大学物理练习册答案

大学物理练习册答案
大学物理练习册答案

大学物理练习册答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章

练习一

一、选择题

1、下列四种运动(忽略阻力)中哪一种是简谐振动?( )

(A)小球在地面上作完全弹性的上下跳动

(B)细线悬挂一小球在竖直平面上作大角度的来回摆动

(C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动

(D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动

2、质点作简谐振动,距平衡位置2.0cm 时,加速度a=4.0cm/s 2,则该质点从一端运动到另一端的时间为( )

(A)1.2s (B)2.4s (C)2.2s (D)4.4s

3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为( )

(A) 0 (B) 2π (C) 2

π-

(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅

为A 时,该弹簧振子的总能量为E 。若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等( )

(A)

2A (B) 4A

(C)2

A (D)A 二、填空题

1、已知简谐振动A x =)cos(0?ω+t 的周期为T ,在2

T

t =

时的质点速度为 ,加速度为 。

2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 。

3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。 该振动的振幅为 ,周期为 。

4、简谐振动的总能量是E ,当位移是振幅的一半时,

k

E E

= ,P E E = ,当x

A

= 时,k P E E =。

三、计算题

1、一振动质点的振动曲线如右图所示, 试求:

(l)运动学方程; (2)点P 对应的相位;

(3)从振动开始到达点P 相应位置所需的时间。

2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。求:

(1)t=0.5s 时,物体所在位置;

(2)t=0.5s 时,物体所受.力的大小与方向; (3)由起始位置运动到x =12cm 处所需的最少时间;

(4)在x =12cm 处,物体的速度、动能以及系统的势能和总能量。

3、如右图所示,绝热容器上端有一截面积为S 的玻璃管,管内 放有一质量为m 的光滑小球作为活塞。容器内储有体积为V 、 压强为p 的某种气体,设大气压强为p 0。开始时将小球稍向下 移,然后放手,则小球将上下振动。如果测出小球作谐振动时的 周期T ,就可以测定气体的比热容比γ。试证明

222

4mV pS T πγ=

(假定小球在振动过程中,容器内气体进行的过程可看作准静态绝热过程。)

练习二

一、选择题

1、一弹簧振子,当把它水平放置时,它可以作简谐振动。若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:( ) (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动 (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动 (C) 两种情况都可作简谐振动 (D) 两种情况都不能作简谐振动

2、在阻尼振动中,振动系统( )

(A) 只是振幅减小

(B) 只是振动变慢

(C) 振幅既不减小,振动也不变慢

(D) 振幅减小且振动变慢

3、下列选项中不属于阻尼振动基本形式的是( )

(A) 强阻尼

(B) 欠阻尼

(C) 过阻尼

(D) 临界阻尼

4、受迫振动的振幅依赖于( )

(A) 振子的性质

(B) 振子的初始状态

(C) 阻尼的大小

(D) 驱动力的特征

二、填空题

1、实际上,真实的振动系统总会受到阻力作用而作振幅不断减小的阻尼振动,这是因为阻尼的存在使系统的能量逐渐减少,能量损失的原因通常有两种:和。

2、在灵敏电流计等精密仪表中,为使人们能较快地和较准确地进行读数测量,常使电流计的偏转系统工作在状态下。

3、试分别写出简谐振动、阻尼振动和受迫振动的运动微分方

程、

、。

4、在阻尼很小的情况下,受迫振动的频率取决于驱动力的频率,当驱动力的频率逐渐趋近于振动系统的固有频率时,振幅达到最大值,这种现象叫

做。

三、计算题

1、质量为m=5.88kg的物体,挂在弹簧上,让它在竖直方向上作自由振动。在无阻尼情况下,其振动周期为T=0.4πs;在阻力与物体运动速度成正比的某一介质中,它的振动周期为T=0.5πs。求当速度为0.01m/s时,物体在阻尼介质中所受的阻力。

2、一摆在空中振动,某时刻,振幅为A0=0.03m,经t1=10s后,振幅变为

A1=0.01m。问:由振幅为A0时起,经多长时间,其振幅减为A2=0.003m

3、火车在行驶,每当车轮经过两根铁轨的接缝时,车轮就受到一次冲击,从而使装在弹簧上的车厢发生上下振动。设每段铁轨长12.6m,如果车厢与载荷的总质量为55 t,车厢下的减振弹簧每受10 kN(即1 t质量的重力)的载荷将被压缩0.8 mm。试问火车速率多大时,振动特别强(

这个速率称为火车的危险速率。)目前,我国铁路提速已超过140 km/h,试问如何解决提速问题。

练习三

一、选择题

1、下列关于LC振荡电路中说法不正确的是( )

(A)电路中电流和电容器上的电量的变化也是一种简谐振动

(B)电容器放电完毕时,电路中的电流达到最大值 (C)电场能和磁场能相互转化,但总的电磁能量保持不变 (D)电容器充电时,由于线圈的自感作用,电流只能逐渐增大 2、LC 振荡电路中电荷和电流的变化,下列描述不正确的是( ) (A) 电荷和电流都作谐振动 (B) 电荷和电流都作等幅振动 (C) 电荷的相位比电流的相位超前π/2 (D) 电荷和电流振动的频率相同

3、两同方向同频率的简谐振动的振动方程为)2

5cos(61π

+=t x (SI ),

)25cos(22π

-=t x (SI ),则它们的合振动的振动方程应为( )

(A) ()SI 5cos 4t

x = (B) ()()SI 5cos 8π-=t x

(C) ()SI 210cos 4?

?? ?

?

+=πt x (D)()SI 25cos 4??

?

?

?+=πt x

4、已知两同方向同频率的简谐振动的振动方程分别为)

3cos(11π

ω+=t A x (SI ),)6

cos(22π

ω-=t A x (SI ),则它们的合振幅应为( )

(A)21A A - (B) 21A A + (C)2

221A A + (D)

2

221A A -

二、填空题

1、两个同方向同频率的简谐振动,其振动表达式分别为:

)215cos(10621π+?=-t x (SI) , )5cos(1022

2t x -π?=- (SI)

它们的合振动的振辐为 ,初相为 。

2、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

)41cos(05.01π+=t x ω (SI), )

129

cos(05.02π+=t x ω (SI)

其合成运动的运动方程为x = 。

3、已知一物体同时参与两个同方向同频率的简谐振动,这两个简谐振动的振动曲线如下图所示,其中A 1>A 2,则该物体振动的初相为__ __。

4、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6。若第一个简谐振动的振幅为310cm = 17.3 cm ,则第二个简谐振动的振幅为__ __ cm ,第一、二两个简谐振动的相位差φ1 - φ2为 。 三、计算题

1、由一个电容C =4.0μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q 0=6.0×10-5

C 时开始作无阻尼自由振荡,试求: (l )电场能量和磁场能量的最大值;

(2)当电场能量和磁场能量相等时,电容器上的电荷量。

2、三个同方向、同频率的谐振动为

10.1cos(10)()6x t m π

=+

20.1cos(10)()2x t m π

=+

350.1cos(10)()6

x t m π

=+

试利用旋转矢量法求出合振动的表达式。

3、当两个同方向的谐振动合成为一个振动时,其振动表达式为

cos2.1cos50.0x A t t =

式中t以s为单位。求各分振动的角频率和合振动的拍的周期。

第十一章

练习一

一、选择题

1、当一列机械波在弹性介质中由近向远传播的时候,下列描述错误的是( )

(A)机械波传播的是介质原子

(B)机械波传播的是介质原子的振动状态

(C)机械波传播的是介质原子的振动相位

(D)机械波传播的是介质原子的振动能量

2、已知一平面简谐波的表达式为)

y-

=(a、b为正值常量),则

at

cos(bx

A

( )

(A)波的频率为a;(B)波的传播速度为b/a;

(C)波长为π / b;(D

3

)

(A)其周期为8s

(B)其波长为10m

(C)x=6m的质点向右运动

(D)x =6m 的质点向下运动

4、如右图所示,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则( )

(A )O 点的振动方程为 []cos (/)y A t l u ω=-; (B )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=--; (C )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=+-; (D )C 点的振动方程为 []cos (3/)y A t l u ω=-。 二、填空题

1、有一平面简谐波沿Ox 轴的正方向传播,已知其周期为s 5.0,振幅为m 1,波长为m 2,且在0=t 时坐标原点处的质点位于负的最大位移处,则该简谐波的波动方程为 。

2、已知一简谐波在介质A 中的传播速度为u ,若该简谐波进入介质B 时,波长变为在介质A 中的波长的两倍,则该简谐波在介质B 中的传播速度为 。

3、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI),则

1= 10m x 点处质点的振动方程为________________________________; 1= 10m x 和2= 25m x 两点间的振动相位差为_____________。

4

该时刻质点A 为 ,B 、C 、D 质点在该时刻的 运动方向为B ,C ,D 。

三、计算题

1、一横波沿绳子传播时的波动方程式为

0.05cos(104)y t x ππ=-

)

x ,y 的单位为m ,t 的单位为s 。

(l )求此波的振幅、波速、频率和波长;

(2)求绳子上各质点振动的最大速度和最大加速度;

(3)求x =0.2m 处的质点在t =1s 时的相位,它是原点处质点在哪一时刻的相位

(4)分别画出t =1s ,1.25s ,1.50s 各时刻的波形。

2、设有一平面简谐波

0.02cos 2(

)0.010.3

t x y π=- x ,y 以m 计,t 以s 计。

(1)求振幅、波长、频率和波速。 (2)求x =0.1m 处质点振动的初相位。

3、已知一沿x 轴正向传播的平面余弦波在t =1/3s 时的波形如右图所示,且周期T =2s 。 (1)写出O 点和P 点的振动表达式; (2)写出该波的波动表达式; (3)求P 点离O 点的距离。

练习二

一、选择题

1、当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?( ) (A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同;

(C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等;

(D )媒质质元在其平衡位置处弹性势能最大。 2、下列关于电磁波说法中错误的是( ) (A)电磁波是横波 (B)电磁波具有偏振性

(C)电磁波中的电场强度和磁场强度同相位

(D)任一时刻在空间中任一点,电场强度和磁场强度在量值上无关

3、一平面简谐波沿Ox 轴负方向传播,其波长为λ,则位于λ=1x 的质点的振动与位于2/2λ-=x 的质点的振动方程的相位差为( ) (A)π3- (B)π3 (C)2/3π- (D)2/π

4、一平面简谐波沿Ox 轴正方向传播,其波速为u ,已知在1x 处的质点的振动方程为()0cos ?ω+=t A y ,则在2x 处的振动方程为( )

(A)??????+??? ??-+=012cos ?ωu x x t A y (B)???

???+??? ??++=012cos ?ωu x x t A y

(C)??????+??? ??--=012cos ?ωu x x t A y (D)???

???+??? ??+-=012cos ?ωu x x t A y 二、填空题

1、已知两频率相同的平面简谐波的强度之比为a ,则这两列波的振幅之比为 。

2、介质的介电常数为ε,磁导率为μ,则电磁波在该介质中的传播速度为 。

3、若电磁波的电场强度为E ,磁场强度为H ,则该电磁波的能流密度为 。

4、一平面简谐波,频率为31.010Hz ?,波速为31.010m/s ?,振幅为

41.010m ?,在截面面积为424.010m -?的管内介质中传播,若介质的密度为

238.010kg m -??,则该波的能量密度__________________;该波在60 s 内垂直通

过截面的总能量为_________________。

三、计算题

1、一平面简谐声波的频率为500Hz ,在空气中以速度u =340m/s 传播。到达人耳时,振幅A =10-4cm ,试求人耳接收到声波的平均能量密度和声强(空气的密度ρ=1.29kg/m 3)。

2、一波源以35000W的功率向空间均匀发射球面电磁波,在某处测得波的平均能量密度为7.8×10-15J/m3,求该处离波源的距离。电磁波的传播速度为3.0×108m/s。

3、一列沿x正向传播的简谐波,已知t1=0和t2=0.25s

时的波形如右图所示。试求:

(l)P的振动表达式;

(2)此波的波动表达式;

(3)画出O点的振动曲线。

练习三

一、选择题

1、两列波要形成干涉,要满足相干条件,下列选项中不属于相干条件的是( ) (A)频率相同 (B)振动方向相同 (C)相位差恒定 (D)振幅相同

2、在波长为λ 的驻波中,两个相邻波腹之间的距离为( ) (A) λ /4 (B) λ /2 (C) 3λ /4 (D) λ

3、下列关于驻波的描述中正确的是( ) (A)波节的能量为零,波腹的能量最大 (B)波节的能量最大,波腹的能量为零 (C)两波节之间各点的相位相同 (D)两波腹之间各点的相位相同

4、设声波在媒质中的传播速度为u ,声源的频率为S ν。若声源S 不动,而接收器R 相对于媒质以速度R v 沿着S 、R 连线向着声源S 运动,则位于S 、R 连线中点的质点P 的振动频率为( ) (A )S ν; (B )

R

S u v u

ν+; (C )

S R

u

u v ν+; (D )

S R

u

u v ν-。

二、填空题

1、如图所示,有两波长相同相位差为π

1S , 2S ,发出的简谐波在距离1S 为a ,距离2S 为b

(b>a )的P 谐波的波长为 。

2、当一列弹性波由波疏介质射向波密介质,在交界面反射时,反射波与入射波间有π的相位突变,这一现象被形象化地称为 。

3、如图所示,两列相干波在P 点相遇。一列波在B 点引起的振动是

310310cos2y t -=?π;另一列波在C 点引起的振动是3

2013102

y -=? 令0.45 m BP =,0.30 m CP =,两波的传播速度= 0.20 m/s u 。 若不考虑传播途中振幅的减小,则P ____________________________________。

4、一列火车以20 m /s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在火车前和火车后所听到的声音频率分别为______和_____________(设空气中声速为340 m/s )。 三、计算题

1、同一介质中的两个波源位于A 、B 两点,其振幅相等,频率都是100Hz ,相位差为π,若A 、B 两点相距为30m ,波在介质中的传播速度为400m/s ,试求AB 连线上因干涉而静止的各点的位置。

2、两个波在一很长的弦线上传播,设其波动表达式为

10.06cos (0.020.8)2

y x t π

=- 20.06cos

(0.020.8)2

y x t π

=+

用SI 单位,求:

(1)合成波的表达式;

(2)波节和波腹的位置。

3、(1)火车以90km/h的速度行驶,其汽笛的频率为500Hz。一个人站在铁轨旁,当火车从他身旁驶过时,他听到的汽笛声的频率变化是多大?设声速为340m/s。

(2)若此人坐在汽车里,而汽车在铁轨旁的公路上以54km/h的速率迎着火车行驶。试问此人听到汽笛声的频率为多大?

答案

第十章 练习一 一、选择题 1、(C);

A 中小球没有受到回复力的作用;

B 中由于是大角度,所以θ与sin θ不能近似相等,不能看做简谐振动; D 中球形木块所受力F 与位移x 不成线性关系,故不是简谐振动 2、(C);

s T t T x

a x a 2.24

22,2

222,22===

∴==

===ππω

πωω

3、(D); 0=t A x -=0 00?v 则π?=

4、(A); 20002

1

A k E = 04k k = 2

42000A

k E A == 二、填空题

1、()0sin ?πω+-A 、()02cos ?πω+-A

2、T 6

g

l

T π

20= 单摆拿到月球上, 06266

2T g l g l T =?==ππ 3、7﹒78cm 、8s

4、34、1

4

、2±

当位移是振幅的一半时,43

,412

121,222

===∴=E E kA kx

E

E A x k p

当,22A x ±=k p p E E E kA kx E E ==∴==∴21,212121,22 三、计算题

1、解:(1)设cos()()x A t m ω?=+

由图可知,A =0.10m ,x 0=A /2=0.05m ,v 0>0,所以?π=-

t =1s 时,x 1=0,故56πω=

所以质点振动的运动方程为50.10cos()()63

x m ππ

=- (2)P 点的相位为零 (3)由5063

P t ππ

?=-=得t =0.4s

2、解:已知A =24cm ,T =4.0s ,故ω=π/2 t =0时,x 0=A =24cm ,v 0=0,故0?= 所以振动方程为0.24cos()()2x t m π

=

(1)0.50.17t x m == (2)2220.50.5

0.419/t t d x a m s dt ====-,故30.50.5 4.1910t t F ma N -====-?指向平衡位置

(3)由振动方程得0.122

3

x t

ππ

?===±

,因为此时v <0,相位取正值,

所以t =0.67s

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理习题与作业答案

理想气体状态方程 5-1一容器内储有氧气,其压强为1.01?105Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol =Θ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρΘ, kg 1033.510 44.230 .12625 2 -?=?= = ∴n m O ρ (4)m 1045.310 44.21193253 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大? 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有

RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-== 上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将2.0?10-2kg 的氢气装在4.0?10-3m 2的容器中,压强为3.9?105Pa ,则氢分子的平均平动动能为多少? 解:RT M m pV mol = Θ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少? 解:kT N t 23=∑ε,其中N 为总分子数。kT V N nkT p = =Θ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均 平动动能等于1eV ,气体的温度需多高?(1eV=1.6?10-19J )

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理上学习指导作业参考答案

第一章 质点运动学 课 后 作 业 1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为] a =2+6 x 2 (SI) 如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v , 62d d d d d d 2x t x x t a +=?== v v 2分 () x x x d 62d 0 20 ??+=v v v 2分 () 2 21 3 x x +=v 1分 2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 3分 v d =x /d t 2=t 2 t t x t x x d 2d 0 2 ??= x 2= t 3 /3+x 0 (SI) 2分 3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为 22 1 ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向 加速度大小相等时所经历的时间. 解: ct b t S +==d /d v 1分 c t a t == d /d v 1分 ()R ct b a n /2 += 1分 根据题意: a t = a n 1分 即 ()R ct b c /2 += 解得 c b c R t -= 1分

4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小. 解:根据已知条件确定常量k () 222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωv s t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分 ()8.352 /122=+=n t a a a m/s 2 1分 5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上? 解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分 抛出后上升高度 9.4522 ='=g h v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 202 1 )(gt t t -+=v v v 1分 08.420==g t v s 1分 6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.

《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出22r x y = + dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均

大学物理(上册)参考答案

第一章作业题 P21 1.1; 1.2; 1.4; 1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x ,a 的单位为2 s m -?,x 的单 位为 m. 质点在x =0处,速度为101 s m -?,试求质点在任何坐标处的速度值. 解: ∵ x v v t x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2 +==υυ 两边积分得 c x x v ++=32 2221 由题知,0=x 时,100 =v ,∴50=c ∴ 1 3s m 252-?++=x x v 1.10已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 1 223 4c t t v ++= 由题知,0=t ,00 =v ,∴01=c 故 2234t t v + = 又因为 2 234d d t t t x v +== 分离变量, t t t x d )23 4(d 2+= 积分得 2 3221 2c t t x ++= 由题知 0=t ,50 =x ,∴52=c 故 52123 2++ =t t x 所以s 10=t 时 m 70551021 102s m 1901023 10432101210=+?+?=?=?+ ?=-x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33 t ,θ式中以弧度计,t 以秒

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

相关文档
最新文档