⅰ)设双曲线方程为22

221x y a b

-= ).0,0(>>b a

由已知得.1,2,2,32222==+==

b b a

c a 得再由故双曲线C 的方程为

.13

22

=-y x (Ⅱ)将得代入13

222

=-+=y x kx y .0926)31(22=

---kx x k 由直线l 与双曲线交于不同的两点得2

222

130,

)36(13)36(1)0.

k k k ?-≠???=+-=->??

即.13

1

22<≠

k k 且 ① 设),(),,(B B

A A y x

B y x A ,则 22

9

,,22,1313A B A B A B A B x x x x OA OB x x y y k k -+==?>+>--u

u u r u u u

r 由得

而2((1)()2A B A B A B A B A B A B x x y y x x kx kx k x x x x +=

+=+

++

22

222937

(1)2.131331

k k k k k -+=++=---

于是2222

37392,0,3131k k k k +-+>>--即解此不等式得.33

12

<

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

学案37 空间向量及其运算(理科 )

空间向量及其运算(理科 ) 一、 学习目标: 1、知识与技能:了解空间向量的概念、空间向量的基本定理及其意义. 掌握空间向量的正交分解及其坐标表示。 掌握空间向量的线性运算、数量积及其坐标表示,用向量的数量积判断向量的共线与垂直 2、过程与方法:通过合作、探究、展示、点评培养学生的自主学习能力。 3、情感、态度、价值观:增强数学学习信心,体会数学的科学价值,获得学习的快乐。 二、知识梳理::已知向量111222(,,),(,,)x y z x y z ==a b 1、±=a b 2、λa = 3、?a b = 4、共线向量定理:(1)//a b ()≠?0b ? (2)//a b 222(0)x y z ≠? (3)与)0(≠a a 共线的单位向量是 5、共面向量定理: 6、空间向量分解定理: 7、空间向量b a ,的数量积(1)夹角 ; (2)两个向量b a ,数量积的定义: ; (3)两个向量b a ,数量积的性质 , , , 。 (4)数量积满足的运算律: , , 。 8、两个向量的夹角及长度的计算:设),,(),,,(321321b b b b a a a a ==, 则=a ________,cos= ____________ 三、基础训练: (1)在空间四边形OABC 中,,,,OA OB OC === a b c 点M 在OA 上,且 OM=2MA ,N 是BC 的中点,则MN = . (2)已知,R λ∈a 为非零向量,则下列结论正确的是( ) (A )λa 与a 同向 (B )|λa |=λ|a | (C )(λa )//a (D) |λa |=|λ|a (3)设非零向量a ,b ,c ,,|||||| =++a b c p a b c 那么||p 的取值范围是( ) (A )[0,1] (B )[1,2] (C )[0,3] (D) [1,3] (4)在平行六体ABCD A B C D ''''-中,AB=4,AD=3,5,AA '=90BAD ∠= ,

空间向量加减法练习题

3.1.1空间向量加减法习题 一、选择题1.下列命题正确的有()(1)若|a|=|b|,则a=b; →→(2)若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD是平行四边形的充要条件; (3)若a=b,b=c,则a=c; ,b|a|=||??相等的充要条件是,b(4)向量a?;∥ba??(5)|a|=|b|是向量a=b的必要不充分条件;→→(6)AB=CD的充要条件是A与C重合,B与D 重合.A.1个B.2个 个.4C.3个 D C答案[][解析](1)不正确.两个向量长度相等,但它的方向不一定相同.→→AB=DC正确.(2)∵→→→→∴|AB|=|DC|且AB∥CD.又∵A,B,C,D不共线,∴四边形ABCD 是平行四边形.→→反之,在?ABCD中,AB=DC. ,a=b(3)正确.∵∴a,b的长度相等且方向相同.∵b=c,∴b,c的长度相等且方向相同.故a=c. (4)不正确.由a∥b,知a与b方向相同或相反. b./ |?a=||||=b?a|=b|,a|=ba(5)正确.→→→→→→同向.CD与AB,|CD|=|AB|,CD=AB.不正确(6) 故选C. 2.设A,B,C是空间任意三点,下列结论错误的是() →→→→→→0CA=AB+BC+BCA.AB+=AC B.→→→→→=-BA D.ABC.AB-AC =CB ][答案B[解析]注意向量的和应该是零向量,而不是数0. →→→→3.已知空间向量AB,BC,CD,AD,则下列结论正确的是()→→→A.AB=BC+CD →→→→B.AB-DC+BC=AD→→→→C.AD=AB +BC+DC →→→D.BC=BD-DC B答案][[解析]根据向量加减法运算可得B正确. →→4.在平行六面体ABCD—A′B′C′D′中,与向量AA′相等的向量(不含AA ′)的个数是() A.1个B.2个 4个D..C3个 答案[]C[解析]利用向量相等的定义求解. 5.两个非零向量的模相等是这两个向量相等的()A.充分不必要条件 .必要不充分条件B C.充要条件D.既不充分也不必要条件[答案]B [解析]两个非零向量的模相等,这两个向量不一定相等,但两向量相等模必相等,故选B. →→6.在平行六面体ABCD-ABCD中,M为AC与BD的交点,若AB=a,AD=b,11111111→→AA=c,则下列向量中与B )(相等的向量是M11. 11A.-a+b+c2211 cb+B.a+2211C.a-b+c 2211D.-a-b+c22[答案]A →→→[解析]B M=BB+BM11 1→→=AA+BD 121→→→=AA+(BA+BC )11111211=-a +b+c.∴应选A.227.在正方体ABCD-ABCD中,下列各式中1111→→→CC)+(1)(AB+BC1→→→(2)(AA+AD) +DC11111→→→(3)(AB+BB)+BC 111→→→(4)(AA+A B)+BC.11111→运算的结果为向量AC 的共有 ()1A.1个B.2个 个4个D..C3 D答案[] 8.给出下列命题:①将空间中所有的单位向量移到同一个点为

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量及其运算(经典)

§8.5 空间向量及其运算 1.空间向量的有关概念 2.(1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP → = OA →+tAB →或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM → +yOA →+zOB → ,其中x +y +z =__1__. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂 直,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23, cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面. ( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ). ( × )

3.1空间向量及其运算第1课时完美版

§3.1.1空间向量及加减其运算 【学情分析】: 向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。【教学目标】: (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。 【教学重点】: 空间向量的概念和加减运算 【教学难点】: 空间向量的应用

四.练习巩 固 1.课本P86练习1-3 2.如图,在三棱柱1 11C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1 解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =-- 巩固知识,注意区别加 减法的不同处. 五.小结 1.空间向量的概念: 2.空间向量的加减运算 反思归纳 六.作业 课本P97习题3.1,A 组 第1题(1)、(2) 练习与测试: (基础题) 1.举出一些实例,表示三个不在同一平面的向量。 2.说明数字0与空间向量0的区别与联系。 答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。 3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。 4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

3.1.1空间向量及其加减运算专项练习与答案

3.1.1空间向量及其加减运算专项练习 一、选择题(每小题5分,共20分) 1.在平行六面体ABCD -A ′B ′C ′D ′中,与向量A ′B ′―――→ 的模相等的向量有( ) A .7个 B .3个 C .5个 D .6个 解析: |D ′C ′―――→|=|DC ―――→|=|C ′D ′―――→|=|CD →|=|BA →|=|AB →|=|B ′A ′―――→|=|A ′B ′―――→ |. 答案: A 2.已知向量a ,b 是两个非零向量,a 0,b 0是与a ,b 同方向的单位向量,那么下列各式中正确的是( ) A .a 0=b 0 B .a 0=b 0或a 0=-b 0 C .a 0=1 D .|a 0|=|b 0| 解析: 两单位向量的模都是1,但方向不一定相同或相反. 答案: D 3.下列命题是真命题的是( ) A .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量 B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反 C .若向量AB →,C D →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD → D .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD → 解析: A 错.因为空间任两向量平移之后可共面,所以空间任两向量均共面. B 错.因为|a |=|b |仅表示a 与b 的模相等,与方向无关. C 错.空间任两向量不研究大小关系,因此也就没有AB →>C D → 这种写法. D 对.∵AB →+CD → =0, ∴AB →=-CD →,∴AB →与CD →共线,故AB →∥CD → 正确. 答案: D 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC → |,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC → 同向 D.AC →与CB → 同向 解析: 由|AB →|=|AC →|+|BC →|=|AC →|+|CB → |,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB → 同向. 答案: D

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

第七章 第六节 空间向量及其运算(理)

第七章 第六节 空间向量及其运算(理) 1. AB 、BC 、CD 、AC 的中点,则12 (AB +BC +CD )化简 的结果为 ( ) A .BF B .EH C .HG D .FG 解析:12(AB +BC +CD )=12(AC +CD )=12AD =12 ·2HG =HG . 答案:C 2.如图,在底面ABCD 为平行四边形的四棱柱 ABCD -A 1B 1C 1D 1中,M 是AC 与BD 的交点, 若AB =a ,11A D =b ,11A A =c ,则下列向 量中与1B M 相等的向量是 ( ) A .-12a +12b +c B.12a +1 2b +c C.12a -12b +c D .-12a -1 2b +c 解析:由题意,根据向量运算的几何运算法则, 1B M =1B B +BM =c +12BD =c +12(AD -AB )=-12a +1 2 b + c . 答案:A 3.A 点是否共面________(共面或不共面). 解析:AB =(3,4,5),AC =(1,2,2), AD =(9,14,16), 设AD =x AB +y AC . 即(9,14,16)=(3x +y,4x +2y,5x +2y ),

∴? ???? x =2,y =3,从而A 、B 、C 、D 四点共面. 答案:共面 4.如图在平行六面体ABCD -A 1B 1C 1D 1中,E 、F 、G 分别是A 1D 1、D 1D 、D 1C 1的中点. 求证:平面EFG ∥平面AB 1C . 证明:设AB =a ,AD =b ,1AA =c , 则EG =1ED +1D G =1 2(a +b ),AC =a +b =2EG , ∴EG ∥AC , EF =1ED +1D F =12b -12c =12(b -c ), 1B C =11B C +1C C =b -c =2EF ,∴EF ∥1B C . 又∵EG 与EF 相交,AC 与B 1C 相交, ∴平面EFG ∥平面AB 1C . 5. 点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( ) A .2BA ·BC B .2AD · BD C .2FG ·CA D .2EF ·CB 解析:〈AD ,BD 〉=π3,∴2AD ·BD =2a 2×cos π 3 =a 2. 答案:B 6.(2010·长沙模拟)二面角α-l -β为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, AC ⊥l ,BD ⊥l ,且AB =AC =α,BD =2a ,则CD 的长为 ( ) A .2a B.5a C .a D.3a 解析:∵AC ⊥l ,BD ⊥l , ∴〈AC ,BD 〉=60°,且AC · BA =0,AB ·BD =0, ∴CD =CA +AB +BD , ∴|CD |

专题01 空间向量及其运算、空间向量基本定理(解析版)

专题01 空间向量及其运算、空间向量基本定理 一、单选题 1.(2019·全国高二课时练习)已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a ﹣b ,a +2b B .2b ,b ﹣a ,b +2a C .a ,2b ,b ﹣c D .c ,a +c ,a ﹣c 【答案】C 【解析】 对于A ,因为2a = 43(a ﹣b )+2 3(a +2b ),得2a 、a ﹣b 、a +2b 三个向量共面,故它们不能构成一个基底,A 不正确; 对于B ,因为2b = 43(b ﹣a )+2 3 (b +2a ),得2b 、b ﹣a 、b +2a 三个向量共面,故它们不能构成一个基底,B 不正确; 对于C ,因为找不到实数λ、μ,使a =λ?2b +μ(b ﹣c )成立,故a 、2b 、b ﹣c 三个向量不共面, 它们能构成一个基底,C 正确; 对于D ,因为c =12(a +c )﹣1 2 (a ﹣c ),得c 、a +c 、a ﹣c 三个向量共面,故它们不能构成一个基底,D 不正确 故选:C . 2.(2020·贵州省铜仁第一中学高二开学考试)如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =, AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( ) A .12 a b c -++ B .a b c -++ C .12 a b c --+ D .12 a b c -+ 【答案】A

【解析】 N 是BC 的中点, 11111 222 A N A A A B BN a b B C a b A D a b c ∴=++=-++=-++=-++. 故选:A. 3.(2020·山东省章丘四中高二月考)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) A .111 333OA OB OC ++ B .111 234OA OB OC ++ C .111244 OA OB OC ++ D .111446 OA OB OC ++ 【答案】C 【解析】 在四面体OABC 中,D 是BC 的中点,G 是AD 的中点 ∴1 2 OG OA AD =+ 11 ()22OA AB AC =+?+ 1 ()4OA OB OA OC OA =+?-+- 111 244 OA OB OC =++ 故选:C. 4.(2020·河南省高二期末)如图在平行六面体1111ABCD A B C D -中,E 为11A D 的中点,设AB a =, AD b =,1AA c =,则CE =( )

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

相关文档
最新文档