第三章 矩阵与算符

第三章 矩阵与算符
第三章 矩阵与算符

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

第三章矩阵的Jordan标准型与矩阵函数

上页下页返回结束 1 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 全国工程硕士专业学位教育指导委员会推荐教材: 矩阵论与数值分析----理论及其工程应用 上页下页返回结束 2 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 邱启荣 华北电力大学数理系QQIR@https://www.360docs.net/doc/2c3851753.html, 第三章矩阵的Jordan 标准型 与矩阵函数 上页下页返回结束 3 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 4 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 5 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 6 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数

上页下页返回结束7 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束8 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束9 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 10 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 11 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 12 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数

上页下页返回结束13 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束14 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束15 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 16 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 17 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 18 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数

第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 讲授内容§3.1 矩阵的初等变换;§3.2 初等矩阵 教学目的和要求:(1)理解矩阵的初等变换,理解初等矩阵的性质和矩阵等价的概念. (2)掌握用初等变换求逆矩阵的方法. (3)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 教学重点:矩阵的初等变换和用矩阵的初等变换求逆矩阵的方法 教学难点:矩阵的初等变换、初等矩阵的性质. 教学方法与手段:从解线性方程组的消元法的三种重要运算入手,引出矩阵的初等变换的定义;初等矩阵与矩阵的初等变换密切相关,三种初等变换对应着三种初等矩阵;从分析初等矩阵的性质出发,推理出用矩阵的初等变换求逆矩阵的方法.传统教学,教练结合 课时安排:2课时 教学过程 §1 矩阵的初等变换 本节介绍矩阵的初等变换,它是求矩阵的逆和矩阵的秩的有利工具。 一、矩阵的初等变换 在利用行列式的性质计算行列式时,我们对其行(列)作过三种变换——“初等变换”. 定义1 对矩阵的行(列)施以下述三种变换,称为矩阵的行(列)初等变换. 初等变换 行变换 列变换 ① 对调 j i r r ? j i c c ? ② 数乘)0(≠k i r k i c k ③ 倍加 j i r k r + j i c k c + 矩阵的行初等变换与列初等变换统称为矩阵的初等变换. n m A ?经过初等变换得到n m B ?, 记作n m n m B A ??→. 定义2 等价矩阵:若n m n m B A ??→有限次 , 称n m A ?与n m B ?等价, 记作n m n m B A ???. 矩阵之间的等价关系有下列性质: (1) 自反性:A A ? (2) 对称性:n m n m B A ???n m n m A B ???? (3) 传递性:n m n m B A ???, n m n m C B ???n m n m C A ???? 定义3 在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即 是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元.若非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0,则称矩阵为行最简形矩阵.

第三章 矩阵的初等变换与线性方程.

第三章矩阵的初等变换与线性方程组 3.1 目的要求 1.掌握矩阵的初等变换及用矩阵的初等变换求逆矩阵的方法。了解矩阵等价的概念. 2.理解矩阵秩的概念并掌握其求法. 3.理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件. 4.掌握用行初等变换求线性方程组通解的方法. 3.2 重要公式和结论 3.2.1 矩阵的秩 1.若,则. 2.对于任意矩阵,总可以通过初等行变换将其化为行阶梯形,的行阶梯形中非零 行的行数就等于矩阵的秩. 3.矩阵秩的性质: ①; ②; ③若,则; ④若、可逆,则; ⑤; ⑥;

⑦; ⑧若,则. 3.2.2 初等矩阵与矩阵求逆 1.三种初等变换对应着三种初等矩阵,且初等矩阵具有以下性质: ,,, ,, . 2.设是一个矩阵,对施行一次初等行变换,相当于在的左边乘以相应的阶初等矩阵;对施行一次初等列变换,相当于在的右边乘以相应的阶初等矩阵; 3.方阵可逆的充分必要条件是存在有限个初等矩阵,使得 . 4.方阵可逆的充分必要条件是. 5.阵的充分必要条件是存在阶可逆矩阵及阶可逆矩阵,使. 6.对于方阵,若,则(1)可逆;(2). 7.设有阶矩阵及阶矩阵,若,则(1)可逆;(2). 3.2.3 线性方程组的解 1.元线性方程组, ① 无解的充分必要条件是;

② 有解的充分必要条件是; ③ 有唯一解的充分必要条件是; ④ 有无穷多解的充分必要条件是. 2.元齐次线性方程组有非零解的充分必要条件是. 3.3例题分析 例3.1 设,求. 分析对于一个具体的矩阵求秩问题,先对矩阵进行初等行变换化为行阶梯形,根据行阶梯形的非零行数判断矩阵的秩. 解,故. 例3.2设,则的秩( . (A 必为2 (B 必为3 (C 可能为2,也可能为3 (D 可能为3,也可能为4. 分析先将化成行阶梯形,再确定矩阵的秩. 解因为,可知,当时,,否则.

第三章矩阵与线性代数计算

第三章 矩阵与线性代数计算 MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。 3.1矩阵的定义 由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。 ???? ? ?????=mn m m n n a a a a a a a a a A 2 1 22221 11211 当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵; 当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。 3.2矩阵的生成 1.实数值矩阵输入 MATLAB 的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。 不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: 【例3-1】矩阵的生成例。 a=[1 2 3;4 5 6;7 8 9] b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

第3章 MATLAB矩阵处理_习题答案

第3章 MATLAB矩阵处理 习题3 一、选择题 1.产生对角线上全为1,其余为0的2行3列矩阵的命令是()。C A.ones(2,3) B.ones(3,2) C.eye(2,3) D.eye(3,2) 2.建立3阶单位矩阵A的命令是()。A A.A=eye(3) B.A=eye(3,1)C.A=eye(1,3)D.A=ones(3) 3.产生和A同样大小的幺矩阵的命令是()。B A.eye(size(A)) B.ones(size(A)) C.size(eye(A))D.size(ones(A)) 4.建立5×6随机矩阵A,其元素为[100,200]范围内的随机整数,相应的命令是()。D A.A=fix(100+200*rand(5,6)) B.A=fix(200+100*rand(5,6)) C.A= fix(100+300*rand(5,6)) D.A=fix(100+101*rand(5,6)) 5.产生均值为1、方差为0.2的500个正态分布的随机数,相应的命令是()。A。 A.1+sqrt(0.2)*randn(25,20)B.1+0.2*randn(500) C.0.2+randn(500)D.0.2+randn(25,20) 6.从矩阵A提取主对角线元素,并以这些元素构成对角阵B,相应的命令是()。B A.B=diag(A) B.B=diag(diag(A)) C.B=diag(triu(A)) D.B=diag(tril(A)) 7.在MA TLAB中定义A=randn(5,4,3,2),则下列关于A的操作中正确的是()。D A.y=eig(A) B.y=reshape(A,[4 3 6 7]) C.y=cond(A) D.y=sin(A) 8.在命令行窗口中分别输入下列命令,对应输出结果正确的是()。C A.命令x=[-2:2]',结果x=[-2 -1 0 1 2] B.命令x=zeros(1,2);x>0,结果ans=1 C.命令y=diag(eye(3),1)',结果y=[0 0] D.命令5-10*rand(1,2),结果ans=[-5.0501 1.2311] 9.将矩阵A对角线元素加30的命令是()。A A.A+30*eye(size(A)) B.A+30*eye(A)

矩阵分析 第三章 第6节

第5节对称与 反对称变换

那么称是V 的一个对称变换。 定义5.1:设是欧氏空间V 的一线性变换,如果对任意的T ,V αβ∈((),)(,()) T T αβαβ=T 定理5.2:是欧氏空间V 的一对称变换的充要条件是在V 的任意标准正交基下的矩阵表示是对称矩阵。 T T 1212(,,,,)(,,,,)n n T u u u u u u A = T A A =12(,,,)n n n u u u U ?∈ 定理5.3:欧氏空间对称变换的是可对角化的线性变换。T 因为实对称矩阵正交相似于对角矩阵,即合同。

那么称是V 的一个反对称变换。 定义5.2:设是欧氏空间V 的一线性变换,如果对任意的T ,V αβ∈((),)(,()) T T αβαβ=-T 定理5.5:是欧氏空间V 的反对称变换的充要条件是在V 的任意标准正交基下的矩阵表示是反对称矩阵。 T T 1212(,,,,)(,,,,)n n T u u u u u u A = T A A =-12(,,,)n n n u u u U ?∈

第6节正规矩阵、Schur引理

定义6.1:酉相似(正交相似) ,()()n n n n n n n n A B C or R U U or E ????? ∈??∈?1H U AU U AU B -==1()T U AU U AU B -==酉相似(正交相似)定理6.1 (Schur 引理): 任意的一个n 阶复矩阵A 酉相似于一个上(下)三角矩阵。证明: (1)n=1时显然成立,假设你n=k-1时结论成立,即k-1阶矩阵A 酉相似于一个上三角矩阵。 (2)n=k 时:111A αλα=11A αλ是矩阵的对应于特征值的单位特征向量

相关文档
最新文档