流固耦合

流固耦合
流固耦合

关键词流固耦合; 气动弹性; 水动弹性; 非线性动力学; 计算力学

1 定义和特点

流固耦合力学是流体力学与固体力学交叉而生成的一门力学分支. 顾名思义, 它是研究

变形固体在流场作用下的各种行为以及固体位形对流场影响这二者交互作用的一门科学. 流

固耦合力学的重要特征是两相介质之间的交互作用(f lu id2so lidin teract ion) : 变形固体在流体

载荷作用下会产生变形或运动, 而变形或运动又反过来影响流场, 从而改变流体载荷的分布

和大小. 正是这种相互作用将在不同条件下产生形形色色的流固耦合现象.

流固耦合问题可由其耦合方程来定义[ 1 ]. 这组方程的定义域同时有流体域与固体域, 而未

知变量含有描述流体现象的变量及描述固体现象的变量, 一般而言, 具有以下两点特征:

a) 流体域或固体域均不可能单独地求解;

b) 无法显式地消去描述流体运动的独立变量或描述固体运动的独立变量.

从总体上来看, 流固耦合问题按其耦合机理可分为两大类. 第一大类问题的特征是两相

域部分或全部重叠在一起, 难以明显地分开, 使描述物理现象的方程, 特别是本构方程需要

针对具体的物理现象来建立, 其耦合效应通过描述问题的微分方程而体现. 图1给出的渗流问

题是这类问题的典型例子, 描述其现象的微分方程如下[ 2 ]:

其中, y表示梯度算子, u 表示土壤骨架的位移矢量, p 为渗流压力, R 是应力张量(用矢量式) , L 是相应于应变的微分算子, D 是弹性矩阵, b 是体力矢量, k 是渗透率, K f 是流体的体积模量, n 是空隙率, m = [1, 1, 1, 0, 0, 0 ]T . 这里, 由于耦合效应, 固体的本构关系中出现了压力项.

土壤渗流相互作用

第二大类问题的特征是耦合作用

仅仅发生在两相交界面上, 在方程上耦合是由两相耦合面的平衡及协调关系引入的. 本文中, 我们主要讨论这一

类问题.对于第二大类问题, Zienk iew icz与其合作者Bet tess 在文[3 ] 中按两相间相对运动的大小及相互作用性质将其分为三小类. 图2中示出了这三种问题.

问题a) 是流体与固体结构之间有大的相对运动的问题. 其典型

例子是机翼颤振或悬桥振荡中发生的气固相互作用, 这被人们习

惯称其为气动弹性力学问题. 在这类问题中的基本物理关系和物

理过程可用易于理解的所谓方块图加以描述, 这种方法由著名力

学家冯元桢(Y. C. Fung) 教授[ 425 ]引用到气动弹性力学中来, 特别是对于气动弹性稳定问题中的反馈过程, 用这种方法说明是很有启发性的. 图3示出了机翼颤振的这一方框图. 图中三个方框表示了机翼(结构) 在这类问题中执行的三种不同功能: 首先它产生空气动力, 其次是产生惯性力, 再就是它产生弹性变形. 机翼按空气动力学规律产生升力A , 而机翼振动时则引起惯性力I . 这两种力A + I 使弹性机翼产生变形H, 从而又产生新的作用力A 和I , 这

样, 以反馈过程的形式构成一条闭合回路, 如果出现变形的振幅随时间不断增大的现象, 则称为颤振.

图4 流固耦合问题中各种力之间的相互关系图

问题b) 是具有流体有限位移的短期问题. 这类问题由引起位形

变化的流体中的爆炸或冲击引起.其特点是: 人们极其关心的相互

作用是在瞬间完成的, 总位移是有限的, 但流体的压缩性是十分重要的.

问题c) 是具有流体有限位移的长期问题, 如近海结构对波或地震的响应、噪声振动的响应、充液容器的液固耦合振动、船水响应等

都是这类问题的典型例子. 对这类问题, 人们主要关心的是耦合系统

对外加动力载荷的动态响应.

图4 中示出了流固耦合中各种

力之间的相互影响关系. 其中, 两个虚线描绘的大圆周分别划出了

流体与固体. 在这两个圆周相切的地方, 用一个小圆表示了两相耦合

界面. 通过耦合界面, 流体动力影响固体运动, 而固体的运动又影响

流场. 在耦合界面上, 流体动力及固体的运动事先都不知道, 只有在

系统地求解了整个耦合系统后, 才可给出它们的解答, 这正是相互作

用的特征所在. 若没有这一特征, 其问题将失去耦合作用的性质. 例如, 若给定流固交界面上的流体动力或交界面上固体结构的运动规律, 耦合机理将会消失, 原来的耦合系统将被解耦而成为单一固体在给定表面力下的动力问题及单

一流体在给定边界条件下的流体力学边值或

初边值问题.在最一般情况下, 流体与固体通过两相交界面的相互作用同时受流体及固体各自的弹性力和惯性力影响, 这_______就是两个大圆周中间方框中表示的一般流固耦合问题. 随着研究问题的

目的不同, 可将着眼点放在流场或固体结构上进行研究. 流体力学工作者多着眼于流场, 而

固体力学工作者则注重结构. 在工程实际问题中, 可针对不同性质的问题, 作相应的简化, 从

而便有简化后的耦合问题. 例如, 研究水同结构相互作用的非短期问题时, 水的可压性可以

不计, 这就构成不可压流体同固体的耦合问题. 类似地, 若忽略结构的弹性变形, 就有刚体

同流体的相互作用问题. 在航空中, 独成一个学科的刚体飞机飞行力学问题就是重要的例子.

也可以在某些问题中忽略流体或固体的惯性效应, 从而有忽略流体惯性的耦合问题及忽略固

体惯性的耦合问题. 在空气弹性力学中的静力发散, 舵面效率等问题即是重要的忽略结构惯

性的流固耦合问题. 至于忽略流体惯性时的耦合问题, 其本质就是将流体(通常为气体) 视

为一弹簧, 如空气弹簧, 这在工程中也常常见到. 所有这些简化后的耦合问题, 包括非耦合

性质的可压流体动力学及变形固体动力学问题, 在图4中用虚线圆周上的方框表示出来. 于是,

每种流固耦合问题可以按该问题中诸力所处的相互关系而进行直观的区分.

2 发展简史

流固耦合问题由于其交叉性质, 从学科上涉及流体力学、固体力学、动力学、计算力学等学科的知识; 从技术上与不同工程领域, 如土木、航空航天、船舶、动力、海洋、石化、机械、核动力、地震地质、生物工程等均有关系. 其研究问题甚广, 难以确定合适的研究分类,而且随着科学技术的发展, 其分类也在不停的变化, 这里以美国机械工程师学会(A SM E) 出

流固耦合应用研究进展

文章编号:1671-3559(2004)02-0123-04 收稿日期:2003-12-03 基金项目:山东省科学技术发展计划资助项目(012050107);山 东省自然科学基金资助项目(Y 2002F19) 作者简介:郭术义(1971-),男,山东济南人,山东大学机械工 程学院博士研究生。 流固耦合应用研究进展 郭术义,陈举华 (山东大学机械工程学院,山东济南250061) 摘 要:流固耦合力学是一门新兴学科。本文简要介绍了该学科的典型应用进展情况,总结了各种研究中的典型方程、数值解法,展望了进一步发展的趋势。关键词:流固耦合;数值模拟;展望中图分类号:O35112;O34717 文献标识码:A 流固耦合力学是一门比较新的力学边缘分支, 是流体力学与固体力学二者相互交叉而生成的。它的研究对象是固体在流场作用下的各种行为以及固体变形或运动对流场的影响。流固耦合力学的重要特征是两相介质之间的相互作用:固体在流体动载荷作用下产生变形或运动,而固体的变形或运动又反过来影响到流场,从而改变流体载荷的分布和大小。总体上,流固耦合问题按耦合机理可分为两大类:一类的特征是流固耦合作用仅仅发生在流、固两相交界面上,在方程上耦合是由两相耦合面的平衡及协调关系引入的;另一类的特征是流、固两相部分或全部重叠在一起,耦合效用通过描述问题的微分方程来实现。本文就流固耦合问题的两大分类中三种基本情况进行了讨论。 1 流固耦合典型应用 流固耦合作用的研究在航空、航天、水利、建筑、石油、化工、海洋以及生物领域都有着十分重要的意义。如液体晃动对火箭飞行稳定性的影响,大型贮液管在地震激励作用下产生的流固耦合作用,液体湍振对输液管道的影响。本文就如下三个大方面进行了总结。1.1 输流管道流固耦合 流体引起输流管道振动的研究最初来源于横跨 阿拉伯输油管道振动的分析[1]。管道在众多的工业领域中应用十分广泛,作用极其重要。但是,在管道 内流体流动状态的微弱变化往往引起在工作过程中的湍振现象,诱发流体、管道之间的耦合振动,动力学行为相当复杂。这使得人们很早就开始了这方面的研究,Paidoussis M P [2]是其中最具有代表性的。输流管道的振动问题之所以能引起学者的兴趣,除因为该问题的广泛工业背景和现实意义之外,还因为输流管道虽然是最简单的流固耦合系统,但它却涉及了流固耦合的大多数问题,并且它的物理模型简单,系统比较容易实现,因而便于理论与试验的相互协同。 考虑因素侧重面的不同,输液管道非线性运动方程有几种类型[3-5],它们之间有一定的差别。它们的基本假设都是:流体无粘且不可压;管道作为梁模型来处理;管道只是在平面内振动。尽管输流管道的非线性动力问题受到50多年极为广泛的研究,但至今尚没有一个公认的模型。文[6]建立的4个独立变量(轴向位移、横向位移、流速和压力)的全耦合模型(耦合形式包含摩擦耦合、P oiss on 耦合、结合部耦合以及管道轴向和横向运动的耦合)在众多的非线性分析模型中是一个较为完整的模型。 m ¨u +m f [ υf (1+u ′)+2υf u ′+υ2 f u ″+ ωυ′f ]+ P (υf + u )/c 2F -[(1-2υ)P (1+u ′)]′+4f ρf ρ′?υ2f /DK -gm f (1-2υ)(1+u ′)ω′-EI (7ω″ω +ω′ ω )-E A p (2u ″+6u ′u ″+2ω′ω″ )/2=0(1)m ¨ω+m f [ υf (1+ω′)+2υf ω′+υ2f u ″+ω″υ2 f ]+ P (υf + ω)/c 2F -[(1-2υ)P ω′]′-gm +EI ω″″-EI (u ′ω′+6u ″ω +4u ′ω ′)-E A p (u ″ω′+u ′ω″ )=0(2) P /c 2F +m f [(1-2υ)( u +υf )u ″- u ′+υ′f ]-m f (1-2υ)( u ′+u ′ u ′+ω′ ω′ )=0(3)P ′+m f (¨u + υf )+m f ¨ωω′+gm f ω′+Df ρf υ2 f /2=0 (4)随着对输流管道问题研究的深入,各种不同的 分析计算方法也相继被提出。其中有限元法(FE M ) 第18卷第2期2004年6月 济南大学学报(自然科学版) JOURNA L OF J I NAN UNI VERSITY (Sci.&T ech 1) V ol.18 N o.2 Jun.2004

ansys流固耦合模态分析

有问题可以发邮件给我一起讨论xw4996@https://www.360docs.net/doc/2b18869257.html, FSI流固耦合命令求解流固耦合问题 使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。SOLID45单元用于构造三维实体结构。单元通过8 个节点来定义,每个节点有 3 个沿着XYZ方向平移的自由度。PLANE42是SOLID45单元在二维上的简化。 在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,表示分界面处有结构,其他流体单元KEYOPT(2)=1,表示分界面处无结构。流体-结构分界面通过面载荷标志出来,指定FSI label可以把分界面处的结构运动和流体压力耦合起来,分界面标志在分界面处的流体单元标出。 数值分析的步骤 1) 建立流体单元的实体模型。建立流体模型,需要确定流体域的范围,可以把无限边界流体简化成流体区域的半径为固体结构半径的10倍。 2) 标记流固耦合界面。选取流体单元中流固交界面上的节点,执行FSI 命令,流固耦合交界面的处理:流体与固体是两个独立的实体,在划分单元时在两者交界面上的单元网格要划分一致,这样在交界面上的同一位置一般就有两个重合的节点,一个节点属于流体单元,一个节点属于固体单元,这两个重合节点在交界面的位移强制保持一致。 3) 建立固体结构实体模型。建立固体结构模型,定义单元属性,采用映射方式进行网格的划分。 4) 施加约束条件。由于流体区域的尺寸远大于固体结构尺寸,故可以不考虑流体液面的重力的影响,将流体边界处的单元节点上施加压力(PRES) 为零的约束。因为选择的算例为悬臂结构,在固体结构底部加全约束。 5) 选择求解算法,进行求解。定义分析类型为模态分析,设定提取频率阶数和提取模态的方法。因为耦合问题的刚度矩阵,质量矩阵都不对称,需要采用非对称矩阵法(UNSYMMETRIC)求解。 6) 查看结果。进入后处理模块,查看结构模型的频率及振型。 以半浸没与水中的桥墩模态问题为背景,并假设: 1. 桥墩为实心等截面的实体,实际桥墩模型应该是空心壳体,截面尺寸也 非常复杂,因而需要分块划分单元。

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例 Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: , Features , Overview of the Problem to Solve , Setting up the Solid Physics in Simulation (ANSYS Workbench) , Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre , Obtaining a Solution using ANSYS CFX-Solver Manager , Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: , Setting the Working Directory , Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include:

ansys workbench 流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: ?Features ?Overview of the Problem to Solve ?Setting up the Solid Physics in Simulation (ANSYS Workbench) ?Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre ?Obtaining a Solution using ANSYS CFX-Solver Manager ?Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: ?Setting the Working Directory ?Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include: ?OscillatingPlate.pre ?OscillatingPlate.agdb ?OscillatingPlate.gtm ?OscillatingPlate.inp 1.Features This tutorial addresses the following features of ANSYS CFX.

(完整版)流固耦合教学

1、打开ANSYS Workbench, 拖动各模块到空白区,并照此连接各模块。 2 2、打开第一个模块当中的Geometry,建立几何模型: (1)在XY Plane内建立Ship Shell 船长:0.4、船宽:0.14、型深0.11 将第一个Solid重命名为Ship Solid 在Concept中选择Surfaces From Faces,选中模型的六个面,然后Apply、Generate。 重命名第二个Ship Solid为Ship Shell 右击Ship Solid, 选择Hide Body,显示Ship Shell, 然后对Ship Shell执行同样操作(即隐去)

(2)在YZ Plane内建立液舱 单击(New Plane),选择YZ plane,,Apply一下 将YZ Plane 向X正方(图中为法向,即Z)向偏移0.02m Generate一下,然后Show body 一下Ship Solid 与Ship Shell 可以看到YZ Plane已平移到Body内了 再将Ship Solid 与Ship Shell 都Hide,选择Plane 4,调为正视,Generate一下 新建一个Sketch:单击,显示,在此Sketch中建立液舱模型草图

单击约束(Constrains),将草图中的“水平线”调整为水平,“垂直线”调整为垂直: 事实上仅用Horizontal(水平)和Vertical(垂直)就OK了。以水平约束为例,先单击Horizontal,再依次单击草图中的水平线段。调整后如下图所示: 定义尺寸: 左下角空缺的部分是预留贴“应变片”的部分,需要单独建模 单击Extrude(拉伸),设置Operation(下拉列表中改选为Add Frozen)与拉伸尺寸(0.1m): 然后Generate一下

[P]ABAQUS流固耦合之--增量步参数设置

1. ABAQUS流固耦合分析步参数设置 (1)abaqus流固耦合分析步参数设置-BASIC TIME PERIOD为该分析步总时间,例如图中设定为86400s(该单位与建模时设置的系统单位一致,以下时间单位均默认为秒),则认为该分析步在86400s即24h内完成。 (2)EDIT STEP—INCREMENTATION,增量步的设置 通常type选择automatic选项,即系统根据计算速度及收敛程度自动调整增量步(fixed为固定增量步,如每一步设置8640,则进行10步,最终总时间为86400,该选项不建议适用,模型复杂时易导致不收敛) Maximum number of increments,默认为100,模型复杂不易收敛时,可将其调大,即最大迭代次数增加(通常设置1000即足够)。 Initial,初始增量步,通常设定为time period的0.1~0.01倍,若模型收敛性较好,则系统将通过automatic功能自动调大增量步,加快计算速度。 Max.pore pressure change per increment,允许每步最大增量,该选项建议调大,例如本模型初始孔压最大值为6e5pa,则该选项可设定大于e5的数量级(设置过小,如e-5,则每步允许增量步太小,反复迭代次数过多易导致不收敛),End step when pore pressure change rate is less than可不设置,即认为其计算至最后终止。

(3)other其他选项 非线性模型求解通常勾选unsymmetric。 以下为网络帖子,其所遇到问题正是由于增量步设置导致(尤其最大允许增量步的设置),供参考。 2. 帖1 [流固耦合] abaqus流固耦合进行瞬态分析时,设定的UTOL是什么意义? 如题,最近模拟的是注水试验过程,在进行瞬态渗流分析时,采用自动时间步长里要设置一个UTOL的值,书中说这个值是增量步中允许的孔压变化最大值,决定了孔压对时间积分的精确度。 我想说的是,一开始我设置的这个UTO值比较小,但是计算怎么都不收敛,老是提醒我说time increment required is less than the minimum specified. 后来尝试了很多办法还是解决不了,最后将我原本设定的UTOL值放大了100倍,就计算成功了。 实在是想不通是为什么,这个UTOL到底是什么意思?论坛里也没有关于这个值的具体解释,希望提出来有哪位大侠指点一二,万分拜谢!

流固耦合概述及应用研究进展

流固耦合概述及应用研究进展 摘要 流固耦合力学是流体力学与固体力学交叉而生成的一门力学分支。顾名思义,它是研究变形固体在流场作用下的各种行为以及固体位形对流场影响这二者交互作用的一门科学。流固耦合力学的重要特征是两相介质之间的交互作用(fluid.solid interaction):变形固体在流体载荷作用下会产生变形或运动,而变形或运动又反过来影响流场,从而改变流体载荷的分布和大小。总体上 , 流固耦合问题按耦合机理可分为两大类:一类的特征是流固耦合作用仅仅发生在流、固两相交界面上 ,在方程上耦合是由两相耦合面的平衡及协调关系引入的;另一类的特征是流、固两相部分或全部重叠在一起 ,耦合效用通过描述问题的微分方程来实现。 1 流固耦合概述 1.1引言 历史上,人们对流固耦合现象的早期认识源于飞机工程中的气动弹性问题。Wright兄弟和其它航空先驱者都曾遇到过气动弹性问题。直到1939年二战前夕,由于飞机工业的迅猛发展,大量出现的飞机气动弹性问题的需要,有一大批科学家和工程师投入这一问题的研究。从而,气动弹性力学开始发展成为一门独立的力学分支。如果将与飞机颤振密切相关的气动弹性研究作为流固耦合的第一次高潮的话,则与风激振动及化工容器密切相关的研究可作为流固耦合研究的第二次高潮。 事实上,从美国ASME应用力学部召开的历次流固耦合研讨会上可以看出,流固耦合问题涉及到很多方面。比如:空中爆炸及响应,噪声相互作用问题,气动弹性,水弹性问题,充液结构内的爆炸分析,管道中的水锤效应,充液容器的晃动及毛细流中血细胞的变形,沉浸结构的瞬态运动,流固相互冲击,板的颤振及流体引起的振动,圆柱由于热交换引起支持附件松动的非线性流固耦合系统,声音与结构的相互作用,涡流与结构的相互作用,机械工程中的机械气动弹性问题等等。 1.2流固耦合力学定义和特点 流固耦合力学是流体力学与固体力学交叉而生成的--I'l力学分支。顾名思义,它是研究变形固体在流场作用下的各种行为以及固体位形对流场影响这二者交互作用的一门科学。流固耦合力学的重要特征是两相介质之间的交互作用(fluid-solid interaction).变形固体在流体载荷作用下会产生变形或运动,而变形或运动又反过来影响流场,从而改变流体载荷的分布和大小。正是这种相互作用将在不同条件下产生形形色色的流固耦合现象。流固耦合问题可由其耦合方程来定义,这组方程的定义域同时有流体域与固体域,而未知变量含有描述流体现象的变量及描述固体现象的变量,一般而言,具有以下两点特征: a)流体域或固体域均不可能单独地求解; b)无法显式地消去描述流体运动的独立变量或描述固体运动的独立变量。 1.3流固耦合力学涉及领域及分类 流固耦合问题涉及到很多方面。比如:工程实际中所涉及到的流固耦合问题,

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

(完整版)5流固耦合

第五章 轴流泵的流固耦合 5-1 流固耦合概论 流固耦合问题一般分为两类,一类是流‐固单向耦合,一类是流‐固双向耦合。单向耦合 应用于流场对固体作用后,固体变形不大,即流场的边界形貌改变很小,不影响流场分布的, 可以使用流固单向耦合。先计算出流场分布,然后将其中的关键参数作为载荷加载到固体结 构上。典型应用比如小型飞机按刚性体设计的机翼,机翼有明显的应力受载,但是形变很小, 对绕流不产生影响。当固体结构变形比较大,导致流场的边界形貌发生改变后,流场分布会 有明显变化时,单向耦合显然是不合适的,因此需要考虑固体变形对流场的影响,即双向耦 合。比如大型客机的机翼,上下跳动量可以达到5 米,以及一切机翼的气动弹性问题,都是 因为两者相互影响产生的。因此在解决这类问题时,需要进行流固双向耦合计算。下面简单 介绍其理论基础。 连续流体介质运动是由经典力学和动力学控制的,在固定产考坐标系下,它们可以被表 达为质量、动量守恒形式: ()0v t ρρ?+??=? (1) ()B v vv f t ρρτ?+??-=? (2) 式中,ρ为流体密度;v 为速度向量;B f 流体介质的体力向量;τ为应力张量;在旋 转的参考坐标系下,控制方程变为: ()0r v v t ρρ?+??=? (3) (-)+B r r c v v v f f t ρρτ?+??=? (4) 形式和固定坐标系下基本相同,只是速度变成了相对速度,另外就是增加了附加力项 c f 。 固体有限元动力控制方程为: []{}[]{}{}...[]{}M u C u K u F ++= (5) 式中,[]M ,[]C ,[]K 分别是质量矩阵,阻尼矩阵以及刚度矩阵,{}F 为载荷矩阵。 流固耦合遵循最基本的守恒原则,所以在流固耦合交界面处,应满足流体与固体应力、 位移、热流量、温度等变量的相等或守恒,即满足如下四方程: f f s s n n ττ?=? (6) f s d d = (7) f s q q = (8) f s T T = (9) 5-2 单向流固耦合

基于LSDYNA及FLUENT的板壳结构流固耦合分析

基于 LS-DYNA 及 FLUENT 的板壳结构流-固耦合分析
汪丽军 北京航空航天大学,交通科学与工程学院 100191
[摘 要]: 本文采用 ANSYS 显示动力分析模块 LS-DYNA 及流场分析模块 FLUENT,对水下的板壳 结构运动及其界面的流-固耦合现象进行了仿真分析。流场计算得到的界面压强数据以外载荷 的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分 布。通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。仿真结 果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流-固耦合问题。 [关键词]: 板壳结构 流-固耦合 有限元方法 ANSYS
Analysis of Fluid-Structure Interaction for Plate/Shell Structure Based on LS-DYNA and FLUENT
Wang Lijun School of Transportation Science & Engineering, Beihang University 100191
Abstract: In this paper,the movement of plate under water and the fluid-structure interaction(FSI) is simulated numerically by combining explicit dynamic solver LS-DYNA and computational fluid dynamics solver FLUENT in ANSYS. The pressure obtained from the calculation of flow field are applied as external loads on the surface of the plate, then the structural deformation and displacement can be calculated as well, which will affect the shape and pressure distribution of the flow field reversely. After sequential coupling iterations the dynamic response of the structure and flow field distribution are obtained consequently. By comparing numerical and experimental results it is proved that this proposed coupling method is suitable for solving such a kind of FSI problems considering both large displacement and comparatively large deformation. Keyword: Plate/shell structure, Fluid-Structure Interaction, Finite element method,ANSYS
1
前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋 以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移 和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。

几个耦合的例子

一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合的例子 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1 ! type,1 mat,1 real,1 asel,u,loc,y,width amesh,all alls ! type,2 mat,2 vmesh,all

ansys14workbench血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例 根据收集得一些资料,进行学习后,试着做了这个ansys14workbench得血管流固耦合模拟,感觉能够耦合上,仅就是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。谢谢! 1、先在proe5中建立血管与血液流体区得模型(两者装配起来),或者直接在workbench中建模。 图1 模型图 2、新建工程。在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure、 图2 计算工程 3、修改engineering data,因为系统缺省材料就是钢,需要构建血管材料,如图3所示。先复制steel,而后修改密度1150kg/m3,杨氏模量 4、5e8Pa,泊松比0、3,重新命名,最后在主菜单中点击“update project”保存、

图3 修改工程材料 4、模型导入,进入gemetry模块,import外部模型文件。 图4 模型导入图 5、进入FLUENT网格划分。 在workbench工程视图中得Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分

图6 禁用血管模型 6、设置网格方法。 默认就是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面得边均分为10份,网格结果如图8所示。另外在这个界面中要设置边界得几何面,如inlet、outlet、symmetry 图7 设置网格划分方式 图8 最终出网格

流固耦合文献总结

小论文拟采用DP模型,在应力较高的土体中,比Mohr-coulomb理想弹塑性模型的数值计算结果更精确。设定DP模型需要输入3个特殊参数,粘聚力,内摩擦角,膨胀角,其中的膨胀角是用来控制体积膨胀的大小的。在岩土工程中,一般密实的砂土和超强固结土在发生剪切的时候会出现体积膨胀,因为颗粒重新排列了;而一般的砂土或者正常固结的土体,只会发生剪缩。在使用DP模型的时候,对于一般的土,膨胀角设置为0度比较符合实际。渗流耦合分析拟采用的边界条件是全地基边界,即把要分析的模型所有的区域看成是一个封闭的整体。在计算渗流应力耦合分析时,考虑基坑空间效应,建立三维实体模型,不仅考虑施工降水耦合,也考虑施工间歇变形耦合。最终通过支护结构桩和锚杆的变形以及基坑的变形,得出以下两条结论:(1)采用渗流应力耦合理论计算的基坑工程变形形态符合实际情况,随着基坑开挖深度增加,基坑变形规律也符合实际情况。(2)渗流应力耦合情况下基坑变形与不考虑渗流耦合影响下基坑变形曲线相比,数值较大,可见,分析基坑变形时不考虑渗流耦合影响是偏不安全的,耦合分析对基坑变形的影响不能忽视。 1、基于渗流场-应力场耦合作用下的深基坑降水支护结构的位移研究工程勘察2012 本文采用大型通用岩土工程有限元软件PLAXIS对复合土钉支护进行分析,模型采用平面应变模型,土体采用Mohr-coulomb理想弹塑性模型且具有对称性,故取一半对其分析,模型底部为固定约束,侧面只限制水平位移,上表面为自由边界。 本工程的数值模拟主要为比较在有降水作用下和未考虑地下水两种情况下的支护结构体系的位移,为此,首先进行了在未考虑地下水条件下的模拟,即不考虑孔隙水压,地下水位线默认为基坑底部。其次依据实际工程的地下水位线-7.24m,进行了数值模拟,以便找到降水作用对支护结构体系位移的影响。 2、考虑流-固耦合效应的基坑水土压力计算工程勘察2011 针对地下水绕过围护墙渗流情况,分析了传统的水土压力分算、合算及考虑土体渗流-固结变形方法计算土压力的区别,并利用实测数据进行对比。 流过耦合分析,PLAXIS程序采用水土分算的方法,通过输入地下水水头执行地下水渗流程序进行计算,利用单元应力点上的压力水头求得孔隙水压力,将围护墙与土体接触界面上的有效压力与孔隙水压力值相加,得到基坑围护墙上总的水土压力分布。 3、考虑流固耦合作用的深基坑有限元分析地下空间与工程学报2012 利用FLAC流固耦合模型对复杂地质条件下深基坑降水开挖过程中深基坑的时间效应进行研究。建立考虑参数变化的弹塑性流固耦合数值模型,分析基坑开挖及降水作用下地表沉降、水压力、基底隆起随时间变化的规律。平面应变模型,土体采用修正的剑桥模型模拟,只是在理论上提出考虑基坑开挖过程中渗透系数随孔隙比变化的现象,未应用在模型模拟中。 4、考虑渗流-应力耦合基坑开挖降水数值分析广东工业大学学报2013 本文运用通用软件MIDAS/GTS考虑渗流应力耦合作用下模拟基坑开挖降水的详细过程,分析了不同阶段渗流情况,同时探讨了止水帷幕、渗透系数与不同降水深度对基坑支护特性的影响,以期为基坑降水和支护结构优化提供理论参考。采用的摩尔库伦土体模型,基坑较小,应力水平较低,平面应变模型,未考虑基坑的空间效应。 5、深基坑工程降水与地面沉降耦合数值模拟研究中国市政工程2012 采用基坑降水与地面沉降耦合模型分析,四周边界取为定水头边界,其中,求解地下水问题简化为求解地下水在多孔介质中流动的问题,建立相适应的地下水三维非稳定渗流数学模型为 地面沉降模型为 方程的求解条件为: 利用建立的三维渗流沉降模型预测抽水减压期间对水位降深和区域沉降影响。计算结果

流固耦合问题研究进展及展望

流固耦合问题研究进展及展望 摘要:天然岩体大多数为多相不连续介质,岩体内充满着诸如节理、裂隙、断层、接触带、剪切带等各种各样的不连续面,为地下水提供了储存和运动的场所。地下水的渗流以渗透应力作用于岩体,影响岩体中应力场的分布;同时岩体应力场的改变使裂隙产生变形,从而影响了裂隙的渗透性能,因此,流固耦合问题研究主要考虑流体在固体中的变化规律,尤其是流体渗流与和岩体应力之间的耦合作用,通过对国内外相关文献的分析与整理,从流固耦合的研究现状、特点、研究方法及展望这四个方面进行了论述。 关键词:流固耦合;岩体;地下水;研究方法;渗流 中图分类号:X523文献标识码:A 文章编号: 天然岩石不只是单一固相介质,尚有固相、液相和气相并存的多孔介质组合,岩石经历了漫长的成岩和改造历史,其内部富含各种缺陷,包括微裂纹、孔隙以及节理裂隙等宏观非连续面,它们的存在为地下水提供了储存和运动的场所。地下水的渗流还以渗透应力作用于岩体,影响岩体中应力场的分布,同时岩体应力场的改变往往使裂隙产生变形,影响裂隙的渗透性能,所以渗流场随着裂隙渗透性的变化重新分布,因此,在许多情况下必须考虑流体,包括液体(油或水)、气体(天然气、煤矿瓦斯等)在多孔介质中的流动规律及其对岩体本身的变形或强度造成的影响,即应考虑岩体内应力场与渗流场之间的相互耦合作用。 近年来,流固耦合问题越来越受到人们的重视,这方面的研究涉及许多领域,在采矿领域,涉及地热开发,石油开采中的流固耦合渗流,采矿围岩突水问题等。在建筑工程领域,包括地下水抽取引起的地面沉降问题,基坑渗流引起变形问题,坝基渗流及稳定性问题,隧道建设等。在环境工程领域涉及地下核废料存储,城市垃圾废弃物处理等以及生物医学工程等领域,这一问题的研究对促进科技进步和解决实际工程技术问题有着重要意义。 1 国内外研究现状 关于岩体和流体相互作用研究最早见诸K.Terzaghi对有关地面沉降研究,其内容主要限于考虑一维弹性孔隙介质中饱和流体流动时的固结,提出了著名的有效应力公式,迄今该公式仍是研究岩体和流体相互作用的基础公式之一。二十世纪中期Biot(1941,1956)进一步研究了三向变形材料与孔隙压力的相互作用,并在一些假设,如材料为各向同性、线弹性小变形,孔隙流体是不可压缩的且充满固体骨架的孔隙空间,而流体通过孔隙骨架的流动满足达西定律的基础上,建立了比较完善的三维固结理论。在此基础上,进一步发展了多相饱和渗流与孔隙介质耦合作用的理论模型,并在连续介质力学的系统框架内建立了多相流体运移和变形空隙介质耦合问题的理论模型。 Lous等(1974)运用单裂隙试件进行单向水流的室内模型,综合研究了天

fluent单项流固耦合

流固耦合(Fluid-solid interaction,FSI)计算,通常用于考虑流体与固体间存在强烈的相互作用时,对流体流场与固体应力应变的考察。FSI计算按数据传递方式可分两类:单向耦合与双向耦合。所谓单向耦合,主要是指数据只从流体计算传递压力到固体,或者只从固体计算传递网格节点位移到流体。双向耦合则在每一时刻都同时向对方发送相应的物理量(流体计算发送压力数据,固体计算发送位移数据)。 ANSYS Workbench中可以利用Fluent与DS进行单向流固耦合计算。我们这里来举一个最简单的单向耦合例子:风吹挡板。我们假定挡板位移可忽略不计,固体变形对流场影响可以忽略,所考虑的是流体压力作用在固体上,固体的应力分布。当然这里的压力可以换成温度等其他物理量。 1、新建工程。注意是从Fluent –> Static Structure。连接图如1所示。 图1 计算工程关 系图2 进入DM建模 2、进入Fluent中的DM进行模型创建,如图2所示。 流固耦合计算中的几何模型与单纯的流体模型或固体模型不同,它要求同时具有流体和固体模型,而且流体计算中只能有流体模型,固体计算中只能有固体模型。建好后的模型如图3,4,5所示。由于固体模型需要从这里导入,所以我们保留固体与流体模型。

图3 实体模型 图4 固体模型

图5 流体模型 3、进入FLUENT网格设置。 在FLUENT工程视图中的Mesh上点击右键,选择Edit…,如图6所示,进入网格划分meshing界面,如图7所示。我们这里需要去掉固体部分,只保留流体几何。 图6 进入网格划 分图7 禁用固体模型

adina热-流-固耦合建模过程

基于adina热-流-固耦合建模过程 热-流-固耦合作用是存在高度非线性的复杂耦合作用。有关这三场的耦合作用研究在地石油工程、热资源开发、地下核废料存储安全、采矿工程等很多领域有着非常重要的应用价值。由于研究对象的不同,热流固耦合模型的形式存在差异,建立符合实际问题的三场耦合模型十分困难,文中在国内外学者对三场耦合模型理论研究的进展状况的基础上,通过一个例子,介绍了用adina建立模型的过程。 1三场耦合理论模式介绍 在三场耦合尤其是三场耦合机制的研究过程中,人们根据各自对三场耦合的认识提出了不同的三场耦合作用模式。1995年前有关三场耦合作用模式的研究在场与场之间的联系关系上主要是以速度等变量为桥梁,如HART、Jing提出的作用模式,其中Jing主要描述的核储存库三场耦合模式,后来作用模式发展为主体为物理现象,它们之间的相互联系是以场作用或物理作用为桥梁的,如Guvanasen、柴军瑞的作用模式,前者同样以核废料储库库围岩三场耦合作用研究为主,后者为一般模式。 Jing等描述了核废料贮库围岩裂隙岩体中的热-液-力耦合过程,如图1所示。H art等提出了如图2所示的三场耦合作用模式。柴军瑞从岩体渗流-应力-温度三者两两之间的相互关系出发,建立了如图3的作用模式。图中:口渗透水流对岩体固相的力学作用,一般应用有效应力原理来反映;a’为应力引起裂隙岩体空隙率和渗透特性变化,目前有经验关系式(如Lours负指数关系式)和理论关系式(包括各种概化情况下和各种概化模型下的理论关系式)两大类表示方法;b为温度引起热应变(力)及与温度有关的岩体固相力学特性变化;b’为岩体固相力学变形引起热力学特性变化及 岩体固相内部热耗散;c为水流的热对流及与岩体固相的热交换;c’为温度势梯度引起水份运动及与温度有关的水特性变化。 图1裂隙岩体中的热液力耦合过程(据Jing等。1995年)

最新fluent流固耦合传热设置问题

FLUENT流固耦合传热设置问题 看到很多网友对于fluent里模拟流固耦合传热(同时有对流和导热)有很多疑问,下面说说我的解决方法。 1,首先要分清你的问题是否是流固耦合传热。 (1)如果你的传热问题只是流体与固体壁面的传热,不涉及到固体壁面内部的导热,那么这就是一个对流传热问题,不是流固耦合传热问题, 这时候你只需要设置壁面的对流换热系数即可。如下图 注意右边这几个参数的含义:从上往下依次为:壁面外部的对流传热系数;外部流体温度;壁面厚度;壁面单位体积发热率。 这里没有内部流体的对流传热设置,因为fluent会根据流体温度以及壁面温度,利用能量守恒,自动计算内壁流体与壁面的对流换热情况。 (2)流固耦合传热问题。在建模的时候你应该定义两个区域,流体区域和固体区域,并且在切割区域的时候,你应该选中connect,如下图所 示 边界条件设置:交界面为wall。在导入fluent以后,fluent就会自动生成wall-shadow。这样在流固交界面上就生成了一对耦合的面,如下图所示,

。 2,耦合传热设置问题 (1)首先就是求解器的设置问题,应该选择耦合求解器,虽然计算速度会慢一些,但是这更符合实际情况,更容易收敛,误差更小。如果是非 稳态过程还应选择unsteady。如下图所示 (2)交界面设置问题,这个是关键。不用过多的设置只需要选择coupled。 这样fluent就会自动计算耦合面的传热问题。如下图所示

(3)当然还要选择能量方程。其他诸如湍流模型、材料设置、进出口条件等等,需要你根据实际情况设定,这里不再雷述。1.在国际单位制中,电荷的单位是 A. 伏特 B. 安培 C. 库仑 D.瓦特 2.小明家装修房屋需要购买导线,关于导线种类的选择,最恰当的是: A.强度大的铁丝B.细小价格较便宜的铝丝 C.粗一点的铜丝D.性能稳定的镍铬合金丝 3.小明在研究通过导体的电流时,根据测量数据绘制出如图 所示的I-U图像。对此作出的判断中,错误 ..的是: A.通过R1的电流与它两端所加电压成正比 B.通过R2的电流与它两端所加电压不成正比 C.将它们串联接入到同一电路中时,通过R1的电流较小 D.将它们并联连接到两端电压为1.5V的电路中时,通过 干路的电流大约是0.46A 4.小灯泡L上标有“2.5V”字样,它的电阻随它两端电压变化的图像如图甲所示。将小灯泡L和电阻R0接入图乙所示的电路中,电源电压为6V,且保持不变。当开 关S闭合时,小灯泡L恰好能正常发光。 下列说法正确的是: A.开关S断开时,小灯泡L的电阻为0Ω B.开关S闭合时,小灯泡L的电阻为8Ω C.小灯泡L的额定功率为0.5W D.电阻R0的阻值为14Ω 5.假设导体没有电阻,当用电器通电时,下列说法正确的是() A.白炽灯仍然能发光B.电动机仍然能转动 C.电饭锅仍然能煮饭D.电熨斗仍然能熨衣服 6.在图8所示电路中,闭合开关S后,在滑片P 向右滑动过程中,各电表示数变化正确的 是() A.A1、A3示数不变,A2、V示数变小 B.A1、V 示数不变,A2、A 3示数变大R1 R2

相关文档
最新文档