油气田地下地质学——第五章
第5章 地层压力和地层温度

ρ—流体密度,。
四、原始地层压力的来源
1. 静水压头:当油层有供水区时,原始地层压力与供水区水压头和 泄水区的高低有关;如果无供水区,则与油层含水部分所具有的 压头有关。
2. 地静压力:上覆岩层或沉积物重量所形成的压力。地静压力对地 层压力的影响大小,将视储层是否封闭的程度而定。
3. 天然气补给:油气藏形成之后,沉积物或岩层中的有机物会继续 转变成烃类或非烃类气体,当油气藏处于被隔绝状态时这些天然 气的聚集会提高地层压力。 4. 构造应力:地壳运动所产生的构造应力,会使孔隙缩小压力升高; 也可能因断层和裂缝的产生,为油、气的逸散构成通道,使已有 压力下降。 5. 地温:总的趋势是岩层埋藏深度越大,其温度越高。温度升高, 会使孔隙流体发生体积膨胀,也增高地层压力。
7、8与封闭性没有关系
(2)热力作用和生物化学作用
• 热力作用:世界钻探经验表明,异常高压地带总是伴随着 异常高温地带出现,温度对压力的影响是不容忽视的。在 一个封闭系统中,温度增加将引起岩石和岩石孔隙中流体 的膨胀,从而使该系统的压力增大。
• 温度增加还可以引起岩石中流体相态的变化,析出二氧化 碳等气相物质。高温能使油页岩中的干酪根热裂解,生成 烃类气体。在封闭的地质环境中,这些气体将大大提高该 系统的压力而促使该系统高异常地层压力的形成。
三、折算压力
在油气藏开发过程中,为了正确掌握油层压力 大小、分布及其变化规律,必须消除构造因素(即 油层埋藏深度对油层压力的影响)和流体密度不同 对地层压力的影响,以便于比较同层或不同层压力 的高低,因而提出折算地层压力的概念。
人们往往习惯地认为地下流体是由地层压力高 的地方流向地层压力低的地方,然而,实际情况是 怎样的呢?现在用一个例子来说明。
油气田地下地质学-第五章储层特征研究2

要形成良好的裂缝系统,应具备以下条件:
1、有利的岩石类型
脆性岩石有利于裂缝发育,通常胶结致密的碳酸 盐岩较孔隙发育的砂岩的脆性强,泥质含量较高时不 易产生裂缝。较好的岩石主要有:
砂岩中粒度较小的细砂岩、粉砂岩 泥质含量较低的亮晶灰岩、白云岩。
2、有利的构造部位
12)大的陨石与地壳的碰撞可造成大量的裂缝,并在适当的条 件下形成油气聚集的场所。
2、裂缝形成的影响因素
裂缝的形成是由于受力的作用而使得岩石的结合面发生变化 而产生的,因此其影响因素归根结底包括三大类:
(1)构造应力
作用在岩石上的构造应力的性质、大小、方向和边界条件等 直接控制了裂缝的发育。 构造运动对裂缝储集层的形成、演化起着重要作用。不管区 域性构造运动方式是升降为主还是侧向挤压为主,都会控制 和影响裂缝的发育。
裂缝是油气储层特别是裂缝性储层的重要储集空间, 更是良好的渗流通道。世界上许多大型、特大型油气田 的储层即为裂缝性储层。作为一种特殊的孔隙类型,裂 缝的分布及其孔渗特征具有独特的复杂性。
裂缝性储集层:指天然存在的裂缝对储层内流体流动 具有重要影响或据预测具有重要影响的储集层。
与孔隙型储层相比,裂缝性储层最常见的特征: 孔隙度低、渗透率高,非均质强,开发难度大。
裂缝与岩心横切面夹角 0°~15° 15°~45° 45°~75° α>75° α变化不定
⑶ 大小特征分类
⑷ 充填程度分类
按裂缝宽度划分为四类:
大裂缝 宽度>3mm
中裂缝
1~3mm
小裂缝 0.1~1mm
微裂缝 <0.l mm
按裂缝空间被方解石、 白云石、沥青等的充填情 况来分:
张开缝 半充填缝 全充填缝
石油地质学(第五章石油和天然气的聚集)

第一节 圈闭与油气藏的基本概念
第 2.油(气)藏高度 五 2.油(气)藏高度 章 油藏高度 : 油藏最高点与油水界面 石 油 和 天 然 气 油气藏高度=气顶高度+ 含油高度 的 (气)面积 含油( 聚 3. 含油 集 • 含油面积: 含油外边缘 所圈定的 含油面积:含油外边缘 含油外边缘所圈定的
所圈定的封闭区面积。
石 油 和 天 然 气 的 聚 集
•
•
背斜圈闭的溢出点、闭合高度和闭合面积示意图
第一节 圈闭与油气藏的基本概念
第 对于断层圈闭,闭合面积按断层线与储集层顶面等高线构 五 成的闭合面积。 章 同样对于不整合面、地层尖灭带与储集层顶面等高线相交
构成的闭合区面积。
石 油 和 天 然 气 的 聚 集
第 五 二、圈闭的度量 章 石 油 和 天 然 气 的 聚 集
第一节 圈闭与油气藏的基本概念
(spill point): 油气充满圈闭后最先开始向 1.溢出点 溢出点( ):油气充满圈闭后最先开始向 外溢出的点。
பைடு நூலகம்
第一节 圈闭与油气藏的基本概念
第 五 二、圈闭的度量 章 2.闭合面积(closure area):通过溢出点的构造等高线
第 二、圈闭的度量 五 4.有效孔隙度和储集层的有效厚度 章 石 油 和 天 然 气 的 聚 集
有效孔隙度主要根据岩心的实验室测定、测井解释资 料统计分析求得,作出圈闭范围内的等值线图。
储集层的有效厚度根据有效储集层的岩性、电性、物 性下限标准求得。 (最大聚集油气体积) 、圈闭的最大有效容积( 5、圈闭的最大有效容积 V=F×H×φ • 3 V —有效容积,m ; F —闭合面积,m2; H —储集层的有效厚度,m; φ —储层有效孔隙度,%。 •
《油矿地质学》复习总结

油矿小结第一章钻井地质需要掌握的概念定向井:按照预先设计的井斜方位和井眼轴线形状进行钻进的井。
水平井:井斜角在85-120读,并沿水平方向钻进一定长度的井。
丛式井:在一个井场或平台上,有计划地钻很多口井(直井或斜井),这些井统称为丛式井。
井斜角:测点处的井眼轴线同铅垂线之间的夹角。
(α)井斜方位角:测点处井眼轴线的切线在水平方向的投影与正北方向的夹角。
(fai)钻井深度:用钻具长度计算的井深。
测井深度:用电缆长度计算的井深。
测深:测量深度,井口方补心(转盘面)沿井轨迹测点处的实际长度。
垂深:垂直深度,井口方补心(转盘面)到井筒测点位置的垂直深度。
补心海拔:井口方补心(转盘面)到海平面的垂直距离。
海拔深度:井筒中测点位置到海平面的铅直距离。
岩心收获率:岩心长度/取心进尺长度取心进尺:岩心归位:从最上的标志层开始,上推归位至取心井段顶部,再一次向下归位,达到岩性与电性吻合。
岩屑迟到时间:岩屑从井底返至井口的时间。
重点内容井别识别:哇塞岩心丈量和编号原则:丈量:清除岩屑泥饼等“假岩心”,断面吻合,摆放,由顶至底用尺子依次丈量,单位厘米,自上而下做记号,红黑两平行线,上位红,下为黑,箭头指向钻头位置。
编号:第几次取心,共多少块岩心,这是第几块。
几又几分之几。
观察岩心油气水的方法类型:含气实验,含水观察,滴水实验。
岩心含有级别:根据储层特性不同分为:孔隙性含油:饱含油、富含油、油浸、油斑、油迹、荧光。
缝洞性含油:油浸、油斑、荧光。
岩心录井图的编制:岩心录井草图和岩心录井综合图。
综合:井深校正,岩心归位。
岩屑描述内容与岩心描述的差别:岩屑描述的重点是岩石定名和含油气情况描述。
差别:这。
岩屑录井对缝洞储层中的判别:缝洞发育系数:次生矿物总量/岩屑总量。
缝洞开启系数:自形晶矿物含量/次生矿物含量。
钻井液显示的类型:油花、气泡,油气侵,井涌,井喷,井漏(碳酸盐溶洞好东西。
)。
钻时录井优缺点:课件上没说啊。
第二章地层测试地层流动系数:地层流动系数反映地下流体流动的难易程度。
石油地质学-8. 油气的运移

Clq 2019/7/7
一、油气初次运移的温压条件和岩石介质孔渗性
• 油气初次运移的温度: 应与生成油气时温度相近,可能在50-250℃±。对应的深
度取决于地温梯度。 • 油气初次运移的动力:压力,主要受控于深度。 • 油气初次运移时岩石介质的孔渗性:
烃源岩,孔渗条件很差;需克服巨大的Pc。
Clq 2019/7/7
但是普遍认为,石油呈单独液相从生油岩中进行 初次运移是不大可能的。石油的初次运移应以高分散 烃相为主。只有在石油进行二次运移方以分相单独运 移为主。
关于石油以高分散游离相态从生油岩中向 外运移的理论已为实践所证实,而且可能是初 次运移的主要形式。
Clq 2019/7/7
第三节 油气的二次运移
在岩石学上,我们已知道,泥岩的压缩率很大,而 砂岩却较小,从而造成了泥岩中流体所处的压力较大, 而砂岩中流体的压力较小(理解时可先假设两岩层的流 体相互未流动运移)由此造成了二岩层之间的流体压力 差,从而使得生油岩中流体向储集层中运移。
Clq 2019/7/7
对于较薄的生油岩层,在上覆沉积物的均衡压实作 用下,油气运移的载体水在1000m左右时即被很快排出。
Clq 2019/7/7
第一节 概 述
油气运移: 地壳中石油和天然气在各种天然因素作用下发
生的流动。 油气运移可以导致石油和天然气在储集层的
适当部位(圈闭)的富集,形成油气藏,这叫做 油气聚集。也可以导致油气的分散,使油气藏消 失,此即油气藏被破坏。
Clq 2019/7/7
油气运移的证据
Clq 2019/7/7
流体运移方向为其受力减弱方向。 此外,构造运动造成地层倾斜,产生裂缝,沟通 岩石中各种孔隙,形成不整合风化带,为油气二次运 移创造了有利条件。
石油地质学3. 储集层

页岩储层
蜂窝状小孔洞
页岩储层
第一节 储集层的物理性质
一、储集层概述
储集层是指具有一定连通孔隙,能够使流体存储,并在其中渗透的岩层。 从这一定义中可以看出,储集层并不一定储存油气。 储存了油气的储集层称之为含油气层,或含油层、含气层。 对业已开采的含油气层则称之为产油气层或生产层。 储集层的研究对于油田工作来说是首当其冲的。
第二节 碎屑岩储集层
碎屑岩储集层包括砂砾岩、砂岩、粉砂岩 以及未有胶结好的砂层,其中又尤以中细粒砂 岩和屑岩储集层的孔隙类型
碎屑岩储集层的孔隙类型以粒间孔隙为主,所谓粒间孔隙是指具有颗粒支 撑的碎屑岩在碎屑颗粒之间未被杂基充填、胶结物含量较少而留下的原始孔隙 。
二、储集层的特性
世界上绝大多数油气藏的储集层是沉积岩,只有少数油气藏的储集层是岩 浆岩和变质岩。
储集层具有孔隙性和渗透性两大基本特性。这两大特性是衡量储集层性能 好坏的基本参数。
1、储集层的孔隙性 储集层的孔隙是指岩石中未被固体物质充填的空间。 地壳中没有孔隙的岩石是不存在的,只是不同的岩石的孔隙大小、形状和 发育程度不同而已。
而把每一相流体局部饱和时的有效渗透率与全部饱和时的绝对渗透率之比值 ,称为相对渗透率。并分别以Kg/K、KO/K、Kw/K表示气、油、水的相对 渗透率。
实验表明:某一相流体的有效渗透率与其饱和度(某一相流体体积与 孔隙体积之比)成正相关的关系。
在水饱和度未达到20%时,水不渗透,只有油渗透;当油饱和度低于15%时, 只有水通过岩石,油不渗透。在两曲线交叉点,油、气相对渗透率相等。
Г.И.捷奥多 罗维奇按渗 透率大小将 储集层分为 五级:
自然界中,储集层的渗透非常复杂,储集层内常有两相甚至三相(油、气、 水)。岩石对其中每种相的渗透作用与单相渗透有很大区别,为此提出了有效渗 透率和相对渗透率的概念。
油气田地下地质学---第五章--储层特征研究

C) 常见的良好隔层(特征):
油气田地下地质学
① 岩性:泥岩、泥质粉砂岩、盐岩、膏岩;
② 分布:一般大于砂层分布范围;
③ 微裂缝、小断层不发育。 D) 隔层主要研究内容:
● 隔层的岩石类型:泥岩、粉砂质泥岩、蒸发岩等。
● 隔层在剖面上的分布(位置);
● 隔层厚度及其在平面上的变化:隔层等厚图 表示。 ● 隔层级别:岩性致密、排替压力大、厚度大、平面分
油气田地下地质学
(一)储层在纵向上分布的复杂程度
1、分层系数 An
--指一套层系内砂层的层数(以平均单井钻遇砂层数表示)
n
nBi
nBi --某井的砂层层数
An
i 1
n
N--统计井数
砂岩总厚度一定时,垂向砂层数越多,隔层越多,越
易产生层间差异--分层系数越大,层间非均质性愈严重
2、砂岩密度 Kn (砂岩厚度系数) --指垂向剖面中砂岩总厚度与地层总厚度之比。
隔层—分隔垂向上不同砂体间非渗透性岩层。 ★
A) 隔层研究意义:对研究上下油层的非连通性、划分 开发层系及在同一开发层系内阻挡流体的垂向渗流 等均具有重要意义。
B) 隔层的确定条件--两个标准: ▲ 物性:20~70MPa,地层不透水;K一般<10×10-3μm2 ▲ 厚度:具备一定厚度,一般>5m。
布稳定,则其封隔能力好;否则,反之。
四个级别:油层组间隔层、 砂层组间隔层、
砂层间隔层、 砂层内薄夹层。
油气田地下地质学
⑵ 层间差异
① 沉积旋回性--储层层间非均质性的沉积成因。 ② 相关参数计算:分层系数(An),垂向砂岩密度(Kn),
渗透率变异系数、级差、单层突进系数、均质系数 等
③ 主力油层与非主力油层的识别及垂向配置关系: 识别--在平面及层内非均质性研究后,通过各砂层的分布
石油地质学第5章 石油和天然气的聚集

油气藏高度、油气柱高度示意图
第五章 石油和天然气的聚集
第2节
油气藏成藏要素
一、油气成藏要素 油气藏的形成过程,实际上是油气从分散到集中的过 程。而油气在由分散到集中形成油气藏的过程中,受到各 种因素的作用,要形成储量丰富的油气藏,而且保存下来, 主要取决于(一) 生油层、 (二) 储集层、 (三) 盖层、 (四) 运移、 (五) 圈闭和(六)保存六个条件(要素)。归纳起来 油气藏形成的基本条件有以下几个方面: 1、油气源条件 2、生储盖组合和传输条件 3、圈闭条件 4、保存条件
成烃坳陷与油气分布关系图
第五章 石油和天然气的聚集
2. 烃源岩的成烃条件
并非所有的沉积盆地都有成烃拗陷,当盆地内拗陷 区一直处于补偿或过补偿状态时,难以形成有利的成烃环 境,或油气潜量极低,属于非成烃拗陷。因此,一个拗陷 是否具备成烃条件,还要对烃源岩有机质丰度、类型、成 熟度、排烃效率来进行评价。通过定量计算成烃潜量、产 烃率来确定盆地的总资源量,从而评价油气源的充足程度。 只有具丰富油气资源的盆地,才能形成大型油气藏。
三个储集层组成的 三个油藏
第五章 石油和天然气的聚集
(二)油气藏内油、气、水的分布
在垂向上,由于流体比重的差异,重力 分异结果使油、气、水的分布呈现:气在上, 油居中,水在下的分布特征,它们之间的分界 面为油-气界面和油-水界面。静水条件下,这 些分界面近于水平,而动水条件下,这些分界 面发生倾斜,倾斜程度取决于水动力的强弱。 由于储集层中的多孔介质系统有许许多多毛细 管及微毛细管孔道存在,毛细管压力的作用使 天然储油中的流体按比重分异是不完整和不明 显的,油-气、油-水界面并不是一个截然的界 面,而是一个过渡带,过渡带的宽窄取决于储 集层毛细管压力曲线的斜率,斜率越大,过渡 带越宽。储层物性的不均,也会造成油气不规 则的分布特征。 平面上,大多数构造油气藏和某些岩性油 气藏都具有环带状分布特征,即气居高点部位, 油环绕气分布于构造高部位,水在油外分布于 构造翼部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章地下储层研究(Chapter5 reservoir description)第一节储层沉积相研究(本章重点)一、概述1 沉积相⑴概念地貌单元:沉积环境:沉积相:指沉积环境及在该环境下形成的沉积岩(物)特征的综合。
相模式:相模式是指对某一类或某一沉积相组合的全面概括。
目前较为典型的相模式有冲积扇、辫状河、曲流河、三角洲、扇三角洲、滨岸沉积、风暴沉积、近岸水下扇、湖底扇等。
⑵原理两个基本原理,Walther相序、沉积过程与沉积响应原理Walther相序:只有哪些没有间断的、现在能看到的相互相邻的相和相区,才能在垂向上叠加在一起。
2 沉积相研究的意义砂体分布储层物性储层非均质性3 地下沉积相研究的特点资料种类:区域地质资料、地震资料、录井资料、测井资料、露头资料、其它资料工作特点:(1)区域地质资料类型:研究报告、背景图件解决问题:构造背景、物源、大致相带、相类型(2)地震资料类型:地震剖面、地震数据体、地震地层解释结果解决问题:地层格架、沉积体系、储层分析、非均质性表征(3)录井资料类型:岩心、岩屑、岩心录井综合柱状图、岩屑录井综合图解决问题:沉积体系、沉积微相(4)测井资料类型:测井组合图、数字化测井数据文件解决问题:相类型、相分布(5)露头(现代沉积)(6)其它资料(分析化验)古生物、地球化学、水介质、粒度、分选二、沉积相研究的资料基础1 直接资料:岩心、岩屑录井、井壁录井、分析化验资料2 间接资料:测井资料、地震资料、动态资料三、沉积相研究的流程及关键技术(本节重点)1 研究流程2 关键技术⑴岩心观察及单井相分析技术①岩心观察观察内容:岩相、岩序、观察方法:岩性标志、古生物标志、地球化学标志观察流程:岩性标志、古生物标志、地球化学标志②单井相分析:岩心观察与描述、照相垂向相序列(沉积层序)分析适应的相模式对比其它资料验证单井相剖面相模式总结编制单井综合柱状图⑵测井相分析技术测井相:是指具有一定特征的曲线段或曲线组合,包括测井曲线的形态、顶底接触关系、包络线形态、齿化程度及组合特征等,反映特定的岩石组合、岩石序列和沉积环境。
地质特征响应分析:岩性标志、沉积构造、古水流与搬运方向测井沉积相分析:砂岩测井相分析、梯形图或星形图、碳酸盐岩相分析分析流程:选井、定相、曲线特征、岩电响应关系、测井相模式选井选线常用的测井资料:自然电位;电阻率;地层倾角;体积密度;中子孔隙度;声波时差等。
岩电关系研究搜集岩屑资料→总结测井资料划分岩性规律→定性判断岩性。
选择一组测井曲线(如自然电位、电阻率、自然伽马、声波、密度、中子等)然后在放射状或平行状坐标上,标上任一层的各种测井参数数据;将这些值顶点连接起来,就构成了星形图或梯形图将具有相同或很相近的图形归为同一测井相,用岩心资料对这些测井相进行标定,确定相应的岩相。
确定响应特点建立岩电图版由于碳酸盐岩没有明显的层理,而且往往呈块状连续沉积,因而其沉积相不能根据地层倾角测井研究古水流的砂岩沉积相模式来研究,它主要是根据岩性、岩相等岩石矿物组成及物理性质差别来判断,所以它的测井沉积相模式多采用数理统计方法来建立。
⑶平面相分析技术⑷地震相分析技术①地震相概念:可以作图的三维地震单元,由参数上不同于相邻地震相单元的反射波组所构成,代表了沉积物的岩性组合、地层结构等沉积特征,主要参数包括单元内部反射结构、外部几何形态、反射振幅、频率、边续性和层速度等。
②地震沉积相分析方法③地震相类型平行地震相:平行与亚平行反射结构:反射层平行或微微起伏(波状),往往出现在席状、席状披盖及充填型中,反映均速低能沉积环境。
前积相:内部发育一组相互叠置的反S形反射同相轴:上端为近水平的顶积层,中部为倾斜的前积层,顺同相轴向下到了底部,同相轴逐渐变得平缓,形成底积层。
断陷盆地三角洲相。
相对较低的沉积物供应(保留顶积层)和相对快的盆地沉降速度。
相对陡倾、顶超、下超。
意味着相对高的沉积物供应速率和缓慢变动的相对海平面。
从而造成盆地被迅速地充填,后来的沉积水流冲刷上部的沉积表面,无顶积层存在。
代表一种高能三角洲环境,在它的前积段内发育大量前积砂体。
前积层和顶积层发育,缺失底积层。
其顶积层发育表明是在水平面相对上升时期形成的。
一般在浊积扇或扇三角洲上容易发育丘状相:大多数丘状相与沉积作用和火山作用有关。
丘状相作为一种高能沉积作用的产物,代表了一种沉积物搬运过程中快速卸载的过程,因此它主要发育在深海(或深湖)浊积扇环境。
另外,滑塌块体、三角洲朵叶体和礁体以及火山堆也都可以表现为丘状相。
透镜状相:透镜状相可以产生于多种沉积环境中,它的双向外凸可以是原生的,也可以是成岩过程中差异压实造成的。
大型透镜状相一般与河道下切和三角洲前积作用有关,一般,大型透镜体都是有利储集体勘探目标。
充填相:开阔充填指在一个盆地的某个负向单元如洼槽中充填的地层单元,一般为上超充填,为低能环境。
局部充填是指在河道下切后形成的较小的冲沟内形成的充填,代表较高能量的环境.局部充填相与储层关系密切,诸如侵蚀河道、海底峡谷等都是储集体发育的有利部位。
杂乱—空白相:杂乱相代表能量相对较高但不稳定环境下的地层。
杂乱相经常发育在冲积扇和近岸水下扇环境。
空白相实为杂乱相的反射能量变低后的产物,它代表能量稳定环境,可以是厚层细粒沉积,也可以是厚层粗粒沉积。
空白相成因与单元顶部的波阻抗差也有关系,当顶界面反射系数很大时,透射能量较低,变成空白相。
3 关键图件⑴岩心综合柱状图⑵测井相图版⑶剖面相⑷平面相⑸地震相图第二节储层非均质性(本章重点)一、储层非均质性的概念二、储层非均质性的分类简单介绍Petition分类、Weber分类、Ealdormen分类、裘亦楠分类(本教材)。
1、Pettijohn分类油藏规模:1→10km×100m,层规模:100m×10m,砂体规模:(1→10)m层理规模:(10→100)mm,孔隙规模:(10→100)um2、Weber分类:7个层次的分类,3、Ealdormen分类,分为微观、宏观、大型、巨型4、裘亦楠分类(本教材)(1)层间非均质性:层系的旋回性、砂层间渗透率的非均质程度、隔层分布、特殊类型层的分布。
(2)平面非均质性:砂体成因单元的连通程度、平面孔隙度、渗透率的变化和非均质程度、以及渗透率的方向性。
(3)层内非均质性:包括粒度韵律性、层理构造序列、渗透率差异程度及高渗透段位置、层内不连续薄泥质夹层的分布频率和大小、以及其它的渗透隔层、全层规模的水平、垂直渗透率比值。
(4)孔隙非均质性:砂体孔隙、喉道大小及其均匀程度;孔隙喉道的配置关系和连通程度三、储层非均质性的表征(本节重点) 1、层内非均质性⑴粒度旋律(正韵律、反韵律、复合韵律、均质韵律)⑵沉积构造(平行层理、交错层理、波状层理、递变层理、块状层理、水平层理) ⑶渗透率韵律(正、反、复合韵律) ⑷垂直渗透率与水平渗透率的比值(Ke/KL) ⑸渗透率非均质程度表征参数①变异系数:KK KV ni nik ∑=-=12)(②突进系数:③级差:m in m ax K K J k =④均质系数:max K K K p =⑹夹层分布频率和分布密度 ①分布频率:Pk=N/H ②分布密度:Dk=Hsh/H ⑺微裂缝发育在很致密的储层中常分布大量的微裂缝。
微裂缝的存在,可以改变储层的渗透性,甚至可能形成串层。
⑻夹层①分布特征:夹层指储层中不连续的非渗透层或低渗出层,在流体渗流中起都局部的屏障作用,岩性有泥岩、粉砂岩及致密的砂岩,有沉积成因和成岩成因两种成因。
②夹层岩性-电性-物性:物性特征:夹层的识别是以油田夹层的物性标准为基础的,不同储层类型的油田,夹层物性标准有所不同;岩性特征:泥岩类、泥质粉砂岩类和胶结致密砂岩类,前两种为沉积成因,后一种为成岩作用形成;电性特征:具体通过交会图或相关分析可以建立定量识别标准 2层间非均质性层间非均质性是指砂层组内或油层组内各砂层之间的差异,为油田开发层系的划分和井网的选择提供地质依据。
主要包括:层系旋回性、分层系数和砂岩密度、砂层间渗透率非均质程度、层间隔层、层间断层、裂缝特征。
砂层间差异→划分开发层系、决定开采工艺的依据→注水开发中层间干扰和水驱差异⑴层系旋回性(沉积旋回性)陆相盆地沉积旋回一般可分为五级:一、二级旋回:标志层―古生物层;三级旋回:标准层―稳定泥岩隔层(10m±);四级旋回:视标准层―较稳定泥岩隔层;五级旋回:隔层分布面积大于小层连通面积。
⑵分层系数与砂岩密度①分层系数:层系内砂层的层数。
表示方法:分层系数=平均单井钻遇砂层层数=钻遇砂层总层数/统计井数分层系数↑→层间非均质↑→油层动用率↓→油层开采效果↓②砂岩密度垂向剖面上,砂岩总厚度与地层总厚度之比,%。
⑶砂层间渗透率非均质程度①层间渗透率分布形式:主要描述不同单层砂体的渗透率差异②层间渗透率变异系数:③层间渗透率突进系数④层间渗透率级差⑷层间隔层隔层是指在注水开发过程中,对流体具有隔绝能力的不渗透岩层。
隔层的作用是将相邻两套层系的油层完全隔开,使层系之间不发生油、气、水窜流,形成两个独立的开发单元。
阻止层间垂向渗流→独立开发单元隔层具有层次性:油组间隔层、砂组间隔层、单层间隔层描述内容:隔层岩石类型:泥岩、蒸发岩、其它岩性隔层在剖面上的分布位置隔层厚度在平面上的变化情况⑸构造裂缝裂缝穿层→层间流体窜流→对注水开发影响极大描述内容:产状:裂缝走向、倾向和倾角性质:裂缝张开与闭合性、裂缝充填情况和裂缝壁特性等。
密度:线密度、面密度、体密度穿层程度:一级裂缝:切穿若干岩层;二级裂缝:单层内3、平面非均质性(1)砂体的几何形态:①席状砂:长/宽比=1,分布范围大;②“土豆状”砂体:分布范围小;③带状砂体:长/宽比>2;④不规则状砂体(2)按砂体的宽度可将砂体的展布分为四类:一类:砂体宽度>1600m;二类:砂体宽度1600~1100m;三类:砂体宽度1100~600m;四类;砂体宽度<600m4、微观非均质性直接影响注入剂的微观驱替效率,包括:孔隙非均质、颗粒非均质、填隙物非均质 [岩心规模](1)孔隙非均质①孔隙、喉道大小:孔隙、喉道类型、大小、分布状态、分选程度,可用各种孔喉半径参数定量描述润湿相流体存在时:有效孔喉半径=实际孔喉半径―液膜厚度②孔、喉大小分布孔间干扰:流体沿大孔道渗流,而小孔喉水驱不到可用:分选系数、相对分选系数、均质系数、孔隙结构系数、孔喉歪度、孔喉峰态等参数定量描述③孔隙连通性可用孔喉配位数、孔喉直径比、孔喉体积比表征,孔隙连通性越好,越有利于油气采出④孔隙形状复杂性5、储层非均质性的影响因素(1)沉积:流水的强度和方向、沉积区的古地形、水盆的深浅,碎屑物质供应的差异,造成了碎屑沉积物的颗粒大小、排列方向、层理构造和砂体几何形态的差异;(2)成岩:压实、压溶、胶结作用和重结晶作用等改变了原始孔隙度和渗透率的分布状态,增加了储层的非均质程度;(3)构造:构造裂缝改变储层的渗透性的方向,造成储层的渗透性在纵、横向上有很大的差异。