排序常用算法设计

排序常用算法设计
排序常用算法设计

第8 章排序(算法设计)习题练习答案

13. 将哨兵放在R[n]中,被排序的记录放在R[0..n-1]中,重写直接插入排序算法。

解:重写的算法如下:

void InsertSort(SeqList R)

{//对顺序表中记录R[0..n-1]按递增序进行插入排序

int i,j;

for(i=n-2;i>=0;i--) //在有序区中依次插入R[n-2]..R[0]

课后答案网https://www.360docs.net/doc/2c3003862.html,

if(R[i].key>R[i+1].key) //若不是这样则R[i]原位不动

{

R[n]=R[i];j=i+1; //R[n]是哨兵

do{ //从左向右在有序区中查找插入位置

R[j-1]=R[j]; //将关键字小于R[i].key 的记录向右移

j++;

}while(R[j].key

R[j-1]=R[n]; //将R[i]插入到正确位置上

}//endif

}//InsertSort.

14.以单链表作为存储结构实现直接插入排序算法。

解:#define int KeyType //定义KeyType 为int 型

typedef struct node{

KeyType key; //关键字域

OtherInfoType info; //其它信息域,

struct node * next; //链表中指针域

}RecNode; //记录结点类型

typedef RecNode * LinkList ; //单链表用LinkList 表示

void InsertSort(LinkList head)

{//链式存储结构的直接插入排序算法,head 是带头结点的单链表RecNode *p,*q,*s;

if ((head->next)&&(head->next->next))//当表中含有结点数大于1 {

p=head->next->next;//p 指向第二个节点

head->next=NULL;

q=head;//指向插入位置的前驱节点

while(p)&&(q->next)&&(p->keynext->key)

q=q->next;

if (p)

课后答案网https://www.360docs.net/doc/2c3003862.html,

{s=p;p=p->next;// 将要插入结点摘下

s->next=q->next;//插入合适位置:q 结点后

q->next=s;

}

}

}

15.设计一算法,使得在尽可能少的时间内重排数组,将所有取负值的关键字放在所有取非

负值的关键字之前。请分析算法的时间复杂度。

解:因为只需将负数关键字排在前面而无需进行精确排列顺序,因此本算法采用两端扫

描的方法,就象快速排序采用的方法一样,左边扫描到正数时停止,开始扫描右边,遇到负

数时与左边的当前记录交换,如此交替进行,一趟下来就可以完成排序。

void ReSort(SeqList R)

{//重排数组,使负值关键字在前

int i=1,j=n; //数组存放在R[1..n]中

while (i

{ while(i

i++;

R[0]=R[i]; //R[0]为辅助空间

while(i=0)// 遇到正数则继续向左扫描

j--;

R[i++]=R[j];R[j--]=R[0];//交换当前两个元素并移动指针

}//endwhile

}//ReSort

本算法在任何情况下的比较次数均为n(每个元素和0)相比,交换次数少于n/2,总的来

说,时间复杂度为O(n).

*16.写一个双向冒泡排序的算法,即在排序过程中交替改变扫描方向。解:算法如下:

void BubbleSort(SeqList R)

课后答案网https://www.360docs.net/doc/2c3003862.html,

{//R[1..n]是待排序文件,双向扫描冒泡排序

int i,j,k;

Boolean exchange; //交换标记

i=n;j=1;

exchange=TRUE;

while (i>j)&&(exchange)

{k=i-1;exchange=FALSE;

while (k>=j)//由下往上扫描

{if (r[k]>r[k+1])

{r[0]=r[k];r[k]=r[k+1];r[k+1]=r[k];exchange=TRUE;//交换

}//endif

k--;

}//endwhile

if (exchange)

{exchange=FALSE;

j++;k=j+1;

while(k<=i)//由上往下扫描

{if (r[k]

{r[0]=r[k];r[k]=r[k-1];r[k-1]=r[k];exchange=TRUE;//交换

}//endif

k++;

}endwhile

i--;

}//endif

}endwhile

}//endsort

17.下面是一个自上往下扫描的冒泡排序的伪代码算法,它采用lastExchange 来记录每趟扫

描中进行交换的最后一个元素的位置,并以它作为下一趟排序循环终止的控制值。请仿照

它写一个自下往上扫描的冒泡排序算法。

课后答案网https://www.360docs.net/doc/2c3003862.html,

void BubbleSort(int A[],int n)

//不妨设A[0..n-1]是整型向量

int lastExchange,j,i=n-1;

while (i>0)

lastExchange=0;

for(j=0;j

if(A[j+1]

交换A[j]和A[j+1];

lastExchange=j;

}

i=lastExchange;//将i 置为最后交换的位置

}//endwhile

}//BubbleSort

解:算法如下:

void BubbleSort(int A[],int n)

//不妨设A[0..n-1]是整型向量

int lastExchange,j,i=0;

while (i

for(j=n-1;j>i;j--)//从下往上扫描A[0..i]

if(A[j-1]

交换A[j]和A[j-1];

lastExchange=j;

}

i=lastExchange;//将i 置为最后交换的位置

}//endwhile

}//BubbleSort

18.改写快速排序算法,要求采用三者取中的方式选择划分的基准记录;若当前被排序的区

间长度小于等于3 时,无须划分而是直接采用直接插入方式对其排序。

课后答案网https://www.360docs.net/doc/2c3003862.html,

解:改写后的算法如下:

void QuickSort(SeqList R,int low ,int high)

{//对R[low..high]快速排序

int pivotpos;

if(high-low<=2)//若当前区内元素少于3 个

{//则进行直接插入排序

InsertSort(R,low,high);

}

else

{

pivotpos=midPartion(R,low,high);

QuickSort(R,low,pivotpos-1);

QuickSort(R,pivotpos+1,high);

}

}//QuickSort

int midPartion(SeqList R,int i, int j)

{//三者取中规则定基准

if(R[(i+j)/2].key>R[i].key)

{ 交换R[(i+j)/2]和R[i];}

if(R[i].key>R[j].key)

{ 交换R[i]和R[j];}

if(R[i].key)

{ 交换R[i]和R[(i+j)/2];}

//以上三个if 语句就使区间的第一个记录的key 值为三个key 的中间值

return Partion(R,i,j);//这样我们就可以仍使用原来的划分算法了

}

19.对给定的j(1≤j≤n ),要求在无序的记录区R[1..n]中找到按关键字自小到大排在第j个位置

上的记录(即在无序集合中找到第j 个最小元),试利用快速排序的划分思想编写算法实现上

述的查找操作。

课后答案网https://www.360docs.net/doc/2c3003862.html,

答:int QuickSort(SeqList R,int j,int low,int high)

{ //对R[low..high]快速排序

int pivotpos;//划分后的基准记录的位置

if(low

pivotpos=Partition(R,low,high);//对R[low..high]做划分

if (pivotpos==j) return r[j];

else if (pivotpos>j) return(R,j,low,pivotpos-1);

else return quicksort(R,j,pivotpos+1,high);

}

} //QuickSort

20.以单链表为存储结构,写一个直接选择排序算法。答:#define int KeyType //定义KeyType 为int 型typedef struct node{

KeyType key; //关键字域

OtherInfoType info; //其它信息域,

struct node * next; //链表中指针域

}RecNode; //记录结点类型

typedef RecNode * LinkList ; //单链表用LinkList 表示void selectsort(linklist head)

{RecNode *p,*q,*s;

if(head->next)&&(head->next->next)

{p=head->next;//p 指向当前已排好序最大元素的前趋while (p->next)

{q=p->next;s=p;

while(q)

{if (q->keykey) s=q;

q=q->next;

}//endwhile

交换s 结点和p 结点的数据;

课后答案网https://www.360docs.net/doc/2c3003862.html,

p=p->next;

}//endwhile

}//endif

}//endsort

21.写一个heapInsert(R,key)算法,将关键字插入到堆R中去,并保证插入R后仍是堆。提

示:应为堆R增加一个长度属性描述(即改写本章定义的SeqList类型描述,使其含有长度

域);将key先插入R中已有元素的尾部(即原堆的长度加1的位置,插入后堆的长度加1),

然后从下往上调整,使插入的关键字满足性质。请分析算法的时间。答:#define n 100//假设文件的最长可能长度

typedef int KeyType; //定义KeyType 为int 型

typedef struct node{

KeyType key; //关键字域

OtherInfoType info; //其它信息域,

}Rectype; //记录结点类型

typedef struct{

Rectype data[n] ; //存放记录的空间

int length;//文件长度

}seqlist;

void heapInsert(seqlist *R,KeyType key)

{//原有堆元素在R->data[1]~R->data[R->length],

//将新的关键字key 插入到R->data[R->length+1]位置后,

//以R->data[0]为辅助空间,调整为堆(此处设为大根堆)

int large;//large 指向调整结点的左右孩子中关键字较大者

int low,high;//low 和high 分别指向待调整堆的第一个和最后一个记录

int i;

R->length++;R->data[R->length].key=key;//插入新的记录

for(i=R->length/2;i>0;i--)//建堆

{

low=i;high=R->length;

课后答案网https://www.360docs.net/doc/2c3003862.html,

R->data[0].key=R->data[low].key;//R->data[low]是当前调整的结点for(large=2*low;large<=high;large*=2){

//若large>high,则表示R->data[low]是叶子,调整结束;

//否则令large 指向R->data[low]的左孩子

if(largedata[large].keydata[large+1].key)

large++;//若R->data[low]的右孩子存在

//且关键字大于左兄弟,则令large 指向它

if (R->data[0].keydata[large].key)

{ R->data[low].key= R->data[large].key;

low=large;//令low 指向新的调整结点

}

else break;//当前调整结点不小于其孩子结点的关键字,结束调整

}//endfor

R->data[low].key=R->data[0].key;//将被调整结点放入最终的位置上}//end of for

}end of heapinsert

算法分析:

设文件长度为n,则该算法需进行n/2 趟调整,总的时间复杂度与初建堆类似,最坏时间

复杂度为O(nlgn),辅助空间为O(1).

22.写一个建堆算法:从空堆开始,依次读入元素调用上题中堆插入算法将其插入堆中。

答:void BuildHeap(seqlist *R)

{

KeyType key;

R->length=0;//建一个空堆

scanf("%d",&key);//设MAXINT 为不可能的关键字

while(key!=MAXINT)

{

heapInsert(R,key);

scanf("%d",&key);

课后答案网https://www.360docs.net/doc/2c3003862.html,

}

}

23.写一个堆删除算法:HeapDelete(R,i),将R[i]从堆中删去,并分析算法时间,提示:先将

R[i]和堆中最后一个元素交换,并将堆长度减1,然后从位置i开始向下调整,使其满足堆

性质。

答:void HeapDelete(seqlist *R,int i)

{//原有堆元素在R->data[1]~R->data[R->length],

//将R->data[i]删除,即将R->data[R->length]放入R->data[i]中后,

//将R->length 减1,再进行堆的调整,

//以R->data[0]为辅助空间,调整为堆(此处设为大根堆)

int large;//large 指向调整结点的左右孩子中关键字较大者

int low,high;//low 和high 分别指向待调整堆的第一个和最后一个记录

int j;

if (i>R->length)

Error("have no such node");

R->data[i].key=R->data[R->length].key;

R->length--;R->data[R->length].key=key;//插入新的记录

for(j=i/2;j>0;j--)//建堆

{

low=j;high=R->length;

R->data[0].key=R->data[low].key;//R->data[low]是当前调整的结点for(large=2*low;large<=high;large*=2){

//若large>high,则表示R->data[low]是叶子,调整结束;

//否则令large 指向R->data[low]的左孩子

if(largedata[large].keydata[large+1].key)

large++;//若R->data[low]的右孩子存在

//且关键字大于左兄弟,则令large 指向它

if (R->data[0].keydata[large].key)

课后答案网https://www.360docs.net/doc/2c3003862.html,

{ R->data[low].key= R->data[large].key;

low=large;//令low 指向新的调整结点

}

else break;//当前调整结点不小于其孩子结点的关键字,结束调整}//endfor

R->data[low].key=R->data[0].key;//将被调整结点放入最终的位置上}//end of for

}end of HeapDelete

24.已知两个单链表中的元素递增有序,试写一算法将这两个有序表归并成一个递增有序的

单链表。算法应利用原有的链表结点空间。

答:typedef struct node{

KeyType key; //关键字域

OtherInfoType info; //其它信息域,

struct node * next; //链表中指针域

}RecNode; //记录结点类型

typedef RecNode * LinkList ; //单链表用LinkList 表示void mergesort(LinkList la,LinkList lb,LinkList lc) {RecNode *p,*q,*s,*r;

lc=la;

p=la;//p 是la 表扫描指针,指向待比较结点的前一位置q=lb->next;//q 是lb 表扫描指针,指向比较的结点while(p->next)&&(q)

if (p->next->key<=q->key)

p=p->next;

else {s=q;q=q->next;

s->next=p->next;p->next=s;//将s 结点插入到p 结点后p=s;}

if (!p->next) p->next=q;

课后答案网https://www.360docs.net/doc/2c3003862.html,

free(lb);

}

25.设向量A[0..n-1]中存有n个互不相同的整数,且每个元素的值均在0到n-1之间。试写

一时间为O(n)的算法将向量A排序,结果可输出到另一个向量B[0..n-1]中。

答:sort(int *A,int *B)

{//将向量A 排序后送入B 向量中

int i;

for(i=0;i<=n-1;i++)

B[A[i]]=A[i];

}

*26.写一组英文单词按字典序排列的基数排序算法。设单词均由大写字母构成,最长的单词

有d个字母。提示:所有长度不足d个字母的单词都在尾处补足空格,排序时设置27个箱

子,分别与空格,A,B...Z对应。

答:#define KeySize 10 //设关键字位数d=10

#define Radix 27 //基数rd 为27

typedef RecType DataType;//将队列中结点数据类型改为RecType 类型

typedef struct node{

char key[KeySize]; //关键字域

OtherInfoType info; //其它信息域,

}RecType; //记录结点类型

typedef RecType seqlist[n+1];

void RadixSort(seqlist R)

{

LinkQueue B[Radix];

int i;

for(i=0;i

InitQueue(&B[i]);

for(i=KeySize-1;i>=0;i--){//从低位到高位做d 趟箱排序

课后答案网https://www.360docs.net/doc/2c3003862.html,

Distribute(R,B,i);//第KeySize-i 趟分配

Collect(R,B);//第KeySize-i 趟收集

}

}

void Distribute(seqlist R,LinkQueue B[], int j)

{//按关键字的第j 个分量进行分配,初始时箱子为空

int i;

j=KeySize-j; // 确定关键字从低位起的位置

for(i=0;i

if (R[i].key[j]-'A'>26)

EnQueue(&B[0],R[i]);//将第j 位关键字位空格的记录入第0 个队列else EnQueue(&B[0],R[R[i].key[j]-'A'+1]);

}

void Collect(seqlist R,LinkQueue B[])

{

//依次将各非空箱子中的记录收集起来,本过程结束,各箱子都变空int i,j;

for (j=0;j

while(!QueueEmpty(&B[j]))

R[i++]=DeQueue(&B[j]);//将出队记录依次输出到R[i]中

}

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

中南大学数据结构与算法第10章内部排序课后作业答案

第10章内部排序习题练习答案 1.以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。 (1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序 (5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序 上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。 答: (1)直接插入排序:(方括号表示无序区) 初始态: 265[301 751 129 937 863 742 694 076 438] 第一趟:265 301[751 129 937 863 742 694 076 438] 第二趟:265 301 751[129 937 863 742 694 076 438] 第三趟:129 265 301 751[937 863 742 694 076 438] 第四趟:129 265 301 751 937[863 742 694 076 438] 第五趟:129 265 301 751 863 937[742 694 076 438] 第六趟:129 265 301 742 751 863 937[694 076 438] 第七趟:129 265 301 694 742 751 863 937[076 438] 第八趟:076 129 265 301 694 742 751 863 937[438] 第九趟:076 129 265 301 438 694 742 751 863 937

(2)希尔排序(增量为5,3,1) 初始态: 265 301 751 129 937 863 742 694 076 438 第一趟:265 301 694 076 438 863 742 751 129 937 第二趟:076 301 129 265 438 694 742 751 863 937 第三趟:076 129 265 301 438 694 742 751 863 937 (3)冒泡排序(方括号为无序区) 初始态[265 301 751 129 937 863 742 694 076 438] 第一趟:076 [265 301 751 129 937 863 742 694 438] 第二趟:076 129 [265 301 751 438 937 863 742 694] 第三趟:076 129 265 [301 438 694 751 937 863 742] 第四趟:076 129 265 301 [438 694 742 751 937 863] 第五趟:076 129 265 301 438 [694 742 751 863 937] 第六趟:076 129 265 301 438 694 742 751 863 937 (4)快速排序:(方括号表示无序区,层表示对应的递归树的层数)

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

常见经典排序算法(C语言)1希尔排序 二分插入法 直接插入法 带哨兵的直接排序法 冒泡排序 选择排序 快速排

常见经典排序算法(C语言) 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法*/ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换*/ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } }

} } 二.二分插入法 /* 二分插入法*/ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧*/ { high = mid-1; } else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧*/ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间*/ for (j=i-1; j>high; j--)/* 元素后移*/ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入*/ } }

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

内部排序算法的实现与比较

内部排序算法的实现与 比较 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。 2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

各种排序算法总结

各种排序算法总结 排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准: ()执行时间 ()存储空间 ()编程工作 对于数据量较小的情形,()()差别不大,主要考虑();而对于数据量大的,()为首要。主要排序法有: 一、冒泡()排序——相邻交换 二、选择排序——每次最小大排在相应的位置 三、插入排序——将下一个插入已排好的序列中 四、壳()排序——缩小增量 五、归并排序 六、快速排序 七、堆排序 八、拓扑排序 九、锦标赛排序 十、基数排序 一、冒泡()排序 从小到大排序个数 () { ( <) { ( <) { ([]>[])比较交换相邻元素 { ; []; [][]; []; } } } } 效率(2),适用于排序小列表。 二、选择排序 从小到大排序个数

{ ; ( <) { ; ( <)每次扫描选择最小项 ([]<[]) ; ()找到最小项交换,即将这一项移到列表中的正确位置 { ; []; [][]; []; } } } 效率(2),适用于排序小的列表。 三、插入排序 从小到大排序个数 () { ( <)循环从第二个数组元素开始,因为[]作为最初已排序部分 { []标记为未排序第一个元素 ; (> []>)*将与已排序元素从小到大比较,寻找应插入的位置* { [][]; ; } []; } } 最佳效率();最糟效率(2)与冒泡、选择相同,适用于排序小列表若列表基本有序,则插入排序比冒泡、选择更有效率。 四、壳()排序——缩小增量排序 从小到大排序个数

{ ( <)增量递减 { ( <())重复分成的每个子列表 { ( <)对每个子列表应用插入排序 { []; ; (>[]>) { [][]; ; } []; } } } } 适用于排序小列表。 效率估计(^)(^),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是的幂,则在下一个通道中会再次比较相同的元素。 壳()排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。 五、归并排序 从小到大排序 ( ) { (>) 每个子列表中剩下一个元素时停止 ()*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表* ()子列表进一步划分 (); [] []新建一个数组,用于存放归并的元素 ( < <)*两个子列表进行排序归并,直到两个子列表中的一个结束* { ([]<[];) { [][];

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

内部排序算法的实现与比较

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

数据结构中几种常见的排序算法之比较

几种常见的排序算法之比较 2010-06-20 14:04 数据结构课程 摘要: 排序的基本概念以及其算法的种类,介绍几种常见的排序算法的算法:冒泡排序、选择排序、插入排序、归并排序、快速排序、希尔排序的算法和分析它们各自的复杂度,然后以表格的形式,清晰直观的表现出它们的复杂度的不同。在研究学习了之前几种排序算法的基础上,讨论发现一种新的排序算法,并通过了进一步的探索,找到了新的排序算法较之前几种算法的优势与不足。 关键词:排序算法复杂度创新算法 一、引言 排序算法,是计算机编程中的一个常见问题。在日常的数据处理中,面对纷繁的数据,我们也许有成百上千种要求,因此只有当数据经过恰当的排序后,才能更符合用户的要求。因此,在过去的数十载里,程序员们为我们留下了几种经典的排序算法,他们都是智慧的结晶。本文将带领读者探索这些有趣的排序算法,其中包括介绍排序算法的某些基本概念以及几种常见算法,分析这些算法的时间复杂度,同时在最后将介绍我们独创的一种排序方法,以供读者参考评判。 二、几种常见算法的介绍及复杂度分析 1.基本概念 1.1稳定排序(stable sort)和非稳定排序 稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为 a1,a2,a4,a3,a5, 则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。 1.2内排序( internal sorting )和外排序( external sorting) 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

C语言常用排序算法

/* ===================================================================== ======== 相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义): 1、稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就 说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为 a1,a2,a4,a3,a5, 则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4, a2,a3,a5就不是稳定的了。 2、内排序和外排序 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 3、算法的时间复杂度和空间复杂度 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 ===================================================================== =========== */ /* ================================================ 功能:选择排序 输入:数组名称(也就是数组首地址)、数组中元素个数 ================================================ */ /* ==================================================== 算法思想简单描述:

各种排序算法的优缺点

一、冒泡排序 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。 优点:稳定; 缺点:慢,每次只能移动相邻两个数据。 二、选择排序 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。 n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果: ①初始状态:无序区为R[1..n],有序区为空。 ②第1趟排序 在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 …… ③第i趟排序 第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。 优点:移动数据的次数已知(n-1次); 缺点:比较次数多。 三、插入排序 已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来 a[x]的位置这就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a) 优点:稳定,快; 缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。 四、缩小增量排序 由希尔在1959年提出,又称希尔排序(shell排序)。 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入排序的效果很好。首先取一增量d(da[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n] 两组数据进行快速排序。 优点:极快,数据移动少; 缺点:不稳定。 六、箱排序 已知一组无序正整数数据a[1]、a[2]、……a[n],需将其按升序排列。首先定义一个数组x[m],且m>=a[1]、a[2]、……a[n],接着循环n次,每次x[a]++. 优点:快,效率达到O(1) 缺点:数据范围必须为正整数并且比较小

八大排序算法

八大排序算法 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 基本思想: 将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。 要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例: 如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 算法的实现: [cpp]view plaincopyprint? 1.void print(int a[], int n ,int i){ 2. cout<