(完整版)断裂力学试题

(完整版)断裂力学试题
(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案

一、简答题(本大题共5小题,每小题6分,总计30分)

1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法.

2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展.

3、应变能密度:r

S

W =

,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。

4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。

5、表观启裂韧度,条件启裂韧度,启裂韧度。

二、推导题(本大题10分)

D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。

积分路径:塑性区边界。

AB 上:平行于1x ,有s T dx ds dx σ===212,,0

BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分

δ

σσσσΓ

s D A s D

B s B

A s BD A

B i i

v v v v dx x u

T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1

122112212 5分

三、计算题(本大题共3小题,每小题20分,总计60分)

1、利用叠加原理:微段→集中力qdx

→dK =

?0

a

K =?Ⅰ 10分

A

令cos cos x a a θθ==,cos dx a d θθ=

?111sin ()

10

cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →.

?12()a a K -==Ⅰ 10分

2、边界条件是周期的:

a. ,y x z σσσ→∞==.

b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内

0,0y xy στ==

c.所有裂纹前端y σσ> 单个裂纹时

Z =

又Z 应为2b 的周期函数

?sin

z

Z πσ=

10分

采用新坐标:z a ξ=-

?sin

()a Z π

σξ+=

当0ξ→时,sin

,cos

1222b

b

b

π

π

π

ξξξ==

?sin

()sin

cos cos sin

22222a a a b

b

b

b

b

π

π

π

π

π

ξξξ+=+

cos sin

222a a b

b

b

π

π

π

ξ=

+

222

2[sin

()](

)cos 2

cos

sin

(sin

)2222222a a a a a b

b

b

b

b

b

b

π

π

π

π

π

π

π

ξξξ+=++

22[sin

()](sin

)2

cos

sin

22222a a a a b

b

b

b

b

π

π

π

π

π

ξξ?+-=

sin

22cos sin 222a

b Z a a

b b b

ξπσπξππ→?=

sin

2lim 22tan 21cos sin 222a

a b K Z b b a a

b b b

ξπσππξσππ→?==

=Ⅰ

2tan 2b a a

a b

πσππ= 10分 3、当复杂应力状态下的形状改变能密度等于单向拉伸屈服时的形

状改变能密度,材料屈服,即:

2222122331()()()2s σσσσσσσ-+-+-=

对于Ⅰ型裂纹的应力公式:

122

()22x y

x y xy σσσσστσ+-?=

±+?? 12

cos [1sin ]

222r σθθσπ??=±??

10分

30σ=(平面应力,薄板或厚板表面) 2

22

2

cos [13sin ]222

s K r θθ

πσ?=±Ⅰ

10分

--平面应力下,Ⅰ型裂纹前端屈服区域的边界方

程.

当0θ=时,2

01()2s

K r πσ=Ⅰ

第3页 共3页

一、 简答题(80分)

1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些

类型裂纹的受力示意图。(15分)

2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分)

3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15)

4. 简述脆性断裂的K 准则及其含义?(15)

5. 请简述疲劳破坏过程的四个阶段?(10)

6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分)

7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和

b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分)

二、 推导题(10分)

请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式?

三、 证明题(10分)

定义J 积分如下, (/)J wdy T u xds Γ

=-????

u r r

,围绕裂纹尖端的回路Γ,始

于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,

T 为作用在路程边界上的力,u 是路程边界上的位移矢量,ds 是路程曲线的弧元

素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。

四、 简答题(80分)

1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分)

答:

按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

I 型-张开型 II 型-滑开型 三型-撕开型

2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分)

答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率。

对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。对金属材料,能量平衡理论这时需要更广泛的概念。这时,抵抗裂纹扩展能力=表面能+塑性变形能,对金属材料这是常数。

3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15)

答:各种类型裂尖应力和位移场可表示为

)(2)I ()I (θπσij ij f r K I =

3,2,1,=j i

)()I ()I (θπ

i i g r

K u I

= 3,2,1=i

若角标II, III ,代表II 型或III 型裂纹。可见应力场有如下三个特点:

1)0=r 处,应力趋于无穷大,即在裂尖出现奇异点; 2)应力强度因子在裂尖为有限量;

3)裂尖附近的应力分布是r 和θ的函数,与无限远处应力和裂纹长无关。

由上述裂尖应力场的特点可知,用应力为参量建立如传统的强度条件失去意义,但应力强度因子是有限量,它不代表某一点的应力,而代表应力场强度的物理量,用其作为参量建立破坏条件是合适的。 应力强度因子一般写为:

a Y K πσ=I

4. 简述脆性断裂的K 准则及其含义?(15) 答:

C K K 11=

z

为应力强度因子准则。其中,1K 为裂纹尖端的应力强度因子,是表示裂纹尖端应力场强度的一个参量,由载荷及裂纹体形状和尺寸决定,可以用弹性理论的方法进行计算;C K 1称为材料的平面应变断裂韧度,是材料具有的一种机械性能,表示材料抵抗脆性断裂的能力,由试验测定。该式称为脆性断裂的K 准则,表示裂尖的应力强度因子1K 达到C K 1时,裂纹失稳扩展。 当C K K 11<时,裂纹稳定;当C K K 11>时,裂纹失稳扩展。

5. 请简述疲劳破坏过程的四个阶段?(10) 答: 1)裂纹成核阶段

2)微裂纹扩展阶段 3)宏观裂纹扩展阶段 4)断裂阶段

6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分)

解:裂纹尖端的主应力为

应用Von-Mises 屈服条件

2222122331()()()2x σσσσσσσ-+-+-=

代入可得

在平面应变状态下,沿厚度方向约束所产生的是拉应力Z σ,在三向拉伸应力作用下 材料不易屈服而变脆

12312(1sin )22(1sin )

22()22θθσθθσθσγσσγ?

=+??

?

=-??

?=+=??22221()cos [(12)3sin ]222

I S K v θθ

γπσ=

-+

7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和

b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 答:

一)材料1的断裂韧度不一定比材料2的断裂韧度高。 二)下面简述断裂力学与材料力学设计思想的差别:

断裂力学和材料力学的研究对象不同,材料力学研究完整的材料,而断裂力学则研究带裂纹的材料。虽然断裂力学是材料力学的发展和补充,但是断裂力学与材料力学的设计思想不同,其差别可从一下几方面来看: 1)静载荷情况

传统的强度条件要求最大计算应力小于材料强度指标,即:

s s n σ

σ≤max (屈服),s σ为屈服应力

b

b n σ

σ≤max (破坏),b σ为强度极限

而断裂力学的裂纹失稳准则是:n

K

K IC I ≤

I K -裂纹尖端的应力强度因子

2)循环载荷情况

传统的疲劳设计,是用光滑试件作S -N 曲线,求出下界限应力1-σ疲劳极限。如果最大工作应力满足下式

1

1max --≤n σσ

1-n 为循环载荷下的安全系数,并认为凡是有缺陷的构件都不能应用。

断裂力学认为:含裂纹构件,只有裂纹未达到临界长度仍可使用;在循环载荷作用下,裂纹先缓慢扩展,直至达到临界长度,构件才失稳破坏。并选用指标dN

da

——作用载荷每循环一周裂纹的扩展量,代表材料抵抗裂纹扩展的能力。

3)腐蚀介质下的情况

综上所述,断裂力学出现后,对宏观断裂有了进一步认识,对传统设计思想进行了改善与补充。

五、 推导题(10分)

请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 答:

最大应力准则的基本假定: 1)裂纹沿最大周向应力方向开裂;

2)在该方向上周应力达到临界值时,裂纹开始扩展。 根据该假定有,

0=??θ

σθ

, 02

2

σθ

sin 3)cos 1(222cos

II

I K K r

-+=

带入上面两式

并利用 1cos sin 22=+θθ,可求得开裂角的表达式

2

222420983arccos I I

I I I

I I I I ++±=K K K K K K θ 对于纯I 型,0=I I K ,00=θ,故根号前必须取正,则

2

222420983arccos I I

I I I

I I I I +++=K K K K K K θ

六、 证明题(10分)

1)证明J 积分值与选择的积分路程无关;2)说明J 积分的局限性。

答:1)由弹性力学公式

ij i i n T σ=, 2,1,=j i

i n ——弧元素法线的方向余弦。

利用2dx dy =,1dx dx =,带入?Γ

???

-= )(ds x

wdy J

可以得到 ?Γ

???

-= 1

2)(ds x u n wdx J i

ij i σ i u ——位移分量。

由图(1)可知,ds dx n /21=,ds dx n /12-= 所以有,ds n ds n dx j j 112.δ==

则, ds n x u w J j i

ij j ?Γ

???

-= 1

1)(σδ 作一封闭曲线*Γ,分四段1Γ、2Γ、3Γ、4Γ,如图(2),故*Γ内无奇异点。 由格林公式:?????-??=+A

s

dx dx x Q

x Q Qdx Pdx ))(

)(212

121 令0=Q ,同时ds n dx .21-=,ds n dx .12=,则格林公式可改写成

??

???=A

j

s

j dA x P ds Pn 则线积分

dA x u x x w dA x u w x ds n x u w A i ij j i ij j A j j i ij j ?????

???

? ???????-??=???? ?????-??=???-Γ

)()(1111 11*

σσδσδ (a )

利用:

ij ij w σε=??,)(21i

j j i ij x u

x u ??+??=ε及jji ij σσ= 可以推出 11111)()(21x u x x u x x u x u x x w x w i j ij i ij

j

i j j i ij ij ij ????-????

=??????????+????=????=??σσσεε 利用平衡方程0,=j ij σ,可得

)(1

1x u x x w i ij j ????

=??σ 将上式带入(a)式,有

0)(*

1

1=???-?

Γ

ds n x u w j i

ij j σδ 即0)(* =???-=?Γ

ds x

T wdy J 注意到,04

3

2

1

* =+++=?

?

?

?

ΓΓΓΓΓJ

又因为在路径2Γ、4Γ上,0=dy ,且由于2Γ、4Γ是自由表面,0= 则有,?

?

?

-

ΓΓΓ=-=33

1

所以积分路径与选择的路线无关。

2)J 积分的局限性主要有:

a )积分中使用了全量理论,

ij ij

w

σε=??,因此不允许卸载; b )用到了)(21i j

j i ij x u x u ??+??=ε,因此必须是小变形;

c )用到了0,=j ij σ,指系统处于静平衡状态。

七、 简答题(70分)

1. 请简述线弹性断裂力学中裂纹尖端应力场的特点?(15)

2. 简述裂纹扩展的能量平衡理论?(15分)

3. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?(10分)

4. 请简述疲劳破坏过程的几个阶段?(5)

5.试简要说明断裂力学与材料力学设计思想的差别? (10分)

八、 推导题(20分)

在I-II 复合型裂纹问题中,裂纹尖端附近周向应力场由下式给出

[]cos(/2)(1cos )3sin /(22)I II K K r θσθθθπ=+-

请简述最大应力准则的基本假定,并根据基本假定推导出开裂角的表达式?

九、 证明题(25分)

定义J 积分如下, (/)J wdy T u xds Γ

=-????

u r r

,围绕裂纹尖端的回路

Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,T 为作用在路程边界上的力,u 是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。

十、 简答题(70分)

1. 请简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 答:裂纹尖端应力场有如下三个特点:

1)0=r 处,应力趋于无穷大,即在裂尖出现奇异点; 2)应力强度因子在裂尖为有限量;

3)裂尖附近的应力分布是r 和θ的函数,与无限远处应力和裂纹长无关。

2. 简述裂纹扩展的能量平衡理论?(15分)

答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率。

对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。对金属材料,能量平衡理论这时需要更广泛的概念。这时,抵抗裂纹扩展能力=表面能+塑性变形能,对金属材料这是常数。

3. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?(10分) 答:按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II

型)和撕开型(III 型)。

4. 请简述疲劳破坏过程的几个阶段?(5) 答: 1)裂纹成核阶段

2)微裂纹扩展阶段 3)宏观裂纹扩展阶段 4)断裂阶段

5.试简要说明断裂力学与材料力学设计思想的差别? (10分) 答:

断裂力学和材料力学的研究对象不同,材料力学研究完整的材料,而断裂力学则研究带裂纹的材料。虽然断裂力学是材料力学的发展和补充,但是断裂力学与材料力学的设计思想不同,其差别可从一下几方面来看: 1)静载荷情况

传统的强度条件要求最大计算应力小于材料强度指标,即:

s

s n σ

σ≤max (屈服),s σ为屈服应力

b

b

n σσ≤

max (破坏),b σ为强度极限

而断裂力学的裂纹失稳准则是:n

K K IC

I ≤

I K -裂纹尖端的应力强度因子

2)循环载荷情况

传统的疲劳设计,是用光滑试件作S -N 曲线,求出下界限应力1-σ疲劳极限。如果最大工作应力满足下式

11max --≤n σσ

1-n 为循环载荷下的安全系数,并认为凡是有缺陷的构件都不能应用。 断裂力学认为:含裂纹构件,只有裂纹未达到临界长度仍可使用;在循环载荷作用下,裂纹先缓慢扩展,直至达到临界长度,构件才失稳破坏。并

选用指标dN

da

——作用载荷每循环一周裂纹的扩展量,代表材料抵抗裂纹扩

展的能力。

3)腐蚀介质下的情况

综上所述,断裂力学出现后,对宏观断裂有了进一步认识,对传统设计思想进行了改善与补充。

十一、 推导题(20分)

在I-II 复合型裂纹问题中,裂纹尖端附近周向应力场由下式给出

[

]cos(/2)(1cos )3sin I II K K θσθθθ=+-

请简述最大应力准则的基本假定,并根据基本假定推导出开裂角的表达式? 答:

最大应力准则的基本假定: 1)裂纹沿最大周向应力方向开裂;

2)在该方向上周应力达到临界值时,裂纹开始扩展。 根据该假定有,

0=??θ

σθ

022

σθ

sin 3)cos 1(222cos

II I K K r

-+=

带入上面两式 并利用 1cos sin 22=+θθ,可求得开裂角的表达式

2

222420983arccos I I

I I I

I I I I ++±=K K K K K K θ 对于纯I 型,0=I I K ,00=θ,故根号前必须取正,则

2

222420983arccos I I

I I I

I I I I +++=K K K K K K θ

十二、 证明题(25分)

定义J 积分如下, (/)J wdy T u xds Γ

=-????

u r r

,围绕裂纹尖端的回路Γ,始

于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,

T 为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元

素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。

答:1)由弹性力学公式

ij i i n T σ=, 2,1,=j i

i n ——弧元素法线的方向余弦。

利用2dx dy =,1dx dx =,带入?Γ

???

-= )(ds x

wdy J

可以得到 ?Γ

???

-= 1

2)(ds x u n wdx J i

ij i σ i u ——位移分量。

由图(1)可知,ds dx n /21=,ds dx n /12-= 所以有,ds n ds n dx j j 112.δ== 则, ds n x u w J j i

ij j ?Γ

???

-= 1

1)(σδ 作一封闭曲线*Γ,分四段1Γ、2Γ、3Γ、4Γ,如图(2),故*Γ内无奇异点。 由格林公式:?????-??=+A

s

dx dx x Q

x Q Qdx Pdx ))(

)(212

121

令0=Q ,同时ds n dx .21-=,ds n dx .12=,则格林公式可改写成

??

???=A

j

s

j dA x P ds Pn 则线积分

dA x u x x w dA x u w x ds n x u w A i ij j i ij j A j j i ij j ????????

? ???????-??=???? ?????-??=???-Γ)()(1111 11*σσδσδ (a )

利用:ij ij w σε=??,)(21i

j

j i ij x u x u ??+??=ε及jji ij σσ= 可以推出 1

1111)()(21x u x x u x x u x u x x w x w i j ij i ij

j

i j j i ij ij ij ????-????

=??????????+????=????=??σσσεε 利用平衡方程0,=j ij σ,可得

)(1

1x u x x w i ij j ????=??σ 将上式带入(a)式,有

0)(*

1

1=???-?

Γ

ds n x u w j i

ij j σδ 即0)(* =???-=?Γ

ds x

wdy J 注意到,04

3

2

1

* =+++=?

?

?

?

ΓΓΓΓΓJ

又因为在路径2Γ、4Γ上,0=dy ,且由于2Γ、4Γ是自由表面,0=T 则有,?

?

?

-

ΓΓΓ=-=33

1

所以积分路径与选择的路线无关。

2)J 积分的局限性主要有:

a )积分中使用了全量理论,

ij ij

w

σε=??,因此不允许卸载; b )用到了)(21i

j

j i ij x u x u ??+??=ε,因此必须是小变形;

c )用到了0,=j ij σ,指系统处于静平衡状态。

十三、 填空(25分,每空1分)

1. 在断裂力学中,按照裂纹受力情况可将裂纹分为三种基本类型,简述均匀各向同性材料的两种裂纹类型的受力特点: Ⅰ

_________________________________________________________________ Ⅱ

_________________________________________________________________

2. 对于有一定塑性的金属材料,应用能量平衡理论时,材料抵抗裂纹扩展

,即

____________________________________________

______________________________________________________________,只有当_______________________________大于代表材料抵抗裂纹扩展能力的常数时,裂纹才失稳扩展。 3.

最大周向应力准则的两个基本假定是:

________________________________

______________________________________________。该假定的缺点是_________________________________________________________________________________________________________________________________________。

4. 常用的计算应力强度因子的方法有____________________、______________________和_________________________。(任意写出三种即可)

5.在复合型断裂准则中,以能量为参数的断裂准则一般包括

____________________________准则和____________________________准则。

6. 经典J 积分守恒性成立的前提条件包括____________________________、___________________________________和______________________________。(任意写出三个即可)

7. 疲劳破坏过程按其发展过程可分为四个阶段,包括裂纹成核阶段、

_____________________、_____________________和______________________。 8. HRR 理论是Hutchinson 、Rice 和Rosengren 应用_______________________以及___________________确定应力和应变的幂次。该理论存在一个重要矛盾是:___________________________________________________________________________。

9. 可以表征材料断裂韧性度量的力学量主要有________________________、_______________________和_______________________________。(任意写出三个即可)

十四、 简答题(55分)

1. 简述脆性材料断裂的K 准则IC I K K =的物理含义以及其中各个量的意义,并结合线弹性断裂力学理论简单讨论K 的适用范围。(15分)

2. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(15分)

3. 请简单推导J 积分与应力强度因子K 以及在M-D 模型中与COD 的关系。(15分)

4. 简述COD 准则及其优缺点。(10分)

十五、 计算题(20分)

某种合金钢在不同的回火温度下,测得的性能如下: 275°C 回火时,21780/s MN m σ=,3

252/IC K MN m =, 600°C 回火时,21500/s MN m σ=,32100/IC K MN m =

设应力强度因子为 1.1I K =,且工作应力为0.5s σσ=,试求两种回火温度下的临界裂纹长度。(20分)

十六、 简答题(本大题共5小题,每小题6分,总计30分)

1、 裂纹的分类如何?

2、 工程上如何处理并列裂纹?

3、 如何利用P-V 曲线确定IC K ?

4、 论述J 积分的两种定义。

5、 影响疲劳裂纹扩展速率的因素有哪些?

二、推导题(本大题共2小题,每小题20分,总计40分)

1、应力强度因子和能量释放率的关系。

2、利用D-B 带状塑性区模型推导J 积分和COD 的关系。

三、计算题(本大题共2小题,每小题15分,总计30分)

1、无限大板中具有长度为2a 的穿透板厚的裂纹表面上,距离为b x ±=处各作用一对集中力。

2、 无限大板中心穿透Ⅲ裂纹。

1题图 2题图

断裂力学考试试题 A 卷答案

一、简答题(本大题共5小题,每小题6分,总计30分)

1、按裂纹的几何类型分:穿透裂纹,表面裂纹,深埋裂纹; 按裂纹的受力和断裂特征分类:张开型(I 型),滑开型(II 型),撕开型(III )。

2、并列裂纹的作用使K Ⅰ下降,工程上偏安全考虑:(1)并列裂纹作为单个裂纹考虑;(2)对于密集的缺陷群,假定它们在空间规则排列,并可把空间裂纹简化成平面裂纹。

3、

P

(1)做切线OA

(2)做割线OPS ,斜率比切线斜率小5% (3)确定P θ

若在5P 前,曲线各点小于5P ,则5P P θ= 若在5P 前,曲线各点小于5P ,则max P P θ=

(4)计算max 1.1P P θ≤满足,则有效,否则加大试件 (5)计算I K ,利用前面给出公式。 (6)计算22.5(

)[,,()]S

K a B W a θ

σ≤-,每项都满足一定要求

满足IC K K θ=否则加大试件(厚度为原厚度1.5倍的试件)

4、(1)回路积分定义:围绕裂纹尖端周围区域的应力、应变和位移所围成的围线积分。(2)形变功率定义:外加载荷通过施力点位移对试件所作的形变功率给出。

5、平均应力,超载,加载频率,温度,腐蚀介质,随机载荷等。

二、推导题(本大题共2小题,每小题20分,总计40分)

1、假设裂纹闭合

3(1sin sin )222y θθθσ=

+

当0θ=,r x =时

,y σ=

.

又31)sin sin ]22

v k θθ

=

+-

当r a x =?-,θπ=时

.

2)v k =

+

应力0y σ→,位移0v →. 10分 在闭合时,应力在a ?那段所做的功为0a

y B vdx σ??

.

2001412)4a a y

B k G vdx k dx K B a a G

σ??+?==+=????ⅠⅠ 平面应力情况:23,1K k G E

μ

μ-=?=+ⅠⅠ 平面应变情况:22

134k G K E

μμ-=-?=ⅠⅠ 2

K G E ?='Ⅰ

21E E

E E μ'=??

?'=?-?

平面应力平面应变

10分

2、D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。

积分路径:塑性区边界。

AB 上:平行于1x ,有s T dx ds dx σ===212,,0

BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 10分

A

δ

σσσσΓ

s D A s D

B s B

A s BD A

B i i

v v v v dx x u

T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1

122112212 10分

三、计算题(本大题共2小题,每小题15分,总计30分)

1、Re Im x Z y Z σ'=-ⅠⅠ

Re Im y Z y Z σ'=+ⅠⅠ Re xy y Z τ'=-Ⅰ

选取复变解析函数:222()Z z b π=-。

边界条件:

a.,0x y xy z σστ→∞===.

b.,z a <出去z b =±处裂纹为自由表面上0,0y xy στ==。 10分

c.如切出xy 坐标系内的第一象限的薄平板,在x 轴所在截面上内力总和为p 。 以新坐标表示:

Z =

?lim ()K Z ξξ→==

Ⅰ 5分

2、根据几何方程和物理方程:

1

xz xz w r x G

τ?=

=? 1yz yz w r y G τ?=

=? 0x y xy z σστσ==== 单元体的平衡方程:

200yz

xz w x y

ττ??+=??=?? 位移函数满足laplace 方程. 所以w 为调和函数.

解析函数性质:任意解析函数的实部和虚部都是解析的.

1

(,)Im ()w x y Z z G

?=Ⅲ

Im Im xz Z w G

Z x x

τ???===??Ⅲ

Ⅲ Im Re yz Z w G

Z y y

τ??===??Ⅲ

Ⅲ 5分 边界条件:

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

ansys断裂力学技巧

Ansys断裂力学 裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。断裂力学就是研究裂纹扩散问题的学科。 12.1 断裂力学的理解 断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。它包含裂纹扩散相应的解析预报和实验结果验证。解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。 在研究中,断裂问题需重点研究的典型参数如下: ●应力强度因子(K I, K II和K III),是断裂的三个基本形式。 ●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。 ●能量释放率(G),它代表裂纹开始和终止处的能量的大小。 12.2 求解断裂力学问题 求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。此处分成两个部分来介绍: ●裂纹区域的建模 ●计算断裂参数 12.2.1裂纹区域的建模 断裂模型中最重要的部分就是裂纹边界的部分。在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。如图12.1所示。 r是距离裂纹端点的长度。裂 裂纹面应该是重合 纹端点处的应力和应变是奇异的, 的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。这种单元被称为奇异单元。

12.2.1.1 二维断裂模型 二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。它在指定关键点附近可以自动生成奇异单元。此命令的其他域可以控制单元第一行的半径,在圆周方向的单元的数量等。图12.3为命令KSCON 生成的断裂模型。

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

断裂力学基础(学习笔记)

第一章 断裂力学的基本概念 宏观裂纹的产生: 1) 制造时存在而无损检测漏检:大型锻件容易出现白点裂纹,夹杂裂纹;高强度钢易出现 焊接裂纹 2) 构件中原来存在的较小裂纹,在周期性的工作应力(疲劳应力)下逐渐发展长大的; 3) 腐蚀性价值中工作的构件,在应力和介质联合作用下,小裂纹也会逐渐发展成宏观裂纹; 总之构件内部存在的宏观裂纹是造成构件低应力脆断的直接原因。 材料力学:研究不含宏观裂纹构件的强度、刚度和稳定性; 断裂力学:研究含有宏观裂纹构件的安全性 裂纹:夹渣、气孔、未焊透、大块夹杂; 断裂韧性:只与材料本身、热处理、加工工艺有关; Y a K c Ic σ=是材料抵抗低应力脆性破坏的韧性参数 Ic K 是材料性能,裂纹形状大小Y a 一定时,Ic K 越大,使裂纹快速扩展导致构件脆断所需应力c σ也越高,构件阻止裂纹失稳扩展的能力就越大。 应力场强度因子: Y a K I σ= 断裂韧性Ic K 是应力强度因子I K 的临界值,I K 是裂纹前端应力场强度的度量,它和裂纹大小、形状以及外加应力都有关 断裂力学的应用 a Y K I σ?= Q Y π 1.1= 22212.0??? ? ??-Φ=s Q σσ: 形状因子 Φ是和椭圆轴比有关的椭圆积分,可查手册获得;

第二章 线弹性断裂力学 弹性力学的某些概念: 应力分量:3 应变分量:3 胡克定律和广义胡克定律: 平面应力:z 方向总力和为0,x,y 平面有正应力和切应力,这三个应力沿z 轴(厚度方向)都一样,与z 无关,仅是x,y 的函数,这种应力状态称为平面应力状态。当板很薄时,可认为是平面应力状态。0=z σ 体内应变分量只有三个,厚度方向认为没有应变,这种应变状态称为平面应变状态。()y x z σσυσ+= 对试件来说,厚度很小就是平面应力状态;厚度很大就是平面应变状态;厚度中等,两外表面不受力属于平面应力状态;中间大部分地区由于受两端面的约束,沿厚度方向不能变形,故属于平面应变状态; 三种裂纹组态: 张开型裂纹(I):外加正应力和裂纹面垂直; 最容易引起低应力脆断; 滑开型裂纹(II):外加剪应力和裂纹面平行; 撕开型裂纹(III):外加剪应力与裂纹面错开; 裂纹顶端附近应力场 复变函数求解; 塑性区及其修正: 裂纹尖端应力不可能无限大,材料一旦屈服,弹性规律就失效,若屈服区很小周围仍然是弹性区,经修正线性弹性断裂力学仍然有效; 屈服判据: 最大剪应力判据(屈雷斯加判据):在复杂加载条件下,当最大剪应力等于材料的极限剪应力(即单向拉伸剪应力)时,材料就屈服; 2 2min max max σσστ-==s 形状改变能判据(米塞斯判据):当复杂应力状态的形状改变能密度,等于单向拉压屈服时的形状改变能密度时,材料就屈服; ()()()22132322212s σσσσσσσ=-+-+- xy y x y x τσσσσσσ+-±+=2 )(2221 ()???+=2130 σσυσ

工程断裂力学

工程断裂力学76 (2009) 709–714 内容列表可以在ScienceDirect期刊获得 工程断裂力学 杂志主页: https://www.360docs.net/doc/2919148677.html,/locate/engfracmech AA7075-T651在交变载荷下裂纹形核的显微结构形貌 H. Weiland a,*, J. Nardiello b, S. Zaefferer c, S. Cheong a, J. Papazian b, Dierk Raabe c a 美国铝业有限公司,100技术驱动,美国铝业中心,宾夕法尼亚15069,美国 b 诺斯罗普2格鲁曼公司AEW/EW系统,925 S,.牡蛎湾路,贝思佩奇,纽约11714,美国 c普朗克铁研究所,普朗克Stra?e 1,,杜塞尔多夫D 40237,德国 文章信息摘要 文章历史: 一系列由7075-T651铝合金制作的疲劳试验样品被打断成各种寿命的部分和2007年1月9日收到一定数量脱胶,破裂的粒子和在金属基体中的破裂决定了定量是加载周期的函数2008年11月24日收到修订后的形式根据发现,只有破裂的第二相粒子,在一个基体裂纹中形核。晶体学关于一个独2008年11月26日录入立的裂纹和它的三维形状是由在扫描显微镜下一系列的切片通过应用聚焦离子束2008年12月10日网上可获得粉末与取向成像显微技术结合决定。这些极限数据显示裂纹萌生方向,受金属基体 中扩展的裂纹的晶体取向影响。。 关键字: 裂纹萌生 AA7075 3D微观结构 疲劳 @2008爱思唯尔有限公司保留所有权利。 1.介绍 优化的铝合金对航天航空应用,需要定量的理解不同控制形核的显微结构特性和裂纹在金属基体中的扩展。此外,在整体部分,裂纹在连接处的停滞不是给定的,显微结构的作用变得越来越重要。需要定量的理解,在复杂微观结构下的损伤演化。 当前对于航空航天应用铝合金的发展,基于一个良好的理解,关于微观结构下破坏的相关性质影响,例如断裂韧性和疲劳[1-5]。然而,铝合金上个世纪上半年的发展,例如AA7075,主要使用Edisonian方法。尽管存在一些研究,关于老化条件对性能的影响,详细分析显微结构属性下控制裂纹形核和单调生长区间,或者在那时候开发的铝合金没有采用交变载荷。然而,在早期理论上可知,含铁第二相在5-50微米直径范围,一般被称为夹杂相,是裂纹的起始点位置[1]。因此,此后的铝合金发展包括减少铁和硅元素提高损伤的相关性质。另一方面,如果粒子密度减少,正如当前阶段铝合金,其他显微结构下的特征,例如晶界和晶粒取向,将有助于裂纹的形核和扩展。读者可以参考文献[1-5],详细的讨论商业铝合金微观结构的损坏的影响。它必须指出,外推法得到的知识在Al-Cu系统(2xxx系列合金)不能容易的推测Al–Zn(7xxx系列合金),因为相和强化机制不同。 在目前的研究中,一部分数量脱粘和破裂的粒子,决定了一定数量是疲劳循环的函数,来自中断的疲劳试验。此外,破裂粒子在开裂基体中形核的尺寸和相关的裂纹长度是确定的。晶体学中关于裂纹和三维形状由来自一系列的切片通过聚焦离子束制粉和取向成像显微技术的结合决定。这些数据显示一开始裂纹的生长方向,同时由粒子周围的局部应力场和基体中正在生长的裂纹的晶向决定。 如今工作的目的,确定一定数量第二相粒子在交变载荷控制裂纹形核的作用,目的是确定以微观结构为基础,预测以这些合金制成的机身零件部分寿命。后者将另行公布。

损伤与断裂课程总结

中国矿业大学 2013 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2014. 01 学生姓名梁亚武 学号ZS13030020 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》课程学习总结 1 前言 据美国和欧共体的权威专业机构统计:世界上由于机件、构件及电子元件的断裂、疲劳、腐蚀、磨损破坏造成的经济损失高达各国国民生产总值的6%到8%。包括压力管道破裂、铁轨断裂、轮毂破裂、飞机、船体破裂等。 长期以来,工程上对结构或构件的计算方法,是以结构力学和材料力学为基础的。它们通常都假定材料是均匀的连续体,没有考虑客观存在的裂纹和缺陷,计算时只要工作应力不超过许用应力,就认为结构是安全的,反之就是不安全的。工作应力根据载荷情况、构件几何尺寸计算出来,许用应力则根据工作条件和材料性质选用。 对于实际结构中可能存在的缺陷和其他考虑不到的因素,都放在安全系数里考虑。安全系数并未考虑到其他失效形式的可能性,例如脆性断裂或快速断裂。人们曾普遍认为,选用较高的安全系数就能避免这种低应力断裂。然而,实践证明并非如此,材料存在缺陷或裂纹的结构或构件,在应力值远低于设计应力的情况下就会发生全面失效。这样的例子很多,因而动摇了上述传统设计思想的安全感,使人们认识到,对含有裂纹的物体必须作进一步的研究。断裂力学就是在这个基础上应运而生的。 断裂力学是研究带裂纹体的强度以及裂纹扩展规律的一门学科。由于研究的主要对象是裂纹,因此,人们也称它为“裂纹力学”。它的主要任务是:研究裂纹尖端附近的应力应变情况,掌握裂纹在载荷作用下的扩展规律;了解带裂纹构件的承载能力,从而提出抵抗断裂的设计方法,以保证构件的安全工作。由于断裂力学能把含裂纹构件的断裂应力和裂纹大小以及材料抵抗裂纹扩展的能力定量地联系在一起,所以,它不仅能圆满地解释常规设计不能解释的“低应力脆断”事故,而且也为避免这类事故的发生找到了办法。同时,它也为发展新材料、创造新工艺指明了方向,为材料的强度设计打开了一个新的领域。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶粒尺度内的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。宏观断裂力学是在不涉及材料内部的断裂机

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

《断裂力学》考试题含解析

二 K i ', =dx 0 J(a 2-x 2) 10分 一、 简答题(本大题共5小题,每小题6分,总计30分) 1、 (1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、 有限元法;(3)实验应力分析法:光弹性法.(4)实验标定法:柔度标定法; 2、 假定:(1)裂纹初始扩展沿着周向正应力;一、为最大的方向;(2)当这个方 向上的周向正应力的最大值(;=)max 达到临界时,裂纹开始扩展? S 3、 应变能密度:W ,其中S 为应变能密度因子,表示裂纹尖端附近应力场 r 密度切的强弱程度。 4、 当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、 表观启裂韧度,条件启裂韧度,启裂韧度。 二、 推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的 诸条件。 积分路径:塑性区边界。 AB 上:平行于%,有dx 2 r O’ds r d %兀》s BD 上:平行于 %,有 dx 2 = 0 , ds = d% , T 2 - s J(WdX 2 -T 凹 ds) T 2 竺 dX ! X-I AB r B D A ;「s V B =:;S (V A ' V D ) 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段一集中力qdx — dKi = 2q ; a 2 dx 业(a-x 2 ) 2007断裂力学考试试题 B 卷答案 T 2 土 dx , BD 2 :x , 1 Sv

Z 二.— (sin 2b -sin ( a) 2b 二(a ))2 兀a 2 -(sin 2b ) 31 u J-L u ,cos = 1 2b 2b JE JE JE it 二 sin ——cos 一a cos 一 sin — a 2b 2b 2b Tt .. Tt 二——cos ——a sin 2b 2b ■ . 2 ' - 2 2 二 [sin ( a)] = ( ) cos a 2 —0 时,sin 2b sin =( a)二 2b n a 2b 仝 2b 2b - n n IT 2 cos ——a sin ——a (sin — a) b 2b 2b b.在所有 裂纹 内部 应力 为零.y =0, -a ::: x ::: a, -a _ 2b ::: x ::: a _ 2b 在区间内 C.所有裂纹前端;「y ?匚 单个裂纹时Z - —^Z — Jz 2 —a 2 又Z 应为2b 的周期函数 二 Z 二 J 兀z 2 兀a 2 、(sin —)2 - (sin —)2 Y 2b 2b 采用新坐标:『:=z - a 令 x=acosv= \ a -x = acosv, dx 二 acosrdr 匚 K “ 2q. a :n 1(a1a )咤 d 一 Yu '0 a cos 日 当整个表面受均布载荷时,耳-;a. K i = 2q J^s in 10分 2、 边界条件是周期的: a. Z 、,二y 7 一;「 .兀z 二 sin b 10分 sin A (a /a)

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

断裂力学总结

断裂力学学习报告 姓名:zx 学号:xxxxxxxx 一、绪论 (1)传统强度理论是在假定材料无缺陷、无裂纹的情况下建立起来的,认为只要满足r []σσ≤,材料将处于安全状态。 其中: []σ——用安全系数除失效应力得到的许用应力; r σ——为相当应力,它是三个主力学按照一定顺序组合而成的,按照从第一强度理论 到第四强度强度理论的顺序,相应的应力分别为 11 2123313 4() r r r r σσσσμσσσσσσ==-+=-=但是许多事实表明,材料受应力远小于设计应力,材料仍然被破坏。使许多力学工作者迷惑不解,于是投入对其研究,最终发现所有材料并不是理想的,材料中含有大大小小、种类各异的裂纹,于是产生了对裂纹地研究。断裂力学从客观存在裂纹出发,把构件看成连续和和间断的统一体,从而形成了这门新兴的强度学科。 (2)断裂力学的任务是: 1. 研究裂纹体的应力场、应变场与位移场,,寻找控制材料开裂的物理参量; 2. 研究材料抵抗裂纹扩展的能力——韧性指标的变化规律,确定其数值与及测定方法; 3. 建立裂纹扩展的临界条件——断裂准则; 4. 含裂纹的各种几何构件在不同荷载作用下,控制材料开裂的物理参量的计算。 (3)断裂力学的研究方法是:假设裂纹已经存在,从弹性力学或弹塑性力学的基本方程出发,把裂纹当作边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。 (4)断裂力学的几个基本概念: 根据裂纹受力情况,裂纹可以分为三种基本类型:

1. 张开型(I 型) 裂纹受垂直于裂纹面的拉应力作用,裂纹上下两表面相对张开,如上图a 所示; 2. 滑开型(II 型),又称平面内剪切型 裂纹受平行于裂纹面而垂直于裂纹前缘OO ’的剪应力作用,裂纹上下两表面沿x 轴 相对滑开,如上图b 所示; 3. 撕开型(III 型),又称出平面剪切型或反平面剪切型 裂纹受既平行于裂纹面又平行于裂纹前缘的剪应力作用,裂纹上下两表面沿z 轴相对错开,如上图c 所示. 上述三种裂纹中I 型最为危险.而我们主要也是研究I 型裂纹,因为只要确定了I 型裂纹是安全的,则其它两种裂纹也是安全的。 二、线弹性断裂力学 线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。研究裂纹扩展有两种观点:一种是能量观点,认为如果当裂扩展一增量,使得释放的弹性能多于产生新裂纹表面所需要的能量则发生裂纹的失稳扩展,如Griffith 理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin 理论。 (一) 应力强度因子理论 (1)应力强度因子 把物体断裂归结为带裂纹物体的线弹性力学分析。解弹性力学平面问题,选取应力函数 U(x,y)使其满足双调和方程220U ??=。 解此方程可以得到相应的应力场和位移场,三种类型裂纹尖端的应力场与位移场公式有相似之处,可以写成如下的形式: ()()σ?()N N ij ij θ= ()()()N N i N i u K θ= 式中σij (i,j=1,2,3)为应力分量,i u 为位移分量,N=I,II,III 为裂纹的类型,()ij f θ和()i g θ是

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

09年B卷试题及答案哈工大断裂力学考试试题

一、 填空(25分,每空1分) 1. 在断裂力学中,按照裂纹受力情况可将裂纹分为三种基本类型,简述均匀各向同性材料的两种裂纹类型的受力特点: Ⅰ型 受垂直于裂纹面的拉应力作用 Ⅱ型 受平行于裂纹面而垂直于裂纹前缘的剪应力作用 2. 对于有一定塑性的金属材料,应用能量平衡理论时,材料抵抗裂纹扩展能力这个概念,包括两个部分,即 形成裂纹新表面所需的表面能 和 裂纹扩展所需的塑性应变能 ,只有当 应变能释放率 大于代表材料抵抗裂纹扩展能力的常数时,裂纹才失稳扩展。 3. 最大周向应力准则的两个基本假定是:的方向开裂裂纹沿最大周向应力max θσ和 当此方向的周向应力达到临界时,裂纹失稳扩展 。该假定的缺点是 (1)没有综合考虑其它应力分量的作用 (2)不能将广义的平面应变和平面应力两类问题区分开来 4. 常用的计算应力强度因子的方法有 积分变换法 、 有限元法 和普遍形式的复变函数法 。(任意写出三种即可) 5.在复合型断裂准则中,以能量为参数的断裂准则一般包括 应变能密度因子 准则和 应变能释放 准则。 6. 经典J 积分守恒性成立的前提条件包括 应用全量理论和单调加载 、 仅适用于小变形 和 不存在体积力 。(任意写出三个即可) 7. 疲劳破坏过程按其发展过程可分为四个阶段,包括裂纹成核阶段、微观裂纹扩展阶段 、 宏观裂纹扩展阶段 和 断裂阶段 。 8. HRR 理论是Hutchinson 、Rice 和Rosengren 应用 J 积分等恒性 以及 材料的硬化规律 确定应力和应变的幂次。该理论存在一个重要矛盾是: 既然考虑了塑性变形,裂纹尖端的应力就不应该是奇异的 。 9. 可以表征材料断裂韧性度量的力学量主要有IC K 、IC G 和C δ。(任意写出三个即可) 二、 简答题(50分) 1. 简述脆性材料断裂的K 准则IC I K K =的物理含义以及其中各个量的意义,并结合线弹 性断裂力学理论简单讨论K 的适用范围。(15分) 答:物理含义:裂纹尖端应力强度因子I K 达到第一临界值IC K 时,裂纹将失稳扩展。

相关文档
最新文档