双水相萃取研究(论文)

双水相萃取研究(论文)
双水相萃取研究(论文)

双水相萃取技术

姓名:小行星学号: 20128888专业:化工工艺

摘要:双水相萃取是一种新型的萃取分离技术,本文介绍了双水相体系的形成

及特点,重点介绍了双水相萃取技术的应用和双水相萃取的主要设备,

对双水相萃取技术应用前景及展望

关键字:双水相萃取分离技术应用展望

1、引言

溶剂萃取法是分离技术中最重要的方法之一。传统的溶剂萃取分离是依据被分离物质在两个互不相溶液相中的溶解性不同而达到分离目的。一般的萃取体系包括有机相和水相两部分,迄今为止,已有若干种分类方法。随着近年来分离技术在生命科学、天然药物提纯及各类抗生素药物等方面应用的迅速发展,新型的萃取技术应运而生。例如对于生物物质来说,分离的对象复杂,既包括可溶物,如蛋白质和核酸,也包括悬浮的小颗粒,如细胞器和整个细胞;由于生物物质极易变性和失活,传统的有机相和水相的两相萃取不能解决生物物质失活等问题,给分离带来很大的难度,而双水相萃取技术能够很好的解决这一难题。

双水相萃取(Aqueoustwo-phase extraction, ATPE)[1]是两种水溶性不同的聚合物或者一种聚合物和无机盐的混合溶液,在一定的浓度下,体系就会自然分成互不相容的两相,被分离物质进入双水相体系后由于表面性质、电荷间作用和各种作用力(如憎水键、氢键和离子键)等因素的影响,在两相间的分配系数K不同,导致其在上下相的浓度不同,达到分离目的,这种现象在1896年被 B eijerinck首次发现,随后双水相萃取技术作为一种新型的分离技术日益受到重视,与传统的萃取及其他分离技术相比具有操作条件温和、处理量大、易于连续操作等优点,随着生物、医药等行业的蓬勃发展,从而使双水相萃取技术能越来越广泛应用于生物工程、药物分析和金属分离等方面。

2、双水相体系

简而言之,双水相萃取是利用溶质在两个互不相溶的水相中的溶解度不同而达到分离的萃取技术。双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。随着双水相体系的种类不同,其形成原理也不同,表1例举了几种双水相体系的形成及其形成原理[2]。对于某一物质,只要选择合适的双水相体系,控制一定的条件,就可以得到合适的分配系数,从而达到分离纯化之目的[3]。

双水相萃取中使用的双水相是由两种互不相溶的高分子溶液或者互不相溶的盐溶液和高分子溶液组成。最常见的就是聚乙二醇(PEG)/葡聚糖(Dextran)和PEG/无机盐(硫酸盐、磷酸盐等)体系,其次是聚合物/低分子量组分、离子液体体系和高分子电解质/高分子表面活性剂体系。此外,还有被称为智能聚合物的双水相体系等,表2例举了几种常见的双水相体系[4]。

表2 常见的双水相系统

近年来,出现了一些新型、高效、廉价的双水相体系,如用低分子有机物与无机盐所形成的双水相体系来分离提取中药材中的有效成分"这种双水相体系的引入,可以节约能耗、降低成本、简化操作流程!提高产品收率,为大规模工业化的实现提供了可能。

在实际应用中,双水相体系中的水溶性高聚物具有难挥发性,反萃取是必不可少的,同时由于盐会进入反萃取剂也会给分离工作带来一定的难度。

3、双水相萃取的应用

3.1 双水相萃取与生命科学

通常,溶剂萃取分离时,由于使用了有机溶剂会使生物大分子(如蛋白质和酶)失活。从20世纪90年代初期,人们致力于应用ATPE技术分离提取蛋白质,避免蛋白质的变性。目前,已成功应用于蛋白质、生物酶、菌体、细胞、细胞器、亲水性生物大分子、氨基酸、抗生素以及生物小分子等的分离、纯化。特别是近年来,国内外在此方面的研究有很大的进展。例如Menica等[5]利用聚乙二醇(PEG) /磷酸盐双水相体系提取天然发酵物中的碱性木聚糖酶,确定最佳体系是

22%PEG6000, 10%K2HPO4和12%NaCl活性酶的产率可达98%。除此以外,在近几年的报道中双水相萃取已用于多种蛋白质和生物酶的分离,如牛血清蛋白(BSA)、牛酪蛋白、B-乳球蛋白、血清蛋白;A-淀粉酶和蛋白酶、胆固醇氧化酶、脂肪酶、磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)、葡糖淀粉酶、L-天门冬酰胺酶等都在双水相体系中得到较好的分离。B-内酰胺类包括青霉素和头孢菌素,是应用广泛的抗生素药物;大环内酯类抗生素如:红霉素和乙酰螺旋霉素都利用

ATPE技术得到了较好的收率;在多肽类抗生素中,用双水相体系对万古霉素的提取也得到了满意的结果。

3.2 双水相萃取与天然药物

中药中含有大量的有机化合物且成分十分复杂,提高中草药中有效成分提取及分离技术对我国中医中药进入国际市场有很大的促进作用。天然活性成分的分离提取和质量控制将是今后重点研究课题,这类具有独特功能和生物活性的化合物,是疾病预防与治疗的基础物质。主要包括:黄酮、多酚、萜类等。目前,活性成分的提取分离技术还有待发展,双水相萃取技术作为一种新型的萃取技术已经成功的应用于天然产物的分离纯化。近几年有关双水相提取天然药物中有效成分的报道也逐年增多。甘草的主要成分甘草皂甙,又称甘草酸,采用乙醇/磷酸氢二钾双水相体系萃取,分配系数达到12.8,回收率可达98. 3%。选用PEG/磷酸盐体系在一定温度、pH条件下萃取银杏浸取液,主要药用成分黄酮类化合物进入上相,达到分离的目的,最佳条件在25e,PEG的分子量在1500左右,一般采用较高的相比可以提高萃取率,但是过高会引起上相的体积增多,最佳萃取率可达98. 2%。黄芩甙和谷胱甘肽也分别在环氧乙烷和环氧丙烷的无规则共聚物(EOPO) /混合磷酸钾(KHP)体系,以及环氧乙烷和环氧丙烷的无规则共聚物(EOPO)/羟丙基淀粉(PES)所组成的双水相体系中得到较好的分离,萃取率分别是75.8%和80%以上。

天然产物有效成分含量低,难于富集,体系复杂,大分子与小分子、生命与非生命物质共存,特别是存在结构异构体等都使分离提纯工作的难度加大。ATPE技术在天然产物的分离和纯化等方面还有待进一步研究。

3.3双水相萃取与重金属

传统的溶剂萃取分离重金属常常存在溶剂污染环境、对人体有害、工艺复杂等缺点。双水相以其高效、快速、无毒、简单以及无需反萃取等优点,而被用于分离富集重金属元素。例如[6-8]Ti(Ⅳ)与Zr(Ⅳ)可以在聚乙二醇PEG2000-硫酸铵-偶氮胂(Ⅲ)中分离;另外,乙醇-氯化钠-水双水相体系在氢溴酸介质中,可从碱金属中定量萃取金(Ⅲ),萃取率达99.1%;Co(Ⅱ)、Ni(Ⅱ)、Mo(Ⅳ)等金属离子也在聚乙二醇PEG2000-硫酸钠-硫氰酸钾的双水相体系中得到分离。

4、双水相萃取的主要设备

双水相萃取的基本过程包括双水相的形成、溶质在双水相中的分配(混合)和双水相的分离,主要设备包括相混合设备和相分离设备。

4.1 相混合设备

在将双水相萃取进行工业应用时,需要考虑达到平衡所需的时间、相分离的速度及设备和萃取流程的设计等。如前所述,双水相体系的表面张力很低。例如,对聚乙二醇/盐体系,表面张力为0.1~1mN/cm,而对聚乙二醇/葡聚糖体系,则小到0.0001~0.01mN/cm。因此,搅拌时很容易分散成微滴,几秒钟即可达到萃取平衡,且能耗也很少。张力小还能使蛋白质一类的生物活性物质的失活减少,提高收率。

静态混合器是常用的混合器之一,静态混合器与传统混合设备如搅拌器、均质管、和文氏管等相比具有结构简单,成本低、体积小,利于连续操作等优点广泛应用于化学反应、传热、乳化及萃取等方面[9,10]。

静态混合器的工作原理,就是让流体在管线中流动冲击各种类型板元件,增加流体截面的速度梯度或形成湍流。层流时流体产生“切割- 扭曲- 分离- 混合”运动。湍流时,流体除上述情况运动外,还会在断面方向产生剧烈的涡流,产生强烈的剪切力作用于流体,使流体进一步分割混合,最终达到混合的目的[11]。图1 给出了静态混合器的混合过程。

图1 静态混合器混合过程

国外现有静态混合器主要有美国的Kenics,瑞士苏尔士(Sulzer) 的SMX、SMV、SMXL( 与SMX 型的主要区别是内部十字交叉元件的间隙加深) 和SML 等,日本东丽的Hi。

国内将静态混合器主要分为 5 种类型[12],即SV 型、SL 型、SK 型、SX 型和SH 型,主要区别在于V、X、L、H、K表示的单元结构不同,近年来出现SD、SY型静态混合器。

4.2 相分离设备

达到分配平衡的两相进行分离时,可采用重力沉降法(静置分层)或离心沉降法。混合-澄清器也可以用于双水相萃取,但由于它是借助重力实现相分离的,分离能力低,只能用于高聚物一盐体系。但对有的双水相体系的两相密度差小,黏度较大,所以实现其相分离是比较困难的。如例如对聚乙二醇/盐体系,密度差通常为0.04~0.10kg/m3,而对聚乙二醇/葡聚糖体系,则为0.02~0.07kg/m3。上相乙二醇相一般为连续相,黏度为3~15mPa·S,而带细胞碎片的下相,葡聚糖的黏度可达几千毫帕秒(mPa·s)。由于两相密度差太小,仅依靠重力进行相分离将非常慢。这时可利用离心力,采用离心机相分离的效果非常好,处理能力可以很大,且适合于任何双水相体系[13]。

离心萃取器则不同,它是借助离心沉降,因此可以用于任何双水相体系,并易于实现连续化操作。常用的离心沉降设备有管式离心机和碟片式离心机,其中碟片式离心机使用最多。图5-18表示的是流体在碟片式离心机中的流动方向。

离心机按操作性质分为三足式、碟片式与管式离心机常用的离心沉降设备有管式离心机和碟片式离心机。下面介绍管式和碟片式两种离心机的工作原理。

图4 管式离心机结构

1.进料管

2.下轴承装置

3.转鼓

4.机壳

5.重相液出口

6.轻相液出口

7.转鼓轴颈

8.上轴

承装置9.上轴承装置10.电动机11.分离头

分离原理:转鼓正常运转后,被分离物料自进料管进入转鼓下部,在强大离心力的作用下将两种液体分离。重相液经分离头孔道喷出,进入重相液收集器,从排液管排出;轻相液经分离头中心部位轻相液口喷出,进入轻相液收集器从排出管排出。轻、重液相在转鼓内的分界面位置,可通过改变孔径大小进行调整[14]。

管式离心机的转鼓直径最小,用增大转鼓长度增大容积,以提高生产能力。因此,分离因数可达15000~65000,是所有沉降离心机中分离因数最高的,分离效果最好。适用于固体颗粒直径0.01~100ppm,固相浓度在1%以下,固液相密度差大于10kg/m3的乳浊液和悬浮液的分离,每小时的处理能力为0.1~4m3。多用于油料、油漆、制药、化工等工业生产中,如油水、蛋白质、青霉素、香精油的分离等[15]。

图7 碟片式离心机分离示意图

1.进料管

2.分离室

3.溢流口

4.底流口

5.回流管

6.洗水进口

分离原理:混合料液由离心机上部进料口进入分离室,均匀分布在碟片间,利用碟片间的薄壁空间在转鼓的高速旋转下(3000-10000r/min),带动物料产生很大的离心力,轻物料沿碟片上行,由溢流口排出,相对密度较大的物料集于转鼓内壁经喷嘴从底流口连续排出[29]。

离心萃取器的优点是:生产能力大,分离效率高,接触时间短,设备中物

料滞留量小,是所有萃取设备中效率因数最大的萃取设备。由于它是以大于重力百倍以上的离心力来驱动两相分离,所以它可以处理比重差极小,以至于比重差接近于0.01g/cm3的系统;可以处理粘度大或是易乳化的系统.对于处理化学性质不稳定或是利用化学反应动力学差异的分离系统,则以离心萃取器最为合适。

离心萃取器的缺点是:制造费用和维修费用较高,制造要求严格。另外,由于设备小,流量大,因而在萃取过程中流比的变化对萃取器的影响较大.所以离心萃取器的流量要求严格控制。

由于上述缺点,国内过去用在医药工业较多,其它部门用得较少.但是,随着我国工业的发展,自前对于离心萃取设备,无论是单级的还是多级的,无论是核用的还是民用的,都在积极研制,有的已用于生产[16]。

5、结束语

由于双水相体系的萃取条件温和,萃取后处理简便,因此已在生物化学、细胞生物学和生物化工等领域得以应用.许多工作者在这方面已做了大量工作并取得了一些成果。由于该技术尚处于起步阶段,今后应加强理论研究,解决大规模萃取生物活性物质的工艺条件和设备方面的问题,使双水相萃取能成为一种优良的分离技术。

参考文献

[1] 张珩,张齐,杨艺虹等.医药工程设计杂志, 2001, 22(5): 22-26

[2]辜鹏,谢放华,黄海艳,王丹.双水相萃取技术的研究现状与应用[J].化工技术与开

发,2007,(36):29-35.

[3] 徐长波,王魏杰.双水相萃取技术研究进展[J].化工中间体, 2009,(3):16-17.

[4] 李伟,柴金玲,谷学新. 新型的萃取技术---双水相萃取[J].化工教育,2005, (3):7-12.

[5]Chenming Zhang, FabricioMedina Bolivar, ScottBuswel,l etal.1Purification and

stabilization of ricin B from tobacco hairy rootculturemedium by aqueous two-phase extraction [J]1Journal of

Biotechnology, 2005, 117: 39~481

[6]Ganapathi Pati,l S Chethana, A S Sridev,i et al1Method toobtain C - phycocyanin of high purity [ J ]1Journal ofChromatographyA, 2006, 1127: 76~811.

[7]S Teotia, M N Gupta1Purification of phospholipase D by two-phase affinity extraction [ J]1Journal of Chromatography A, 2004(1025): 297~3011.

[8 ] Zea D V L Mayerhof,f In es C Roerto, Telma TFranco1Purification of xylose reductase from Candida mogii inaqueous two- phase systems [ J]1Biochemical EngineeringJourna,l 2004, 18: 217~2231.

[9]肖映果,孙文胜,刘伟强.流体静态混合器的应用和新发展[J].现代化

工,2005,25(7) :79-281.

[10]田瑞华.生物分离工程[M].科学出版社,2008,85-86.

[11] Baumann A, Jeelani SAK, Holenstein B, et al. Flow regimes and drop break-up

in SMX and packed bed static mixers [J]. Chem Eng Sci, 2012, 73(7): 354-365.

[12] 范存良.静态混合器的选型与应用进展[J]. 化工装备技术,1997,18(6): 44-47.

[13] Steven M. Snyder , Kenneth D. Cole , David C. Szlag. Phase compositions, viscosities, and densities for aqueous two-phase systems composed of polyethylene glycol and various salts at 25.degree.C [J]. J. Chem. Eng.

Data, 1992, 37 (2):268–274

[14]邹东恢.生物加工设备选型与应用[M].化学工业出版社,2009.3.68-70

[15]高平,刘书志.教育部高职高专规划教材生物工程设备[M].化学工业出版社,2006,01(1),121-125

[16]徐光宪,袁承业等著.稀土的溶剂萃取.科学出版社,2010.05.

双水相萃取法

双水相萃取法的应用及研究进展 摘要:双水相萃取技术作为一项新的分离技术日益受到重视,它与传统的萃取及其它分离技 术相比具有操作条件温和、处理、量大、易于连续操作等优点,从而使其能广泛应用于生物分离工程中。本文介绍了双水相的形成、双水相萃取技术的基本原理以及影响物质分配系数的因素。同时对双水相萃取技术的研究进展及其应用进行了综述。 关键词:双水相萃取分离纯化进展 一:方法 随着基因工程、蛋白质工程、细胞培养工程、代谢工程等高新技术研究工作的广泛开展,各种高附加值的生化新产品不断涌现,对生化分离技术也提出了越来越高的要求。包括精馏、吸收、萃取、蒸发、结晶在内传统的分离技术有三大特点:分离过程伴随有相的变化;筛分过程不能实现分子级别的分离;精制过程成本极高,这些特征对于节约能源、生物分离、环境 保护、资源开发、替代能源、高纯材料等当代化学工程与科学技术发展不相适应。围绕以上几个问题的讨论就构成了分离技术研究与发展的主流,即新型分离技术产生的背景。双水相萃取技术始于20世纪60年代,从1956年瑞典伦德大学Albertsson发现双水相体系[2]到1979年德国GBF的Kula等人将双水相萃取分离技术应用于生物产品分离,虽然只有20多年的历史,但由于其条件温和,容易放大,可连续操作,目前,已成功的应用于蛋白质、核酸和病毒等生物产品的分离和纯化,双水相体系也已被成功的应用到生物转化及生物分析中。 双水相现象是当两种聚合物或一种聚合物与一种盐溶于同一溶剂时,由于聚合物之间或聚合物与盐之间的不相溶性,使得聚合物或无机盐浓度达到一定值时,就会分成不相溶的两相,因使用的溶剂是水,因此称为双水相原则上,无论是天然的还是合成的亲水聚合物,绝大多数在与另一种聚合物水溶液混合时都可分成两相,构成双水相体系。 双水相萃取与水一有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。对于某一 物质,只要选择合适的双水相体系,控制一定的条件,就可以得到合适的分配系数,从而达到分离纯化之目的。 二:讨论 双水相萃取是一项可以利用不复杂的设备,并在温和条件下进行简单的操作就可获得较高收率和有效成分的新型分离技术。因此,广泛应用于生物化学、细胞生物学和生物化工等领域。然而有关双水相分配的基础研究还不够,工业化的一些关键问题还没有解决。为此,有必要加强这方面的基础研究,解决大规模萃取生物活性物质的工艺条件和设备方面的问题,促进双水相萃取技术的不断发展。 影响双水相萃取的因素比较复杂,主要包括静电作用、疏水作用和界面张力等。通过对各个因素的调节,可以极大地提高蛋白质的选择性,达到向一相富集的目的。A 1}'帅的组分性质千差万别,从晶体到无定形聚合物、从非极性到极性、从电解质到非电解质、从无扫L 小分子到有扫L高分子甚至生物大分子,这些都不可避免地造成理论计算的复杂性,以至 于现在还没有一套比较完善的理论来衡量各个影响因素之问的关系和解释生物大分子在体 系中的分配扫L理.有关A丁PS分配模型的研究中,较为成功的有的渗透维里模型,以及晶格模型。前者在预测聚合物的成相行为和蛋白质的分配上有较高的准确度;后者在粒子的能

生物工程下游技术习题题目练习

生物工程下游技术复习题 第一章绪论 生物下游加工过程的几个阶段 预处理和固液分离, 提取(初步分离), 精制(高度纯化), 成品制作. 评价分离效果的重要参数:纯度,回收率,浓缩率。

第二章发酵液预处理和固液分离 主要名词:凝聚、絮凝 凝聚:指在电解质作用下,由于胶粒之间双电层电排斥作用降低,电位下降,而使胶体体系不稳定的现象; 絮凝:指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成较大絮凝团的过程。1.改变发酵液过滤特性的方法 调酸(等电点),热处理,电解质处理,添加凝聚剂,添加表面活性物质,添加反应剂冷冻-解冻,添加助滤剂 2.发酵液的相对纯化 (1)高价无机离子的去除方法 (2)杂蛋白的去除方法 沉淀法,变性法,吸附法。 3常用的固液分离方法: 重力沉降,浮选,旋液分离,介质过滤,离心。 (1)离心 离心机种类:碟片式。管式。倾析式。 (2)过滤(澄清过滤,滤饼过滤) 过滤机种类:按推动力分为4种重力过滤,加压过滤,真空过滤,离心过滤。 板框压滤机,真空转鼓过滤机 第三章细胞破碎和包涵体复性 细胞破碎的主要方法和适用对象,了解基本机理

方法:珠磨法原理:进入珠磨机的细胞悬浮液与极细的玻璃小珠、石英砂、氧化铝等研磨剂(直径小于1mm)一起快速搅拌或研磨,研磨剂、珠子与细胞之间的互相剪切、碰撞,使细胞破碎,释放出内含物。在珠液分离器的协助下,珠子被滞留在破碎室内,浆液流出从而实现连续操作。 高压匀浆法原理:利用高压使细胞悬浮液通过针形阀,由于突然减压和高速冲击撞击环使细胞破碎,细胞悬浮液自高压室针形阀喷出时,每秒速度高达几百米,高速喷出的浆液又射到静止的撞击环上,被迫改变方向从出口管流出。不适用范围:易造成堵塞的团状或丝状真菌,较小的革兰氏阳性菌,含有包含体的基因工程菌(因包含体坚硬,易损伤匀浆阀) 珠磨法固体剪切作用可达较高破碎率,可较大规模操作,大分子目的产物易失活,浆液分离困难 高压匀浆法液体剪切作用可达较高破碎率,可大规模操作,不适合丝状菌和革兰氏阳性菌 超声破碎法液体剪切作用对酵母菌效果较差,破碎过程升温剧烈,不适合大规模操作X-press法固体剪切作用破碎率高,活性保留率高,对冷冻敏感目的产物不适合 酶溶法酶分解作用具有高度专一性,条件温和,浆液易分离,溶酶价格高,通用性差化学渗透法改变细胞膜的渗透性具一定选择性,浆液易分离,但释放率较低,通用性差渗透压法渗透压剧烈改变破碎率较低,常与其他方法结合使用 冻结融化法反复冻结-融化破碎率较低,不适合对冷冻敏感目的产物 干燥法改变细胞膜渗透性条件变化剧烈,易引起大分子物质失活 第四章沉淀法 1.蛋白质的表面特征 蛋白质组成 20种氨基酸构成的两性高分子电解质,包括疏水性氨基酸和亲水性氨基酸 蛋白质折叠趋势 疏水性氨基酸:向内部折叠的趋势 亲水性氨基酸:分布于蛋白质外表面的趋势 结果 在蛋白质三维结构中仍会有部分疏水性氨基酸残基暴露于表面,在蛋白质表面形成一定的疏水区

双水相体系萃取(精)

双水相萃取技术 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉,这种现象被称为聚合物的不相溶性(incompatibility,从而产生了双水相体系(Aqueous two phase system,ATPS。 传统的双水相体系是指双高聚物双水相体系,其成相机理是由于高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向,在一定条件下即可分为二相。一般认为只要两聚合物水溶液的憎水程度有所差异,混合时就可发生相分离,且憎水程度相差越大,相分离的倾向也就越大。可形成双水相体系的聚合物有很多,典型的聚合物双水相体系有聚乙二醇(polyethylene glycol,略作PEG/葡聚糖(dextran,聚丙二醇(polypropylene glycol/聚乙二醇和甲基纤维素(methylcellulose/葡聚糖等。另一类双水相体系是由聚合物/盐构成的。此类双水相体系一般采用聚乙二醇(polyethylene glycol作为其中一相成相物质,而盐相则多采用硫酸盐或者磷酸盐。 萃取原理 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配。当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等的存在和环境因素的影响,使其在上、下相中的浓度不同。物质在双水相体系中分配系数K可用下式表示: K= C上/ C下 其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度。 分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。其分配情况服从分配定律,即,“在一定温度一定压强下,如果一个物质溶解在两个同时存在的互不相溶的液体里,达到平衡后,该物质在两相中浓度比等于常数”,分离效果由分配系数来表征。

《生物制药工艺学》复习题.

《生物制药工艺学》复习思考题 第一章生物药物概论 1、生物药物有哪几类?DNA重组药物与基因药物有什么区别? 2、生物药物有哪些作用特点? 3、DNA重组药物主要有哪几类?举例说明之。 4、术语:药物与药品,生物药物,DNA重组药物,基因药物,反义药物,核酸疫苗,RNAi 第二章生物制药工艺技术基础 1、生物活性物质的浓缩与干燥有哪些主要方法? 2、简述生物活性物质分离纯化的特点和分离纯化的主要原理。 3、怎样保存微生物菌种?何谓菌种退化?如何检查菌种退化? 4、诱变育种的总体流程是怎样的?选择出发菌需注意哪些事项? 5、生物制药工艺中试放大的目的是什么? 6、酶固定化的方法有哪些类别? 7、术语:冷冻干燥,喷雾干燥,薄膜浓缩,自然选育,诱变育种,蛋白质工程,转基因动物,蛋白质组学,酶工程,immobilized enzyme,抗体酶,模拟酶,组合生物合成,药物基因组学,DNA Shuffling,定向进化,甘油冷冻保藏法,液氮保藏法,斜面保藏法,沙土管保藏法 第三章生物材料的预处理 1、去除发酵液中杂蛋白有哪几种方法? 2、去除发酵液中钙、镁、铁离子的方法有哪些? 3、影响絮凝效果的主要因素有哪些? 4、细胞破碎有哪些方法?各有什么特点?

5、超声波破碎细胞的原理? 6、术语:凝聚作用,絮凝作用,渗透压冲击法,错流过滤,超声波破壁,酶法破壁,高压匀浆法,高速珠磨法,反复冻融法,渗透压冲击法,液氮研磨法,丙酮粉 第四章萃取法 1、溶剂萃取法的基本原理,其特点是什么? 2、溶剂萃取法按操作方式不同,可分为哪几类?各有什么特点? 3、影响有机溶剂萃取的因素有哪些?萃取剂的选择需遵循哪些原则? 4、使用有机溶剂萃取时,改变pH值将如何影响酸性或碱性抗生素的分配系数? 5、乳化剂为何能使乳状液稳定? 6、破坏乳状液的方法有哪些? 7、影响乳状液类型的因素有哪些? 8、双水相萃取的优缺点有哪些?影响双水相萃取的因素有哪些? 9、超临界流体萃取有哪些特点?常用的流体为哪种?影响超临界流体萃取的因素有哪些?超临界萃取的流程主要有哪几种类型? 10、术语:有机溶剂萃取,反萃取,双节线,多级错流萃取,多级逆流萃取,反胶束萃取,超临界流体萃取,双水相萃取,能斯特分配定律,表观分配系数,萃取因素,萃取剂,萃余液,HLB值 第五章沉淀和结晶 1、什么是“盐析沉淀”?盐析的基本原理? 2、影响盐析效果的因素有哪些? 3、影响有机溶剂沉淀的因素有哪些? 4、有哪些方法可形成过饱和溶液?

双水相萃取和超临界萃取的方法与特点

双水相萃取和超临界萃取的方法与特点 专业生物工程092 课程酶工程 老师王明力 学生吴志洪 学号 0908110342 2012年12月25日

双水相萃取和超临界萃取的方法与特点 摘要:双水相萃取技术是一种高效温和的新分离技术,它与传统的萃取及其它分离技术相比具有操作条件温和、处理量大、易于连续操作等优点,从而使其能广泛应用于生物分离工程中。同时文章简要介绍了超临界流体萃取的基本原理和特点及其应用,其中超临界CO2萃取是最常用的.随着研究的深入和认识的加强,超临界流体技术作为一项可持续的绿色工艺,将具有广泛的应用前景。 关键词:双水相萃取超临界流体萃取 Abstract: Phasepartitioning technology is a kind of high efficient mild new separation technique ,and the traditional extraction and other separation technology compared with mild conditions, large quantity of operation, easy for operation, which makes its advantages such as extensively applied in biological separation engineering.And his article introduces the basic principle of supercritical fluid extraction and it,s application ,The supercritical CO2extraction is the most commonly used.With the deepening of research and understanding of the strengthen, supercritical fluid technology as a sustainable green technology, has a broad prospect of application.

双水相萃取分离

双水相萃取技术应用 摘要:双水相萃取技术作为一种新型的分离技术日益受到重视,它与传统的萃取方法相比有独特的优点。本文总结了双水相萃取形成的原理,萃取过程的基本理论、萃取体系的特点,综述了双水相萃取技术在生化工业、分析检测、稀有金属分离等方面的应用,介绍了该技术的最新进展,指出了该技术工业化存在的问题,并对今后的发展作了展望。 关键词:双水相萃取分离应用 引言 双水相萃取技术(Aqueous two—phase extraction,简称ATPE)与传统的萃取分离技术不同,有其独特的优点,是一种新型的分离技术。双水相萃取在诸多方面有着广泛的应用,具有良好的应用前景。 1、双水相萃取技术的基本原理 1.1双水相体系的形成 当一定浓度的某种有机物水溶液与其它有机物水溶液,或者有机物水溶液与无机盐水溶液以一定体积比混合时,能够自然分相并形成互不相溶的双水相或者多水相体系,这就是双水相体系。 从溶液理论来说,当2种有机物或者有机物与无机盐混合时,是分相还是混合成一相,取决于混合时的熵变和分子间的相互作用力。由于双水相体系本身的复杂性,体系的熵很难准确计算,分子间的相互作用力也不清楚,所以双水相的形成机理很复杂。对于高聚物/高聚物双水相体系,用传统的理论来解释,是由于界面张力等因素形成两相之间的不对称,使得在空间上产生阻隔效应,使两相之间无法相互渗透,不能形成均一相,从而具有分离倾向,一般这种分离倾向的大小和形成双水相的2种物质的疏水性成线性关系。对于有无机盐存在的双水相体系,以及新开发的表面活性剂双水相体系,这种解释就无能为力了。 表1是各种双水相体系的成相原理。由表1可知,不同的成相原理可以解释不同组成的双水相体系.但各种原理并不能普遍适用。而且各种原理问的相互关

(生物科技行业)生物工程设备复习思考题

生物工程设备部分习题 复习思考题: 1、通风发酵设备比拟放大的基本概念,说明以k d 及 为基准的 比拟放大的程序。 2、机械通风发酵罐中挡板的作用及全档板概念。 3、机械通风发酵罐的换热装置常用的有哪几种形式,并简要说明其特点。 4、发酵过程的热量计算方法有几种,并列出简单算式。 5、气升式发酵罐的结构工作及原理及特点。 6、搅拌器常用的形式有哪几种?在发酵罐中选取的流型有何特点,功率准数N P 的选定。 7、什么是牛顿型流体,什么是非牛顿型流体,非牛顿型流体有哪几种各自特点如何? 8、复述双膜理论,写出传氧速率与气、液溶氧浓度关系式。 9、兼气酒精发酵设备常用结构,冷却面积的计算方法及步骤。 10啤酒圆筒锥体发酵罐的特点,及设计时需要考虑哪几方面问题。 11、写出生化过程5个参变量的检测目的及常用检测仪器。 12、什么叫生物传感器?生物敏感材料常用哪几种? 13、生物传感器主要由哪几部分组成及工作原理。 14、生物传感器敏感膜的成膜方法通常有几种?说出其中一种的制作过程。 15、生物传感器在发酵生产中有何重要意义,举例说明。 16、简述搅拌周线速度(πND )搅拌液流速度H 搅拌循环量Q L 对发酵缸比拟放大的影响。 1 2 p v

计算题|: 1、某通风发酵罐直径=液柱高度=2m N=2.0/s=120r/min 螺旋浆搅拌D i=0.33D=0.66m 通风比=0.5m3/m3minρ=1000kg/m3μ=0.001 牛.秒/m2求pg 2、某细菌醪发酵罐——牛顿流体 罐径=1.8米 园盘六弯叶涡轮直径D=0.60m,一只涡轮 罐内装器块标准挡板 搅拌四转速N=168转/分 通气量Q=1.42m3/分(罐内状态流量) 罐压ρ=1.5绝对大气压 醪液粘度:μ=1.96×10-3牛·秒/㎡ 醪液密度:ρ=1020kg/m3 求:Pg 3、有一个5m3生物反应器,罐径为1.4m,装液量为4m3,液深 为 2.7m,采用六弯叶涡轮搅拌器,叶径为0.45m,搅拌转速N=190r/min,通风比为1:0.2,发酵液密度为1040kg/m3,发酵液粘度:1.06×10-3Pa·s,现需放大至50 m3罐进行生产,试求大罐尺寸和主要工艺条件(列表) 4、一台连续灭菌设备,培养液流量为18m3/小时,发酵罐装 料36m3,原始污染度为105个/ml,要求灭菌度Ns=10-3个/罐,灭菌温度为398开(此温度下K=11/分,求维持时间ι和维持罐容积)

双水相萃取技术

双水相萃取技术 D09生物张燊睿092203112 内容提要:本文主要叙述双水相萃取技术的概念,原理,操作,未来发展方向以及在生物、食品工业中的应用。 Abstract:This paper mainly describes the two aqueous phase extraction technology concept, principle, operation, the future development direction as well as in the biological, food industry application 关键词:萃取、分离、双水相体系、提取、生物分离、未来发展、亲和作用。 引言:随着基因工程、蛋白质工程、细胞培养工程、、代谢工程等高新技术研究工作的广泛的开展,各种高附加值得食品生化新产品不断涌现,对食品、生化等分离技术提出了越来越高的要求。包括精馏、吸取、萃取、蒸发、结晶在内传统的分离技术的三大特点:分离过程伴随有相的变化;筛分过程不能实现分子级别的分离;精制过程成本极高,这些特征对于节约能源、生物分离、环境保护、资源开发、替代能源、高纯材料等当代化学工程与科学技术不相适应。围绕以上几个问题的讨论就构成了分离技术研究与发展的主流,即新型分离技术产生的背景。 双水相系统:基因工程产品如蛋白质和酶往往是胞内产品,需经细胞破碎后才能提取、纯化,细胞颗粒尺寸的变化给固-液分离带来了困难,同时这类产品的活性和功能对pH值、温度和离子强度等环境因素特别敏感。由于它们在有机溶剂中的溶解度低并且会变性,因此传统的溶剂萃取法并不适合。采用在有机相中添加表面活性剂产生反胶束的办法可克服这些问题,但同样存在相的分离问题。当两种聚合物、一种聚合物与一种亲液盐或是两种盐(一种是离散盐且另一种是亲液盐)在适当的浓度或是在一个特定的温度下相混合在一起时就形成的。 例如用聚乙二醇(PEG Mr为6000)/磷酸钾系统从大肠杆菌匀浆中提取β-半乳糖苷酶。这是一个很有前途的新的分离方法,特别适用于生物工程得出的产品的分离。 一.双水相萃取原理: 双水相萃取技术又称水溶液两相分配技术(partition of two aqueoue phase system)近年来发现的、引人注目的、极有前途的新型分离技术。早在1896年,荷兰微生物学家Beijerinck[1]发现,把明胶与琼脂或明胶与可溶性淀粉溶液混合时得到一种不透明的混合溶液,静止后风味两相,上相含大部分水,下相含大部分琼脂,而两相的主要成分都是水,人们把这种现象称为聚合物的不相溶性,由此产生了双水相萃取。1955年,瑞典伦德大学的Albertsson[2]首次利用双水相技术从单细胞藻类中分离淀粉核,从此开创了双水相分配技术。1979年德国GBF 的Kula和Kroner等[3]水相体系用于提取酶和蛋白质,使胞内酶提取过程大为改善。几十年来,国内外的研究者们已经就双水相分配技术的各个方面展开了系统的研究,包括新型双水相体统的开发,成相机理研究、系统物性的测定、热力学性质的研究生物大分子及小分子活性物质的分配、萃取工艺流程的设计、工业化大生产中的应用以及聚合物的回收等等,并取得很大进展。 双水相萃取的聚合物不相容性:根据热力学第二定律,混合是熵增过程可以自发进行,但分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大

双水相萃取实验

一、双水相系统的相图绘制 1.实验目的 了解制作双水相系统的相图的方法,加深对相图的认识。 2.实验原理 相图是研究两水相萃取的基础,双水相形成条件和定量关系常用相图来表示。图1是典型的高聚物-高聚物-水双水相体系的直角坐标相图,两种聚合物A、B以适当比例溶于水就会分别形成有不同组成、度的两相,上相组成用T点表示,下相组成用B点表示,由图1可知上下相所含高聚物有所偏重,上相主要含B,下相主要含A。曲线TCB称为结线,直线TMB称为系线。结线上方是两相区,下方为单相区,若配比取在曲线上,则混合后,溶液恰好从澄清变为混浊。组成在系线上的点,分为两相后,其上下相组成分别为T和B,T、B量的多少服从相图的杠杆定律。即T和B相质量之比等于系线上MB与MT的线段长度之比。又由于两相密度相差很小,故上下相体积之比也近似等于系线上MB与MT线段长度之比。 图1 A-B-水双水相体系相图 O aqueous two-phase system Figure 1 The phase diagram of the A-B-H 2 3.实验器材和试剂 (1)器材:电子台秤,漩涡混合器,大试管,滴定管,密度计,温度计。(2)试剂:聚乙二醇,硫酸铵,硫酸镁。 4.操作方法 (1)溶液的配制 配制40%的盐(硫酸铵或硫酸镁)溶液 配制40%的聚乙二醇溶液,液体聚乙二醇可用纯溶液。 (2)相图的制作

精确称取一定质量(0.7000g 左右)PEG 溶液于大试管中,按表1所列第1列数据,加入0.5mL 去离子水,用滴定管缓慢滴加已配好的40%的盐溶液,并不断在漩涡混合器上混合,观察溶液的澄清程度,直至试管内液体出现浑浊为止。记录盐溶液的加量(g)。然后,按表格所列第2列数据加入水,溶液澄清,继续向试管中滴加盐溶液并不断混匀,直至再次达到浑浊,如此反复操作。计算每次达到浑浊时,PEG 和盐在系统总量中的质量分数,将实验数据填入表中,以PEG 的质量分数为纵坐标,某种盐的质量分数为横坐标作图,即得到一条双节线的相图。 表1相图制作表 编 号 水 /g (NH 4)2SO 4溶液加量/g 纯(NH 4)2SO 4累计量/g 溶液累计总量/g (NH 4)2SO 4质量分 数/% PEG 质量分数/% 1 0.5 3.1315 0.895 4.3786 20.4 4.79 2 0.3 2.1792 1.5186 5.9511 21.85 3.02 3 0.3 2.0456 2.1 9.2867 22.65 2.26 4 0.3 3.1372 3.0 12.6738 23.68 1.65 5 0.5 6.0769 4.7 19.3276 24.52 1.08 6 0.5 6.1909 6.5 26.0138 25.02 0.8 7 0.5 6.8585 8.5 33.4596 25.32 0.62 根据以上数据以(NH 4)2SO 4质量分数为横坐标,以PEG 质量分数为纵坐标即可做出相图。 二、双水相系统比例的选择 根据相图,选择五个成相比例。 三、蛋白酶酶活标准曲线的绘制—— Folin 酚法或紫外分光光度法 PEG4000与MgSO4双水相图 y = 0.0995x 2 - 5.3887x + 73.334 2012345 6 20 21 22 2324 25 26 MgSO4% P E G 4000%

第七章 双水相萃取

第七章双水相萃取 第一节概述 基因工程产品如蛋白质和酶往往是胞内产品,需经细胞破碎后才能提取、纯化,细胞颗粒尺寸的变化给固—液分离带来了困难,同时这类产品的活性和功能对pH值、温度和离子强度等环境因素特别敏感,由于它们在有机溶剂中的溶解度低并且会变性,而且大部分蛋白质分子有很强的亲水性,不能溶于有机溶剂中,因此传统的溶剂萃取法并不适合。采用在有机相中添加表面活性剂产生反胶束的办法可克服这些问题,但同样存在相的分离。因此基因工程产品的商业化迫切需要开发适合大规模生产的、经济简便的、快速高效的分离纯化技术。其中双水相萃取技术,又称水溶液两相分配技术是近年来出现的引人注目、极有前途新型分离技术。双水相萃取就是针对生物活性物质的提取所开发的一种新型液一液萃取分离技术。 双水相萃取法的特点是能够保留产物的活性,整个操作可以连续化,在除去细胞或细胞碎片时,还可以纯化蛋白质2~5倍,与传统的过滤法和离心法去除细胞碎片相比,无论在收率上还是成本上都要优越得多见表11.1所示。双水相萃取法和传统的酶粗分离方法(如 盐析或有机溶剂沉淀等)相比也有很大的优势,如以 -半乳糖苷酶为例,用沉淀或双水相萃 取纯化的比较见表11.2。除此以外,处理量相同时,双水相萃取法比传统的分离方法,设备需用量要少3~10倍,因此已被广泛地应用在生物化学、细胞生物学和生物化工领域,进行生物转化、蛋白质、核酸和病毒等产品的分离纯化和分析等。用此法来提纯的酶已达数十种,其分离过程也达到相当规模,如甲酸脱氢酶的分离已达到几十千克湿细胞规模,半乳糖苷酶的提取也到了中试规模等。 近年来又进行了双水相萃取小分子生物活性物质,如红霉素、头孢菌素C、氨基酸的研究和亲和双水相萃取的研究,大大扩展了应用范畴并提高了选择性;使双水相萃取技术具有更大的潜力和宽阔的前景。 双水相萃取现象最早是1896年由Beijerinck在琼脂与可溶性淀粉或明胶混合时发现的这种现象被称为聚合物的“不相溶性”。本世纪60年代瑞典Lund大学的AlbertssonPA及其同事们最先提出双水相萃取技术并做了大量的工作。70年代中期西德的KulaMR和KronerKH 等人首先将双水相系统应用于从细胞匀浆液中提取酶和蛋白质,大大改善了胞内酶的提取效果。虽然双水相技术在应用方面取得了很大的进展,但几乎都是建立在实验基础上,至今还没有一套比较完善的理论来解释生物大分子在体系中的分配机理。1989年,Diamond等以Ftory—Huggins理论为基础,推导出生物分子在双水相体系中的分配模型,但尚有局限性,仍需继续探索,不断完善。 双水相萃取技术真正工业化的例子也很少,其原因是成本较高,使它在技术上的优势被削弱。双水相萃取中,原材料成本占了总成本的85%以上并且总成本随生产规模的扩大而增加很多。因此产业化成了问题,若要发挥其技术优势,降低原材料成本是关键。合成价格低廉并且具有良好的分配性能的聚合物及将其从后续的操作过程中回收是双水相萃取技术研究中的一个主要方向。 一、双水相的形成 在聚合物—盐或聚合物—聚合物系统混合时,会出现两个不相混溶的水相,典型的例子如在水溶液中的聚乙二醇(PEG)和葡聚糖,当各种溶质均在低浓度时,可以得到单相匀质液体,但是,当溶质的浓度增加时,溶液会变得浑浊,在静止的条件下,会形成两个液层,实际上是其中两个不相混溶的液相达到平衡,在这种系统中,上层富集了PEG,而下层富集了葡聚糖。

双水相萃取

实训1 双水相萃取相图的制作 一、实训目的 1. 学习双水相分离萃取的原理和方法 2. 学习双水相萃取相图的制作 二、实训原理 双水相萃取法是利用物质在互不相容的两个水相间分配系数的差异来进行萃取的方法。 两水相的形成:高聚物与无机盐在水中由于盐析的作用会形成两个相,如PEG 与硫酸盐或碱性磷酸盐。两种亲水性高聚物在水中由于聚合物的不相容性也会形成两个相。但是它们只有达到一定的浓度时,才能形成两相,双水相形成的定量关系可用相图来表示。 相图是一根双节线, 把均匀区和两相区分隔开来。 当成相组分的配比取在:线的下方时,为均相区; 曲线的上方时,为两相区;在曲线上,则混合后,溶液恰好从澄清变为浑浊。 相图中TMB 称为系线;T 代表上相组成;B 代表下相组成;同一条系线上各点分成的两相具有相同的组成,但体积比不同。 V T / V B = BM / MT 三、实训器材、试剂、材料 1.器材:试管,离心机,天平,离心管,三角瓶,滴定管。 2.试剂:聚乙二醇2000(PEG2000),硫酸铵。 四、实训操作步骤 1.PEG2000(NH 4)2SO 4双水相体系相图的测定 (1)取10%(g/ mL )PEG2000溶液10mL 于三角瓶中。 (2)用40%(g/mL )(NH 4)2SO 4溶液装入滴定管中滴定至三角并中溶液出现浑浊,记录)NH4)2SO 4溶液消耗的体积。加入1mL 水使溶液澄清,继续用(NH 4)2SO 4溶液滴定至浑浊,重复7~8次,记录每次(NH 4)2SO 4溶液消耗的体积,计算每次出现浑浊时体系中PEG2000和(NH 4)2SO 4的浓度(g/mL )。 (3) 以(NH 4)2SO 4的浓度(g/mL )为横坐标,PEG2000的浓度(g/mL )为纵坐标,绘制PEG2000- (NH 4)2SO 4双水相体系相图。 2. 相图制作表 10%PEG2000 10mL 温度T=20℃ PEG2000 % (NH 4)2SO 4 % 两相 均相

双水相萃取研究(论文)

双水相萃取技术 姓名:小行星学号: 20128888专业:化工工艺 摘要:双水相萃取是一种新型的萃取分离技术,本文介绍了双水相体系的形成 及特点,重点介绍了双水相萃取技术的应用和双水相萃取的主要设备, 对双水相萃取技术应用前景及展望 关键字:双水相萃取分离技术应用展望 1、引言 溶剂萃取法是分离技术中最重要的方法之一。传统的溶剂萃取分离是依据被分离物质在两个互不相溶液相中的溶解性不同而达到分离目的。一般的萃取体系包括有机相和水相两部分,迄今为止,已有若干种分类方法。随着近年来分离技术在生命科学、天然药物提纯及各类抗生素药物等方面应用的迅速发展,新型的萃取技术应运而生。例如对于生物物质来说,分离的对象复杂,既包括可溶物,如蛋白质和核酸,也包括悬浮的小颗粒,如细胞器和整个细胞;由于生物物质极易变性和失活,传统的有机相和水相的两相萃取不能解决生物物质失活等问题,给分离带来很大的难度,而双水相萃取技术能够很好的解决这一难题。 双水相萃取(Aqueoustwo-phase extraction, ATPE)[1]是两种水溶性不同的聚合物或者一种聚合物和无机盐的混合溶液,在一定的浓度下,体系就会自然分成互不相容的两相,被分离物质进入双水相体系后由于表面性质、电荷间作用和各种作用力(如憎水键、氢键和离子键)等因素的影响,在两相间的分配系数K不同,导致其在上下相的浓度不同,达到分离目的,这种现象在1896年被 B eijerinck首次发现,随后双水相萃取技术作为一种新型的分离技术日益受到重视,与传统的萃取及其他分离技术相比具有操作条件温和、处理量大、易于连续操作等优点,随着生物、医药等行业的蓬勃发展,从而使双水相萃取技术能越来越广泛应用于生物工程、药物分析和金属分离等方面。 2、双水相体系

双水相萃取技术分离纯化蛋白质的研究(精)

化学与生物工程 2006,Vol.23N o.10 Ch emistry &B ioengin eerin g 7 收稿日期:2006-04-17 作者简介:郑楠(1982-,女,陕西人,硕士研究生,主要从事生化制药方面的研究。E -mail:zheng nan1982@https://www.360docs.net/doc/2911343092.html, 。 双水相萃取技术分离纯化蛋白质的研究 郑楠,刘杰 (南昌大学环境科学与工程学院,江西南昌330029 摘要:阐述了双水相萃取原理,详细分析了影响双水相萃取分离纯化蛋白质的各种因素,探讨了双水相萃取技术在蛋白质分离纯化中的应用并对其前景进行了展望。 关键词:双水相;蛋白质;分离纯化;影响因素 中图分类号:T Q 02818 Q 512+11 文献标识码:A 文章编号:1672-5425(200610-0007-03 液-液萃取技术是化学工业中普遍采用的分离技术之一,在生物化工中也有广泛的应用。然而,大部分生物物质是有生物活性的,需要在低温或室温条件下进行分离纯化,而采用传统萃取技术无法完成。双水相萃取就是考虑到这种现状,基于液-液萃取理论并考虑保持生物活性所开发的一种新型液-液萃取分离技术。

与传统的液-液分离方法相比,双水相萃取技术分离纯化蛋白质具有以下优势:体系含水量高,可达80%以上;蛋白质在其中不易变性;界面张力远远低于水-有机溶剂两相体系的界面张力,有助于强化相际间的质量传递;分相时间短,一般只需5~15min;易于放大和进行连续性操作;萃取环境温和,生物相容性高;聚合物对蛋白质的结构有稳定和保护作用等。正是由于双水相萃取技术的诸多优势,现已被广泛用于蛋白质、核酸、氨基酸、多肽、细胞器等产品的分离和纯化。 1 双水相萃取原理 双水相体系是指某些高聚物之间或高聚物与无机盐之间,在水中以适当的浓度溶解后形成的互不相溶的两相或多相水相体系。高聚物-高聚物-水体系主要依靠高聚物之间的不容性,即高聚物分子的空间阻碍作用,促使其分相;高聚物-盐-水体系一般认为是盐析作用的结果。 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,不同之处在于萃取体系的性质差异。当生物物质进入双水相体系后,由 于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等的存在和环境的影响,使其在上、下相中的浓度不同。分配系数K 等于两相中生物物质的浓度比,由于蛋白质的K 值不相同(大致在011~10之间,因而双水相体系对各类蛋白质的分配具有较好的选择性。 2 双水相萃取中影响蛋白质分配的因素 211 聚合物的分子量 同一类聚合物的疏水性随分子量的增大而增强[1] ,当聚合物的分子量减小时,蛋白质易分配于富含该聚合物的相。如在PEG -Dex tr an 系统中,PEG 的分子量减小或Dextran 的分子量增大都会使分配系数变大,相反PEG 的分子量增大或Dex tran 的分子量减小会使分配系数变小。这是由于PEG 分子量增大时,它的疏水性显著增强,使蛋白质在上相的表面张力增大,从而易于向下相

双水相萃取实验设计方案

双水相萃取地豆蛋白实验设计方案 史庚林 一、引言 地豆又名金果,长寿果、长果、番豆、金果花生、无花果、地果、地豆、唐人豆、花生豆、落花生和长生果。花生滋养补益,有助于延年益寿,所以民间又称之为“长生果”,并且和黄豆一同被誉为“植物肉”、“素中之荤”。花生的营养价值比粮食高,可以与鸡蛋、牛奶、肉类等一些动物性食物媲美。它含有大量的蛋白质和脂肪,特别是不饱和脂肪酸的含量很高,很适宜制作各种营养食品。 双水相萃取系统通常是由水溶性的两种聚合物或一种水溶性聚合物与一种盐和水构成的三组分双相体系。近年来, 该萃取技术受到研究者的青睐, 尤其是它对蛋白质、酶、核酸等生物活性物质的分离纯化等方面受到广泛重视, 双水相萃取在提取生物活性物质方面有如下优点: 含水量高;分相时间短; 界面张力小; 不存在有机溶剂残留问题; 大量杂质能与所有固体物质一同除去; 易于工程放大和连续操作 ; 更重要的是双水相萃取避免了传统液- 液萃取中生物活性物质与有机溶剂的直接接触, 保护了其活性, 有研究表明聚合物对颗粒或生物分子的结构不但没有破坏作用, 反而有稳定作用。 本实验以PEG/ ( NH 4) 2 SO 4 双水相体系为考察对象, 比较了不同浓度的PEG 和 ( NH 4 ) 2 SO 4 组成的双水相体系对地豆蛋白的萃取效果, 并考察了影响萃取效果 的各种因素。 二、实验仪器与试剂 1 仪器:离心机,电热恒温水浴锅,分光光度计,磁力搅拌器,电子天平,超声波仪 2 试剂:PEG( 分子量分别为600、1000,2000、4000、6000) , 硫酸铵,Nacl, NaH 2PO 4 ,K 2 HPO 4 ,考马斯亮蓝(G-250) 三、方法 1 粗蛋白的提取 1.1 用前面超声波处理的方法提取蛋白质1.2 用考马斯亮蓝法测定蛋白质的含量

双水相萃取技术

三、双水相萃取 3.1 双水相萃取的原理及特点 3.1.1 双水相萃取的原理 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。 3.1.2 双水相萃取的特点 双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min; (3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题; (5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。 3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用 用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。比活率为原发酵液的1.5倍,蛋白酶在水相中的收率高于60%。通过向萃取相(上相)中加进适当浓度的(NH4)2SO4可达到反萃取。实验结果表明,随着(NH4)2SO4浓度的增加,双水相体系两相间固体物析出量也增加。固体沉淀物既可干燥后生产工业级酶制剂,也可将固体物加水溶解后用有机溶剂沉淀法制造食品级酶制剂. Harris用双水相体系从羊奶中纯化蛋白,研究了牛血清清蛋白(OSA)、牛酪蛋白、β-乳球蛋白在PEG/磷酸盐体系中的分配以及PEG相对分子质量、pH值和盐的加入对3种蛋白分配的影响。实验结果表明。增加NaCl浓度,可提高分配系数,最佳pH为5。对OSA和牛酪蛋白,可得到更高的分配系数。在含有疏水基葡聚糖中,蛋白质和类囊体薄膜泡囊的分配研究表明,苯甲酰基葡聚糖和戊酰基葡聚糖具有疏水性。疏水基影响氨基酸、蛋白质和薄膜泡囊在双水相体系中的分配,在只有磷酸盐缓冲溶液的PEG8000/葡聚糖双水相体系中,大部分β-半乳糖苷酶被分配在上相,但在下相中加入少量的苯甲酰基葡聚糖(取代程度为0.054)或戊酰基葡聚糖(取代程度为0.12)时,β-半乳糖苷酶的分配系数就降低了100倍。在对牛血清清蛋白、溶菌酶、脂肪酶和β-乳球蛋白的分配进行的观察中发现具有相似的现象。类囊体薄膜泡囊的分配受疏水基的影响特别大,薄膜泡囊被分配在含有疏水基的一相中。在含有N,N-二甲基甲酰胺的聚合物双水相中,利用逆流分配可对玉米醇溶蛋白进行分级分离。Miyuki在PEG/K3PO4双水相体系中用两步法对葡糖淀粉酶进行了萃取纯化。用第一步萃取后含有酶的下相和PEG组成双水相作为第二步萃取体系,称作两步法。葡糖淀粉酶的最佳分配条件是PEG4000(第一步)、PEG1500(第二步),pH=7,纯化系数提高了3倍。

双水相萃取的特点

双水相萃取的特点 双水相萃取是一种可以利用较为简单的设备, 并在温和条件下进行简单操作就可获得较高收率和纯度的新型分离技术。与一些传统的分离方法相比, 双水相萃取技术具有以下独有的特点。 ( 1) 两相间的界面张力小, 一般为10- 7—10- 4mN·m- 1 ( 一般体系10- 3—2×10- 2mN·m- 1 ) ,因此两相易分散, 而且它比一般的有机萃取两相体系界面张力低的多, 这样有利于强化相际间的物质传递。 ( 2) 操作条件温和, 由于双水相的界面张力大大低于有机溶剂与水相之间的界面张力, 整个操作过程可以在常温常压下进行, 对于生物活性物质的提取来说有助于保持生物活性和强化相际传质。 ( 3) 双水相体系中的传质和平衡速度快, 回收率高, 分相时间短, 传质过程和平衡过程速度均很快, 自然分相时间一般为5—15min, 因此相对于某些分离过程来说, 能耗较低, 而且可以实现快速的分离。 ( 4) 大量杂质能够与所有固体物质一起去掉, 与其他常用固液分离方法相比, 双水相分配技术可省去1—2 个分离步骤, 使整个分离过程更经济。 ( 5) 含水量高, 一般为75%—90% , 在接近生理环境的体系中进行萃取, 不会引起生物活性物质失活或变性。 ( 6) 一般不存在有机溶剂的残留问题, 现已证明形成双水相的聚合物( 如PEG) 对人体无害, 可用于食品添加剂、注射剂和制药, 因此

对环境污染小。 ( 7) 聚合物的浓度、无机盐的种类和浓度, 以及体系的pH 值等因素都对被萃取物质在两相间的分配产生影响, 因此可以采用多种手段来提高选择性和回收率。 ( 8) 易于连续化操作, 设备简单, 并且可直接与后续提纯工序相连接, 无需进行特殊处理。例如可以采用高分配系数和高选择性的多级逆流分配操作。 ( 9) 分配过程因素较多, 可以采取多种手段来提高分配选择性或过程收率。

双水相萃取的应用

双水相萃取在蛋白质分离纯化中的应用双水相萃取技术( Aqueous two-phase extraction ,ATPE) 是指亲水性聚合物水溶液在一定条件下形成双水相,由于被分离物在两相中分配的不同,便可实 现分离;其双水相体系可由高聚物/高聚物双水相体系、高聚物/无机盐双水相体系、低分子有机物/无机盐双水相体系、表面活性剂双水相体系等组成,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。同时,双水相萃取技术作为一种新型的分离技术日益受到重视;此方法可以在室温环境下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高【1】。 1、近年来双水相萃取技术研究综述概述 由于双水相萃取技术在生物工程、医药分析、金属及一些煤矿等化学分析中具有重要作用,因此也一直是分离提纯领域研究的热点。特别是在近几年,随着生物工程技术、生物化学技术、高分子技术的发展,双水相萃取技术的研究也取得了较快的发展。 2008年,郭宪厚【2】对双水相萃取技术进行了综述,阐述了双水相萃取技术的基本原理、特点、工艺流程、物质分配平衡的影响因素及其在生命科学,复杂中药体系的分离以及重金属回收等方面的应用,并对双水相萃取技术的发展前景作了展望。2009年,徐长波、王巍杰【3】对双水相萃取技术进行了综述,并发表了《双水相萃取技术研究进展》,以此综述了双水相萃取技术基本原理、特点、应用及热力学模型,并对双水相萃取技术存在的问题和发展趋势作了论述。2010年,马春宏、朱红【4】等,发表了《双水相萃取技术的应用研究进展》,对双水相萃取技术的具体应用进行了相关综述,简单介绍了双水相萃取技术及其原理、特点, 综述了双水相体系在生物工程( 其中包括萃取分离抗生素、酶、分离提纯蛋白质和萃取其他生物活性物质) 、药物分析和金属分离等方面的应用。2010年,姜大雨、朱红【5】对离子液体双水相萃取的应用研究进行了综述,指出了离子液体双水相的研究取得的一些阶段性的成果,介绍了离子液体双水相体系及其优点, 综述了离子液体双水相体系在生物工业分析、药物分析和金属分离等方面的应用,同时展望了离子液体双水相体系的应用前景。2010年,谭志坚、李芬芳、邢建敏

相关文档
最新文档