高压直流输电—概况

高压直流输电—概况
高压直流输电—概况

第1章导论

1.1高压直流输电概况

1.1.1 交流输电还是直流输电?

关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。

在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。这一阶段发电、输电和用电均为直流电。如1882年在德国建成的57km向慕尼黑国际展览会送电的直流输电线路(2kV,1.5kW);1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Moutiers)到里昂(Lyon)的230km直流输电线路(125kV,20MW)等,均为此种类型。

但是随着科学技术和工业生产发展的需要,电力技术在通信、运输、动力等方面逐渐得到广泛应用,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。爱迪生认为交流电危险,不如直流电安全。他还打比方说,沿街道敷设交流电缆,简直等于埋下地雷。并且邀请人们和新闻记者,观看用高压交流电击死野狗、野猫的实验。那时纽约州法院通过了一项法令,用电刑来执行死刑。行刑用的电椅就是通以高压交流电,这正好帮了爱迪生的大忙。在他的反对下,交流电遇到了很大的阻碍。

但是为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。他用钢皮铜心电缆将1万伏的交流电送往相距10公里外的市区变电站,在这里降为2500伏,再分送到各街区的二级变压器,降为100伏供用户照明。以后,俄国的多利沃──多布罗沃斯基又于1889年最先制出了功率为100瓦的三相交流发电机,并被德国、美国推广应用。事实成功地证实了高压交流输电的优越性。并在全世界范围内迅速推广。随着三相交流发电机,感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。同时变压器又可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。

随着科学的发展,为了解决交流输电存在的问题,寻求更合理的输电方式。由于直流输电具有远距离海底电缆或地下电缆输电,不同频率电网之间的联网或送电等优点,人们现在又开始采用直流超高压输电。但这并不是简单地恢复到爱迪生时代的那种直流输电。发电站发出的电和用户用的电仍然是交流电,只是在远距离输电中,采用换流设备,把交流高压变成直流高压。这样做可以把交流输电用的3条电线减为2条,大大地节约了输电导线。如莫桑比克的卡布拉巴萨水电站至阿扎尼亚的线路架空直流输电线路,长1414公里,输电电压

为50万伏,可输电220万千瓦。1954年HVDC输电首次商业性成功地应用于瑞典大陆与哥特兰岛之间的输电线路,这套系统采用汞弧阀,通过90km的水下电缆供给20MW的功率。从此高压直流输电得到了稳步发展。

随着晶闸管阀的出现,高压直流输电更加具有吸引力。第一个采用晶闸管阀HVDC系统是于1972年建立的依尔河系统,它是连接加拿大新不伦威克省和魁北克省的一个320MW 背靠背直流输电系统。晶闸管阀已成为直流换流站的标准设备。换流设备的新发展,使其体积减小、成本降低,而可靠性得到了提高。这些发展使高压直流输电得以更广泛地应用,电力电子技术和计算机技术的迅速发展使直流输电技术日趋完善,多端直流输电技术也已取得运行经验。

1.1.2 我国直流输电现状

(1)早在50年代初,中国就已关注直流输电,当时政府派人去学习苏联的高压汞弧阀设计制造。1978年上海投运一条31kV、150A、送电电缆长9km的直流输电试验线,累计运行2 300h。

(2)舟山直流输电工程于20世纪70年代后期开始进行调查研究与可行性分析。1980年底由中国国家计委和国家科委正式批准建设。1981年国家科委与浙江省电力工业局、西安电力机械制造公司(简称西电公司)签订了科研总合同。1982年签订了新产品研制协议与供货合同,由西安电力机械制造公司、北京重型机械厂、红旗电缆厂和上海继电器厂承制。1984年开始土建,1986年底完成设备安装,1987年进行调试,于同年12月投入试运行,1989年9月1日通过了国家鉴定,并正式投入运行。该工程的输电距离为54.1km,其中架空线分三段,总长42.1km;海底电缆分二段,总长12km。第一期工程的规模为:单极直流-100kV,500A,50MW,采用6脉动换流器。留有扩建二期工程的位置。最终规模为:双极直流±100kV,500A,100MW。

建设该工程的目的:除了实行大陆向舟山地区供电以外,同时通过工程建设还可促进中国高压直流输电技术的发展。

(3)为了把葛洲坝水电站丰水期多余电力送至上海,1984年10月国家批准建设葛洲坝至上海直流输电工程,于1989年投入运行。规模为:±500kV、1.2kA、双极额定输送容量1 200MW,线路全长1 045.7km。设备及技术主要从瑞士BBC公司引进,由中国安装调试。

(4)随着天生桥一、二级水电站的建设,天生桥送广东500kV交流输电线已有二条。增加一条直流线路,可以利用附加控制功能进行直流调制,以抑制两个电力系统间的功率振荡,同时可以增加原有交流联网线路的输送容量。天广500kV直流输电工程西起贵州安龙马窝,东至广州北郊,该线1998年4月16日开工,由西门子公司总承包,总投资39.8亿元。规模:±500kV、1.8kA、双极额定容量1 800MW,线路全长980km。该线已于2000年12月底单极投产,2001年6月26日双极投产。工程有所创新,采用了有源直流滤波器、直流光纤电流互感器、合成材料穿墙套管等,同时,在工程质量、造价控制、建设速度以及调试方面都是国内最好水平。

(5)三峡至常州±500kV直流输电工程西起宜昌龙泉,东至常州政平,全长890km,额定输电容量3 000MW,2002年单极投运,2003年双极投运。直流线路采用ASCR-720/50四分裂导线,是我国采用截面最大的导线。随线架设OPGW复合地线光缆一条,不但提供快速、可靠的远动信号,完善了调度通信功能,还可望在东西部之间架起信息高速公路。

(6)随着三峡电站将于2003年开始投运,国家电力公司部署了“西电东送、南北互联、全国联网”的方针。全国互联电网的基本格局是:以三峡输电系统为主体,向东西南北方向辐射,形成以北、中、南送电通道为主体,南北电网间多点互联,纵向通道联系较为紧密的全国互联电网格局。北、中、南三大片电网之间原则上采用直流背靠背或常规直流隔开,以

控制交流同步电网的规模。另一方面,随着西部开发号角的吹响,龙滩、公伯峡、洪家渡、索风营、乌江渡扩机、百色水利枢纽、紫坪铺水利枢纽等水电工程的开工,以及后继工程小湾、三板溪、溪洛渡、景洪、瀑布沟、拉西瓦、彭水等正在编制可行性研究,预计今后十几年内直流输电项目不少。

“十五”期间安排了7项直流输电工程。除三峡至常州外,荆州至惠州博罗响水镇±500kV、3000MW、940km工程已由ABB公司中标,将于2005年投运;安顺至肇庆±500kV、3 000MW、980km工程已由西门子公司中标,也将于2005年投运;稍后开工的还有三峡至上海练塘

±500kV、3 000MW工程;作为大区互联的直流背靠背工程,将有陕西至河南灵宝、邯郸至新乡、东北至华北项目,其中灵宝直流换流站,额定容量为360MW,已被列为直流输电国产化的依托工程,后两项目的规模及落点也将在近期内明确。

1.1.3 已采用的直流输电类型

以下是已采用的高压直流输电的类型:

(1)超过30km左右的水下电缆。由于电缆的大电容需要中间补偿站,对这么长的距离来说,交流输电是不切实际的。瑞典FENNO-芬兰SKAN,横跨海峡,采用220km长的电缆。

(2)两个交流系统之间的异步联接。由于直流系统稳定性问题或两系统的额定频率不同,在这钟情况下也不适宜采用交流联接。另外,两大系统逐渐发展需要互联,它们虽有相同的频率,有时却不同期,采用直流互联也是常用手段。这两种情况在美国最多见,其它(印度、日本、欧洲等)地方也采用。

(3)大容量远距离架空线输电。超过700km距离时,用高压直流输电替代交流输电,极具竞争力.美国BPA系统、加拿大纳尔逊河输电系统、我国的葛上直流工程和天广直流工程均属此类型。

高压直流输电系统具有快速控制传输功率的能力。因此,对于与交流电力系统有关的稳定性问题,HVDC系统有明显的影响。理解HVDC系统的特性,对于电力系统的运行和稳定控制都是极其重要的。尤为关键的是,HVDC控制的正确设计是使整个交、直流系统具有满意运行性能的重要保证。

1.2 高压直流输电运行特性及其与交流输电的比较

电力系统规划人员在对直流输电和交流输电两种方式进行比较时,应当考虑以下因素:

(1)技术性能;

(2)可靠性;

(3)经济性.

随着负荷增长而不断扩展是电力系统的主要特点之一。这就要求在建立一条特定的输电线路时,应当将其作为整个系统长期规划的一部分来考虑。

1.2.1 技术性能

高压直流输电系统具有下列运行特性:

(1)功率传输特性。众所周知,随着输送容量不断增长,稳定问题越来越成为交流输电的制约因素。为了满足稳定问题,常需采用串补、静补、调相机、开关站等措施,有时甚至不得不提高输电电压。但是,这将增加很多电气设备,代价是昂贵的。

直流输电没有相位和功角,当然也就不存在稳定问题,只要电压降、网损等技术指标符合要求,就可达到传输的目的,无需考虑稳定问题,这是直流输电的重要特点,也是它的一大优势。

(2)线路故障时的自防护能力。交流线路单相接地后,其消除过程一般约0.4~0.8s,加上重合闸时间,约0.6~1s恢复。

直流线路单极接地,整流、逆变两侧晶闸管阀立即闭锁,电压降到0,迫使直流电流降到0,故障电弧熄灭不存在电流无法过0的困难,直流线路单极故障的恢复时间一般在0.2~0.35s内。

从自身恢复的能力看,交流线路采用单相重合闸,需要满足单相瞬时稳定,才能恢复供电,直流则不存在此限制条件。

若线路上发生的故障在重合(直流为再启动)中重燃,交流线路就三相跳闸了。直流线路则可用延长留待去游离时间及降压方式来进行第2、第3次再启动,创造线路消除故障、恢复正常运行的条件。对于单片绝缘子损坏,交流必然三相切除,直流则可降压运行,且大都能取得成功。

因此,对于占线路故障80%~90%的单相(或单极)瞬时接地而言,直流比之交流具有响应块、恢复时间短、不受稳定制约、可多次再启动和降压运行来创造消除故障恢复正常运行条件等多方面优点。

(3)过负荷能力。通常,交流输电线路具有较高的持续运行能力,受发热条件限制的允许最大连续电流比正常输送功率大得多,其最大输送容量往往受稳定极限控制。

直流线路也有一定的过负荷能力,受制约的往往是换流站。通常分2h过负荷能力、10s 过负荷能力和固有过负荷能力等。前两者葛上直流工程分别为10%和25%,后者视环境温度而异。

总的来说,就过负荷能力而言,交流有更大的灵活性,直流如果需要具有更大的过负荷能力,则必须在设备选型时要预先考虑,此时需要增加投资。

(4)利用直流输电调节作用能提高交流系统的稳定性。如前所述,直流输电具有快速响应的特点,当交流系统发生故障时,利用直流输电的调节作用,能有效地提高交流系统的稳定性。著名的美国BPA 500kv交直流并列运行线路,2回长152lkm交流线路共送2860Mw,平均l回送电1430MW,直流的调节作用是重要措施之一。

(5)潮流和功率控制。交流输电取决于网络参数、发电机与负荷的运行方式,值班人员需要进行调度,但又难于控制,直流输电则可全部自动控制。

(6)短路容量。两个系统以交流互联时,将增加两侧系统的短路容量,有时会造成部分原有断路器不能满足遮断容量要求而需要更换设备。直流互联时,不论在哪里发生故障,在直流线路上增加的电流都是不大的,因此不增加交流系统的断路容量。

(7)调度管理。由于通过直流线路互联的两端交流系统可以有各自的频率,输送功率也可保持恒定(恒功率、恒电流等)。对送端而言,整流站相当于交流系统的一个负荷;对受端而言,逆变站则相当于交流系统的一个电源。互相之间的干扰和影响小,运行管理简单方便,深受电力管理、运行部门的欢迎.对我国当前发展的跨大区互联、合同售电、合资办电等形成的联合电力系统,尤为适宜。

(8)线路走廊。按同电压500kV考虑,1条500kV直流输电线路的走廊约40m,1条500kV 交流线路走廊约为50m,但是1条同电压的直流线路输送容量约为交流线路的2倍,直流输电的线路走廊,其传输效率约为交流线路的2倍甚至更多一点。

然而下列因素限制了直流输电的应用范围:

(1)直流断路器的费用高;

(2)不能用变压器来改变电压等级;

(3)换流设备的费用高;

(4)由于产生谐波,需要交流和直流滤波器,从而增加了换流站的费用;

(5)控制复杂。

近年来,直流技术已有了明显的进步,除了上述的第(2)条之外,其余缺点都可予以克服.这些技术如下:

(1)直流断路器的进展;

(2)晶闸管的模块化结构和额定值增加;

(3)换流器采用12或24脉波运行;

(4)采用氧化金属变阻器;

(5)换流器控制采用数字和光纤技术。

上述技术已经改善了直流系统的可展性和降低了换流站的费用。控制的复杂性已不成为一个问题,实际上已用来对正常和非正常运行提供可靠和快速的控制。此外,还可以采用控制来将两端直流联络线中的直流电流降到零,而不需要直流断路器。甚至在多端直流系统中,还将直流断路器作为有效的控制手段。

1.2.2可靠性

整个系统的可靠性可以从强迫停运率和电能不可用率两个方面进行衡量。

(1)强迫停运率。根据我国500kV交流输电工程统计资料和国外ABB、北美和CIGBE 等对交、直流工程的统计资料,交、直流工程的综合强迫停运率如表1.1所示。

表1.1 交、直流工程的综合强迫停运率

总的来说,从可靠性和可用率两个指标来看,交、直流两种输电方式是相当的,都是可行的.

1.2.3 经济性

交、直流两种输电方式,就其造价而言,各具如下特色:

(1)输送容量确定后,直流换流站的规模随之确定,其投资也即固定下来,距离的增加,只与线路造价有关。交流输电则不同,随着输电距离的增加,由于稳定、过电压等要求,需要设置中间开关站。因此,对于交流输电方式,输电距离不单影响线路投资,同时也影响变电部分投资;

(2)就变电和线路两部分看,直流输电换流站投资占比重很大,而交流输电的输电线路投资占主要成分;

(3)直流输电功率损失比交流输电小得多;

(4)当输送功率增大时,直流输电可以采取提高电压、加大导线截面的办法,交流输电则往往只好增加回路数。

综上所述,直流换流站的造价远高于交流输电的,而直流输电线路的造价则明显低于交流输电线路的。同时,直流输电的网损又比交流的小得多。因此,随着输电距离的改变,交、直流两种输电方式的造价和总费用将相应作增减变化。在某一输电距离下,两者总费用相等,这一距离称为等价距离。这是一个重要的工程初估数据。概括地说,超过这一距离时,采用直流有利;小于这一距离时,采用交流有利。根据国外经验,等价距离大约为700~800km。

1.3 高压直流输电系统的结构和元件

1.3.1 高压直流联络线的分类

高压直流联络线大致可分以下几类:

(1)单极联络线;

(2)双极联络线;

(3)同极联络线。

单极联络线的基本结构如图1.1所示,通常采用一根负极性的导线,而由大地或水提供回路。出于对造价的考虑,常采用这类系统,对电缆传输来说尤其如此。这类结构也是建立双极系统的第一步。当大地电阻率过高,或不允许对地下(水下)金属结构产生干扰时,可用金属回路代替大地作回路,形成金属性回路的导体处于低电压。

图1.1 单极HVDC联络线

双极联络线结构如图1.2所示,有两根导线,一正一负,每端有两个为额定电压的换流器串联在直流侧,两个换流器间的连接点接地。正常时,两级电流相等,无接地电流,两级可独立运行。若因一条线路故障而导致一级隔离,另一级可通过大地运行,能承担一半的额定负荷,或利用换流器及线路的过载能力,承担更多的负荷。

图1.2 双极HVDC联络线

从雷电性能方面看.一条双极HVDC线路能有效地等同于两回交流传输线路。正常情况下,它对邻近设备的谐波干扰远小于单极联络线。通过控制(不需要机械开关)改变两极的极性来实现潮流反向。

当接地电流不可接受时,或接地电阻高而接地电极不可行时,用第三根导线作为金属性中性点。在一极退出运行或双极运行失去平衡时,此导线充当回路。第三条导线的绝缘要求低,还可作为架空线的屏蔽线。如果它完全绝缘,可作为一条备用线路。

同极联络线结构如图1.3所示,导线数不少于两根,所有导线同极性。通常最好为负极性,因为它由电晕引起的无线电干扰较小。这样的系统采用大地作为回路,当一条线路发生故障时,换流器可为余下的线路供电,这些导线有一定的过载能力,能承受比正常情况更大的功率。相反,对于双极系统来说,重新将整个换流器连接到线路的一极上要复杂得多,通常是不可行的。在考虑连续的地电流是可接受的情况下,同极联络线具有突出的优点。

图1.3 同极HVDC联络线

接地电流对位于系统电极几千米范围内的油、气管道有附带的影响。这些管道充当地电流的导体会引起金属腐蚀。因此,使用大地作回路的结构并非总是可取的。

以上各种高压直流系统结构通常均有串联的换流器组,每个换流器有一组变压器和一组阀.换流器在交流侧(变压器侧)是并联的,在直流侧(阀侧)是串联的,在极对地之间给出期望的电压等级。

背靠背的高压直流系统(用于非同步联接)是无直流线路的直流系统。它可以设计成单极或双极运行,每极带有不同数目的阀组,其数目取决于互联的目的和要达到的可靠性。

大多数包括线路在内的点对点(两端)HVDC联络线是双极的,仅在偶然事故时才采用单极运行。它们通常被设计成能提供极间最大独立性的系统,以避免双极闭锁。

将直流系统联接到交流电网上的节点多于两个时,就构成了多端高压直流系统。多端系统的结构将在9.1中讨论。

如果两个直流系统接到一个共同的交流系统上,并且两个直流系统之间的交流阻抗较小,就构成了多馈入直流系统,其结构在10.1中讨论。

1.3.2 高压直流输电系统的元件

HVDC系统的主要元件加图1.4所示。以双极系统为例,其它结构的元件与该图所示基本类同。下面简述各元件。

图1.4 双极HVDC系统的主要元件

(1)换流器。它们完成交-直流和直-交流转换,由阀桥和有抽头切换器的变压器构成。阀桥包含6脉波或12脉波安排的高压阀,如2.2的介绍。换流变压器向阀桥提供适当等级的不接地三相电压源。由于变压器阀侧不接地,直流系统能建立自己的对地参考点,通常将阀换流器的正端或负端接地。

(2)平波电抗器。这些大电抗器具有高达1.0H的电感,在每个换流站与每极串联时,它们有以下作用:

1、降低直流线路中的谐波电压和电流;

2、防止逆变器换相失败;

3、防止轻负荷电流不连续;

4.限制直流线路短路期间整流器中的峰值电流。

(3)谐波滤波器。换流器在交流和直流两侧均产生谐波电压和谐波电流。这些谐波可能导致电容器和附近的电机过热,并且干扰远动通信系统。因此,在交流侧和直流侧都装有滤波装置。

(4)无功功率支持。正如我们将在2.2中看到的,直流换流器内部要吸收无功功率。稳态条件下,所消耗的无功功率是传输功率的50%左右。在暂态情况下,无功功率的消耗更大。因此.必须在换流器附近提供无功电源,对于强交流系统,通常用并联电容补偿的形式。根据直流联络线和交流系统的要求,部分无功电源可采用同步调相机或静止无功补偿器(SVC)。用作交流滤波的电容也可以提供部分无功功率。

(5)电极。大多数的直流联络线设计采用大地作为中性导线,至少在较短的一段时间内是这样。与大地相连接的导体需要有较大的表面积,以便使电流密度和表面电压梯度最小。这个导体被称为电极。如前所述,如果必须限制流经大地的电流,可以用金属性回路的导体作为直流线路的一部分。

(6)直流输电线。它们可以是架空线,也可以是电缆。除了导体数和间距的要求有差异外,直流线路与交流线路十分相似。

(7)交流断路器。为了排除变压器故障和使直流联络线停运,在交流侧装有断路器。它们不是用来排除直流故障的,因为直流放障可以通过换流器的控制更快地清除。

第2章换流器理论及特性方程

换流器完成交—直流转换,并通过HVDC联络线来控制潮流。换流器的主要元件是阀桥和换流变压器。阀桥是一组高压开关或阀,它们依次地将三相交流电压连接到直流端,以便得到期望的变换和对功率的控制。换流变压器提供交流系统和直流系统之间的适当接口。

这一章我们将描述实际换流电路的结构和运行情况。另外,我们还将建立联系直流量和基频交流量的方程。

2.1阀特性

高压直流换流器中的阀是一个可控电子开关。它通常仅单向导通,正方向是从阳极到阴极,导通时阀上仅有一个小的压降。在相反方向,即施加在阀上的电压使阴极相对于阳极为正时,阀阻止电流通过。

早期的HVDC系统采用汞弧阀,额定电流等级在1000A至2000A之间,额定反向峰值电压为50kV到150kV。汞弧阀的缺点是体积大,有逆向导通的可能。

从70年代中期开始,所有的HVDC系统均采用晶闸管阀。晶闸管阀的额定值已发展到2500A至3000A和3kV至5kV。晶闸管串联起来以得到希望的系统电压,而用并联来满足正常和事故过流的要求。它可以有以下不同的设计:空气冷却,空气绝缘;油冷,油绝缘;水冷,空气绝缘;以及氟利昂(二氯二氟甲烷)冷却,六氯化硫(SF6)绝缘。可以分别按户内和户外安装来设计阀。

为了使阀导通,必要条件是阳极电压相对于阴极为正。在汞弧阀中,当控制栅极对阴极有足够的负电压时,虽然阳极电压可能是正的,也可避免阀导通,触发瞬间能通过栅极来控制。

晶闸管的电路符号及其伏安特性分别如图2.1(a,b)所示。主电流从阳极(A)流到阴极(K)。在断开状态,晶闸管能阻断正向电流而不导通,如图2.1(b)的伏安特性的断开状态段。

当晶闸管处于正向闭锁状态时,通过向门极(G)施加瞬时的或持续的电流脉冲,能触发晶闸管导通,产生如图2.1(b)的伏安特性的导通段。导通时的正向电压降只有几伏(典型值为1~3v,取决于晶闸管闭锁电压的额定值)。

一旦晶闸管开始导通,它就被钳住在导通状态,而此时门极电流可以取消。晶闸管不能被门极关断,像一个二极管一样导通,直到电流降至零和有反向偏置电压作用在晶闸管上时,它才会截止。当晶闸管再次进入正向阻断状态后,允许门极在某个可控的时刻将晶闸管再次触发导通。

在反向偏置电压低于反向击穿电压时,流过晶闸管的漏电流很小,几乎可以忽略[图2.1(b)]。通常,晶闸管的正向和反向阻断额定电压相同,用晶闸管允许通过的最大电流有效值相平均值来规定电流额定值。

在分析换流器时,可以用图2.1(c)所示的理想特性来表示晶闸管。

图2.1 晶闸管 (a )符号;(b )伏安特性;(c )理想特性.

在选用组成换流器的晶闸管元件时,一般要求各元件具有下列的性能,即耐压强度高,过流能力强,开通、关闭时间短,并尽量一致,正向压降小,剩余载流子电荷差值小,有承受较大的导通电流变化率(/di dt )和关断电压变化率(/du dt )的能力等。但是,由于制造工艺上原因,使这些要求不能同时满足。因此,要根据使用情况,制造能力等条件,有重点地进行选择。

多个晶闸管元件串联连接时,由于各元件的特性不一致,造成晶闸管间电压分布不匀,因此需要加装均压装置来限制其不均匀程度。另外,晶闸管换相时,电压发生突变;由于阀的杂散电容等和回路电感的存在而产生振荡。为了抑制这个振荡过电压需要设置阻尼装置。这些均压、阻尼装置,大都是由统一的RLC 网络构成。应当指出的是,如果使用统一的RLC 网络时,则在选择网络参数时,需要同时满足均压参数与振荡阻尼两方面的要求,做到统筹兼顾,合理配置。

2.2 换流电路分析

高压直流换流器的基本模块是三相全波桥式电路,如图2.2所示。该电路又称为格雷兹(Graetz)桥。尽管换流器电路存在几种可供选择的结构,但是由于格雷兹电路能够更好地利用换流变压器,并且当其截止时阀上反向峰值电压较低,所以该电路得到了广泛运用。

换流变压器的交流侧配有有载调压分接头。变压器的交流侧绕组通常采用星形接地(Y 0)联接,阀侧绕组通常采用三角形(△)或星形(Y)联接。

为便于分析,我们先做以下假设:

(a)含有换流变压器的交流系统可表示为一个电压和频率恒定的理想电压源与一个无损电感(主要代表变压器的漏电感)串联;

(b)直流电流(I d )保持恒定且无纹波,这是因为在直流侧采用了一个较大的平波电抗器(L d );

(c)阀具有理想的开关特性,导通时呈零电阻,截止时呈无穷大电阻。

基于上述假设,图2.2所示的桥式换流电路可表示为图2.3所示的等效电路。

换流站与变电站,为何采用高压直流输电

换流站与变电站,为何采用高压直流输电 1.总论 电厂的任务是发电,电厂要能正常发电就需要使用和维护设备,使用和维护设备就是电厂的主要工作内容。 变电站是将电厂发出的电能通过电力设备进行各种变换,然后输送出去。其主要工作任务是: 1、使用和维护电力设备,使之保证长期连续对外供电。 2、监控电力设备运行情况,作好各项监控记录,以便将来作为技术或故障 分析的原始资料。 3、有些变电站还具有监控线路运行状况的功能。 2.换流站 高压直流输电的一种特殊方式,将高压直流输电的整流站和逆变站合并在一个换流站内,在同一处完成将交流变直流,再由直流变交流的换流过程,其整流和逆变的结构、交流侧的设施与高压直流输电完全一样,具有常规高压直流输电的最基本的优点,可实现异步联网,较好地实现不同交流电压的电网互联,将2个交流同步电网隔离,能有效地隔断各互联的交流同步网间的相互影响,限制短路电流,且联络线功率控制简单,调度管理方便。与常规直流输电比较,其优点更突出: 1、没有直流线路,直流侧损耗小; 2、直流侧可选择低压大电流运行方式,以降低换流变压器、换流阀等有关 设备的绝缘水平,降低造价; 3、直流侧谐波可全部控制在阀厅内,不会产生对通信设备的干扰; 4、换流站不需要接地极,无需直流滤波器、直流避雷器、直流开关场、直 流载波等直流设备,因而比常规的高压直流输电节省投资。

换流站是直流输电工程中直流和交流进行相互能量转换的系统,除有交流场等与交流变电站相同的设备外,直流换流站还有以下特有设备:换流器、换流变压器、交直流滤波器和无功补偿设备、平波电抗器。 换流器主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀,换流器单位容量在不断增大。 换流变压器是直流换流站交直流转换的关键设备,其网侧与交流场相联,阀侧和换流器相联,因此其阀侧绕组需承受交流和直流复合应力。由于换流变压器运行与换流器的换向所造成的非线性密切相关,在漏抗、绝缘、谐波、直流偏磁、有载调压和试验方面与普通电力变压器有着不同的特点。交直流滤波器为换流器运行时产生的特征谐波提供入地通道。换流器运行中产生大量的谐波,消耗换流容量40%~60%的无功。交流滤波器在滤波的同时还提供无功功率。当交流滤波器提供的无功不够时,还需要采用专门的无功补偿设备。 平波电抗器能防止直流侧雷电和陡波进入阀厅,从而使换流阀免于遭受这些过电压的应力;能平滑直流电流中的纹波。另外,在直流短路时,平波电抗器还可通过限制电流快速变化来降低换向失败概率。 3.变电站 3.1简介 改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低。这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,称为变电所、配电室等。 3.2组成

模块化多电平高压直流输电综述

模块化多电平换流器型高压直流输电综述 0引言: 现代电力电子技术的发展,使直流输电又一次登上历史舞台,与交流输电并驾齐驱。1954年,世界上第一条工业性的高压直流输电系统投入运营,从此,直流输电技术在海底电缆送电、远距离大功率输电、不同频率或相同频率交流系统之间的联结等场合得到了广泛地应用。IGBT、GTO 的出现,促使了VSC-HVDC和MMC-HVDC的产生,成为直流输电技术的一次重大变革。 MMC-HVDC(modular multilevel converter-high voltage DC transmission)是新一代直流输电技术,发展非常迅速。它具有高度模块化、易于扩展、输出电压波形好等特点,尤其适用于中高压大功率系统应用。本文首先介绍MMC的电路拓扑和工作原理,总结MMC的主要技术特点;然后分别回顾MMC在电容电压平衡、环流、控制策略、故障保护等关键问题的最新研究进展,最后指出MMC今后亟待研究的关键问题。相关研究结果表明,MMC在电力系统中有广泛的应用前景,是未来中高压大功率系统,尤其是高压输电技术的重要发展方向。 1正文: 传统两电平电压源型变换器,在电机传动、新能源并网、开关电源等工业生产领域的应用十分广泛。但在高压大功率领域的应用中,为解决功率开关器件的耐压问题,通常通过工频变压器接入高压电网,笨重的工频变压器大大增加了电力电子变换装置的体积和成本,限制了系统效率。鉴于现有传统多电平变换器在较高应用电压等级、有功功率传输场合等方面存在的不足,德国学者 Marquardt R.及其合作者提出了基于级联结构的模块组合多电平变换器(modular multilevel converter,MMC)的拓扑。 现将传统直流输电、电压源换流器型直流输电(VSC-HVDC)和MMC-HVDC三种直流输电方式的特点列表如下。

高压直流输电情况总结

高压直流输电总结 一、高压直流输电概述: 1.高压直流输电概念: 高压直流输电是交流-直流-交流形式的电力电子换流电路,由将交流电变换为直流电的整流器、高压直流输电线路及将直流电变换为交流电的逆变器三部分组成。 注意:高压输电好处是在输送相同的视在功率S的前提下,高压输电能够降低输电线路流过的电流,减少线路损耗,提高输送效率(,)。 2.高压直流输电的特点: (1)换流器控制复杂,造价高; (2)直流输电线路造价低,输电距离越远越经济; (3)没有交流输电系统的功角稳定问题; (4)适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; (5)能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; (6)传输功率的可控性强,可有效支援交流系统; (7)换流器大量消耗无功,且产生谐波; (8)双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题; (9)不能向无源系统供电,构成多端直流系统困难。 3.对直流输电的基本要求: (1)能够灵活控制输送的(直流)电功率(大小可调;一般情况下,应能够正反双向传送电功率(功率方向可变);

(2)维持直流线路电压在额定值附近; (3)尽可能降低对交流系统的谐波污染; (4)尽可能少地吸收交流系统中的无功功率; (5)尽可能降低流入大地的电流。 注意:大地电流的不利影响包括①不同接地点之间存在电位差,形成电解池,造成电化学腐蚀;②变压器接地中性点流过直流电流,造成变压器直流偏磁,使变压器噪声增加、损耗加大、振动加剧。 4.高压直流输电的适用范围: 答:1.远距离大功率输电;2.海底电缆送电;3.不同频率或同频率非周期运行的交流系统之间的联络;4.用地下电缆向大城市供电;5.交流系统互联或配电网增容时,作为限制短路电流的措施之一;6.配合新能源供电。 二、高压直流输电系统的基本构成: 1.双端直流输电的基本构成: (1)单极大地回线(相对于大地只有一个正极或者负极): 图2- 1 (2)单极金属回线: 图2- 2 (3)双极大地回线(最常用): 图2- 3 (4)双极单端接地(很少用): 图2- 4 (5)双极金属回线(较少用): 图2- 5 (6)并联式背靠背: 图2- 6 (7)串联式背靠背:

高压直流输电—概况

第1章导论 1.1高压直流输电概况 1.1.1 交流输电还是直流输电? 关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。 在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。这一阶段发电、输电和用电均为直流电。如1882年在德国建成的57km向慕尼黑国际展览会送电的直流输电线路(2kV,1.5kW);1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Moutiers)到里昂(Lyon)的230km直流输电线路(125kV,20MW)等,均为此种类型。 但是随着科学技术和工业生产发展的需要,电力技术在通信、运输、动力等方面逐渐得到广泛应用,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。爱迪生认为交流电危险,不如直流电安全。他还打比方说,沿街道敷设交流电缆,简直等于埋下地雷。并且邀请人们和新闻记者,观看用高压交流电击死野狗、野猫的实验。那时纽约州法院通过了一项法令,用电刑来执行死刑。行刑用的电椅就是通以高压交流电,这正好帮了爱迪生的大忙。在他的反对下,交流电遇到了很大的阻碍。 但是为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。他用钢皮铜心电缆将1万伏的交流电送往相距10公里外的市区变电站,在这里降为2500伏,再分送到各街区的二级变压器,降为100伏供用户照明。以后,俄国的多利沃──多布罗沃斯基又于1889年最先制出了功率为100瓦的三相交流发电机,并被德国、美国推广应用。事实成功地证实了高压交流输电的优越性。并在全世界范围内迅速推广。随着三相交流发电机,感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。同时变压器又可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。 随着科学的发展,为了解决交流输电存在的问题,寻求更合理的输电方式。由于直流输电具有远距离海底电缆或地下电缆输电,不同频率电网之间的联网或送电等优点,人们现在又开始采用直流超高压输电。但这并不是简单地恢复到爱迪生时代的那种直流输电。发电站发出的电和用户用的电仍然是交流电,只是在远距离输电中,采用换流设备,把交流高压变成直流高压。这样做可以把交流输电用的3条电线减为2条,大大地节约了输电导线。如莫桑比克的卡布拉巴萨水电站至阿扎尼亚的线路架空直流输电线路,长1414公里,输电电压

高压直流输电线路继电保护技术综述 徐军

高压直流输电线路继电保护技术综述徐军 发表时间:2020-01-03T15:15:46.603Z 来源:《河南电力》2019年7期作者:徐军[导读] 近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。 (贵州送变电有限责任公司贵州贵阳 550002) 摘要:近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。而在人们日常生活中,信息化技术的发展,给人们的生活带创新出便捷的方式,同样,在高压直流输电的发展中,具有重要的地位。随着高压直流输电线路线工程项目的增多,加大了对继电的保护,结合实际情况,不断地创新保护技术水平,提升工程项目的整体质量,从而确保电力系统的稳定发展。 关键词:高压直流输电线路;继电保护;技术水平 为了能够满足各领域的用电需求,我国加大了对电力工程项目的建设力度,从高压直流输电保护原理的角度分析,其可靠性、保护性、灵敏度等存在着一些问题,尤其是对其故障的处理,不仅无法及时地发现所存在的故障问题,而且对故障问题的解决,需要花费大量的实践。对此后期保护工作,整体的保护速度比较慢,无法满足标准配置的发展要求。对此,需要加大对高压直流输电线路继电保护技术水平的研究,结合具体的问题分析,制定出完善的解决方案与措施,提高整体的可靠性与技术水平。 一、高压直流输电线路继电保护影响因素 (一)电容电流 高压直流输电线路,主要的要求就是大电容,大功率,再受到小波阻特点的影响,需要加强对组联电流的保护,才能够确保整体的效果与稳定性。那么对整个高压直流输电线路继电的保护,需要结合实际情况的综合分析,能够确保输电线整体的安全性与稳定性,对电容电流提出了更高的要求,需要采取相应的补偿策略[1]。 (二)过电压 高压直流输电线路会受到不同因素的影响,而引导不同的故障,而一旦高压直流输电线路发生了故障,会在电弧情况下不会熄灭,对其控制在可监控的范围内,才能够确保其不产生消弧现象。而对高压直流输电线路继电的保护,针对输电线两个的顶点开关,无法在第一时间切断,那么就不会产生反射行波,从而对高压直流输电继电保护产生一定的影响。 (三)电磁暂态过程 对高压直流输电线路的建设,其整个的距离都比较远,一旦其发生了故障问题,就会增加高频分量,对其故障的诊断、处理加大工作难度,无法准确地测量出电气误差值,最终对高频分量造成不利的影响。电磁暂态过程,会引发高压直流输电故障的同时,使电流互感处于饱和的状态下,最终引导安全事故[2]。 二、提高高压直流输电线路继电保护技术水平措施 (一)加强对行波的保护 高压直流输电线路故障问题比较多,对其故障的解决,还需结合实际情况的综合分析,如果是产生了反行波的故障问题,会对高压直流输电线路的稳定性、安全性造成一定的影响。对此,西药加强对行波的科学保护。一般情况下,针对高压直流输电线路行波的保护,有两种解决方案。一种是ABB方案,另一种是SIEMENS方案。ABB方案,是根据极波理论所提出的,能够帮助相关工作人员,及时、准确地检测出高压直流输电线路的反行波情况,结合实际情况的综合分析,采用科学合理的解决措。而SIEMENS方案,是以电压积分为原理所设计的一种方案。对高压直流输电线路继电的保护时间控制在16秒--20秒之间。把ABB方案与SIEMENS方案相比较,SIEMENS方案的起动时间比较长,但是干扰效果却比ABB方案的干扰效果更好[3]。为了能够更地加强对波保护质量的保护,对相关工作人员提出了更高的要求,结合梯度理论与数学滤波技术等综合分析,制定出科学合理的保护措施。 (二)针对微分电压的保护措施 微分电压的保护是高压直流输电线路继电保护中重要的组成部分之一,那么在实际分析的过程中,主要是对差动电压主保护、后备保护等特点的综合分析[4]。例如:在西门子公司内,就会采用ABB方案加强对其行波的保护,对所应用对象的简称,详细地掌握电压电平、电压差动。由于其所使用的是ABB方案,会对其上升的时间产生影响,使其后备保护无法发挥出自身的重要作用。但是对ABB方案上升时间的调整,至少可以解决20毫秒的时间问题。但是在实施的过程中,主要的弊端就是抗干扰的能力不强。 对微分电压的安全保护,对高压直流输电线路的可靠性有直接性的影响,提高其整体的灵敏度,但是其运行的速度要比行波保护低,以此形式的运行,无法确保其整体的电阻能力,那么就会使整体可靠性逐渐地降低,无法确保高压直流输电线路的运行效率与质量[5]。例如:对继电保护的整定值计算,会产生不同的故障问题,如果是低压问题,那么对此方法的应用,会使变压器高压侧系统电源持续加大;如果是对其负荷的保护,则需要根据极端反时限工作原理;如果是对限时电流的速断保护,那么就需要采用定时限工作原理等等。根据高压直流输电线路在运行中所产生的不同故障问题,结合实际情况的综合分析,采取合理的解决措施,不要对电缆阻抗影响因素的忽视,会对进线开关、变压器进线保护定值等产生一定的影响。具体如表1所示。

高压直流输电

我所了解的高压直流输电 自1954 年瑞典哥特兰的世界上第一项高压直流输电工程投运以来,高压直流输电技术已随着电力电子技术的突飞猛进而飞速发展,它在长距离输电、电网互联等方面有独特优点,已作为高压交流输电技术的有力补充而在全世界广泛应用,目前其工程约90个。 我国幅员辽阔,西电东送、南北互供的电网发展战略使高压直流输电技术大有用武之地,预计将出现一系列高压直流输电工程。 1 高压直流输电相对于交流输电的特点 ①高压直流输电与其相联的两个交流系统的频率和相位无关。据此可通过直流输电环节连接两独立交流系统,既能获取减小热备用容量等联网效益,又可各自保持有功及无功功率平衡等电网管理的独立性。另外,一电网短路可因直流环节的隔离作用而不直接株连另一电网,从而避免全系统大面积停电。故高压直流输电很适于电网间的互联。 ②高压直流输电只传送有功功率。故不会增大所联交流电网的短路容量,即不增大断路器遮断容量,且直流电缆无充电电流,可长距离送电。 ③高压直流输电的传送功率(包括大小和方向)快速可控。故可方便而精确地严格按计划实时控制所联交流电网间的交换功率,且不受两端交流电网运行工况的影响,特别适合于所联两电网间按协议送电。还可通过快速准确地控制直流功率来有效提高所联交流电网或所并联交流线路的稳定性。 ④高压直流输电线路经济。因单、双极直流输电分别只需一、二根导线(相当于一、二回交流线路) ,故直流输电线路所需线路走廊宽度小,线材、金具、塔材都少,塔轻使塔基工程量也小。输电距离较远时,直流线路节省的费用将大于直流换流设备多花的费用,线路越长,节省越多。因而高压直流输电特别适用于长距离大容量输电。 2 我国电网发展的形势 我国已探明的煤炭储量82 %集中在西部地区,可开发的水电资源67.5 %集中在西南地区,而到2020 年的电力消费75 %将集中在中、东部和南部沿海地区。这种一次能源分布与负荷中心的不平衡,决定了我国资源优化配置的基本选择是长距离西电东送。它对东部而言,可得到廉价的清洁能源,弥补其电力不足,减轻对环境的污染,节省宝贵的土地资源;对西部而言,可通过开发水电、坑口火电,向外输出电力,既可增加就业,积累资金,提高居民收入,又可利用丰富廉价的电力发展高耗能工业,从而带动西部地区经济发展,促进其资源优势向经济优势转化;此外,对国内制造业也有巨大的促进作用。故西电东送是我国西部大开发战略的重要组成部分。 另外,随着地区经济的发展,我国已自然形成了东北、华北、西北、华中、华东、南方及一些省区的区域电网。合理地互联这些电网可取得良好的水火互补、错峰填谷、减少备用容量、事故支援等经济效益,并减小大面积停电的几率,便于电网各自管理,故高压直流输电(包括直流背靠背)十分适于联网。

高压直流输电系统概述

高压直流输电系统概述 院系:电气工程学院 班级:1113班 学号:xxxxxxxxxxx 姓名:xxxxxxxxxx 专业:电工理论新技术

一、高压直流输电系统发展概况 高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。 1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程. 我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景. 近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术. 现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜. 一、高压直流输电系统构成 高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。 单极联络线的基本结构如图1所示,通常采用一根负极性的导线,由大地或海水提供回路,采用负极性的导线,是因为负极的电晕引起的无线电干扰和受雷击的几率比正极性导线小得多,但当功率反送时,导线的极性反转,则变为负极接地。由于它只需要一根联络线,故出于降低造价的目的,常采用这类系统,对电缆

高压直流输电技术

高压直流输电技术 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

摘要 本文综述了高压直流输电工程的应用领域及研究现状,并从稳态模型出发分析了其控制方式和运行原理,最后介绍了新型高压直流输电系统基本情况,达到了实际的研究意义。 关键词:高压直流输电;稳态模型;控制;新型

目录 摘要....................................................................................................................................II 1 高压直流输电发展概况 (1) 1.1 高压直流输电工程的应用现状 (1) 1.2 高压直流输电的发展趋势 (1) 1.3 高压直流输电的特点 (2) 2 高压直流输电系统控制与运行 (4) 2.1 概述 (4) 2.2 直流输电系统的控制特性 (5) 2.2.1 理想控制特性 (5) 2.2.2 实际控制特性 (6) 2.3 HVDC系统的基本控制 (7) 2.4 HVDC系统的附加控制 (10) 2.4.1 HVDC系统附加控制的原理 (10) 2.4.2 HVDC系统常见的附加控制 (10) 3 新型直流高压输电系统 (12) 3.1 概述 (12) 3.2 基本结构 (12) 参考文献 (13)

1 高压直流输电发展概况 1.1 高压直流输电工程的应用现状 直流输电起步于20世纪50年代,20世纪80年代随着晶闸管应用技术的成熟、可靠性的提高,直流输电得到大的发展。到目前为止,已建成高压直流输电项目60多项,其中以20世纪80年代为之最,占30项。表1.1列出世界上长距离高压直流输电项目,表1.2列出我国直流工程项目。 表2.1 世界上长距离高压直流输电项目 项目额定电压/kV 额定功率/万kW 输电距离/km 投运年份安装地点及供货商卡布拉-巴萨±533 192 1360 1978 莫桑比克2南非因加-沙巴±500 112 1700 1981 扎伊尔 纳尔逊河二期±500 200 940 1985 加拿大 I.P.P ±500 192 784 1986 美国 伊泰普一期±600 315 796 1986 巴西 伊泰普二期±600 315 796 1986 巴西 太平洋联络线±500 310 1361 1989 美国 魁北克多端±500 225 1500 1986/90/92 加拿大-美国 亨德-德里±500 150 814 1992 印度东南联接±500 200 1420 2002 印度 表2.2 我国已投运的高压直流工程项目 项目额定电压/kV 额定功率/万kW 输电距离/km 单极投运年份双极投运年份葛洲坝-上海±500 120 1052 1989 1990 天生桥-广州±500 180 960 2000 2001 三峡-常州±500 300 890 2003 2003 三峡-广州±500 300 956 2003 2004 贵州-广东1回±500 300 900 2004 2004 三峡右岸-上海±500 300 950 2007 2007 贵州-广东2回±500 300 900 2007 2007 1.2 高压直流输电的发展趋势 目前HVDC输电的换流阀仍然是由半控器件晶闸管组成,使用电网换相的相控换流(Phase Control Converter,PCC)技术,因此存在以下一些固有的缺陷:

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

现代电力电子技术概述

现代电力电子技术学习报告 姓名:csu 学号: 专业:电气工程 班级:

目录 第一章现代电力电子技术的形成与发展 (1) 1.1 电力电子技术的定义 (1) 1.2 电力电子技术的历史 (1) 1.3 电力电子技术的发展 (2) 1.3.1 整流器时代 (2) 1.3.2 逆变器时代 (2) 1.3.3 变频器时代 (2) 1.3.4 现代电力时代 (3) 第二章现代电力电子计时研究的主要类容和控制技术 (4) 2.1 直流输电技术 (4) 2.2 灵活交流输电技术(FACTS) (4) 2.3 定制电力技术(DFACTS) (5) 2.4 高压变频技术 (5) 2.5 仿真分析与试验手段 (5) 第三章现在电力电子的应用领域 (6) 3.1 工业领域 (6) 3.2 交通运输 (6) 3.3 传统产业 (6) 3.4 家用电器 (7) 3.5 电力系统 (7) 第四章现代电力电子技术的发展趋势及其目前研究的热点问题 (8) 4.1 国内发展趋势 (8) 4.2 国外发展趋势 (8) 4.3 热点问题 (8)

第一章现代电力电子技术的形成与发展 1.1 电力电子技术的定义 电力电子技术,又称“功率电子学”(英文:Power Electronics),简称PE,是应用于电力领域,使用电力电子元件对电能进行变换和控制的电子技术。电力电子技术分为电力电子元件制造技术和变流技术。一般认为,1957年美国美国通用电气公司研制出第一个晶体管是电力电子技术诞生的标志。 1974年,美国的W. Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。这一观点被全世界普遍接受。 1.2 电力电子技术的历史 随着1902年第一个整流器的问世,进而引入了功率电子学这个概念。原始整流器是一个内含液态汞的阴极放电管。这个汞蒸气型的整流器,可以将数千安培的交流电转换为直流电,其容忍电压也高达一万伏特以上。从1930年开始,这种原始的整流器开始匹配一个类似于通管技术的点阵式(或晶格结构)类比控制器,从而实现了直流电流的可控制性(引燃管,闸流管)。由于正向可通过的电压约为20伏特,进而乘于正向可通过的电流就产生了可观的电功率损失,由此而来的投资和运营成本等等也会相应的增加。因而这种整流器在现今的功率电子技术方面并不会得到广泛的应用。 随着半导体在整流方面的应用,第一个半导体整流器(硒和氧化亚铜整流器)被发明出来。 1957年,通用电气研发出第一种可控式功率型半导体,后来命名为晶闸管。之后进一步地研发出多种类型的可控式功率型半导体。这些半导体如今也在驱动技术方面得到广泛应用。

高压直流输电

电力电子技术在电力系统中的应用 专业:电气工程及其自动化 班级:电气0902 学号: 0901120211 姓名:白云龙

电力电子技术在电力系统中的应用 本学期开设了《电力电子技术在电力系统中的应用》一科,结合电力电子与电力系统的知识。通过以前的学习我们知道,电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,已成为现代电气工程与自动化专业不可缺少的一门专业基础课。而电力系统是由发电、变电、输电和用电等环节组成的电能生产、传输、分配和消费的系统。本门学科即是讲电力电子技术在电力系统中的应用。其中包括无触点开关、有源电力滤波器、高压直流输电、交流不间断电源、静止无功补偿器等。本次我将着重介绍电力电子在电力系统中的应用之一—高压直流输电。 所谓高压直流输电(HVDC),即利用稳定的直流电具有无感抗,容抗也不起作用,无同步问题等优点而采用的大功率远距离直流输电。输电过程为直流。目前应用较为广泛,常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。 高压直流输电技术被用于通过架空线和海底电缆远距离输送电能;同时在一些不适于用传统交流联接的场合,它也被用于独立电力系统间的联接。世界上第一条商业化的高压直流输电线路。1954年诞生于瑞典,用于连接瑞典本土和哥特兰岛。 在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。 高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。 应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。 高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。 直流输电线造价低于交流输电线路但换流站造价却比交流变电站高得多。一

特高压直流输电技术过电压和绝缘配合研究综述教学内容

特高压直流输电技术过电压和绝缘配合研 究综述

特高压直流输电技术过电压和绝缘配合研究综述 摘要: 特高压直流输电具有大容量、远距离和低损耗等优点,特高压直流输电作为一个全新的输电电压等级,非常适合特大型能源基地向远方负荷中心输送电能。直流换流站的绝缘配合研究是直流输电工程实施中的关鍵技术之一,缘水平的高低直接关系到整个直流工程造价。本文从特高压换流站的避雷器布置方案的设计,确定换流站设备的过电压水平、绝缘裕度、关键设备的绝缘水平等方面概括总结了国内外工作者在特高压直流输电的过电压和绝缘配合方面所做的工作,并提出在以后的相关研究中可以进一步考虑的问题。 关键词:特高压直流换流站避雷器绝缘配合过电压 0引言 我国能源资源和经济发展具有分布不均的地域性特点,能源资源主要集中在西部地区,而负荷主要集中在中东部地区[1,2]。为了保证中东部地区的电力供应,必须采取相关技术措旅将能源送往负荷中心。特高压直流输电具有超大容量、超远距离、低损耗的特点,且具有灵活的调节性能,因此非常适合大型能源基地向远方负荷中心送电。我国已成为世界上直流输电容量最大、电压等级最高、发展最快的国家[3]。为了满足未来更大容量、更远距离的输电需求,有必要进一步研究更高电压等级的直流输电技术,±1100kV特高压直流输电是我国目前正在研究的一个全新输电电压等级。 特高压直流输电由于具有大容量、远距离和低损耗等优点,将在我国“西电东送”战略中发挥重要作用。±1100kV特高压直流输电作为一个全新的输电电压等级,电压等级更高、输送容量更大、输电距离更远,非常适合特大型能源基地向远方负荷中心输送电能。 1特高压直流输电背景 自20世纪70年代初期开始,美国、苏联、巴西等国家就开启了对特高压直流输电相关工作的研究,其中CIGRE、IEEE、美国EPRI、瑞典ABB等科研机构和制造厂商在特高压直流输电关键技术研究、系统分析、环境影响、绝缘特性和工程可行性等方面开展了大量研究,并取得了丰硕的成果。相关研究认为,±

新型高压直流输电系统

基于新型换流变压器的特高压直流输电系统的瞬态响应摘要:新型特高压直流输电系统采用了新型电力变换器和一致的感应滤波方法,它的拓扑结构完全不同于已经存在的高压直流输电系统。对于受控系统的变化,也就是说传统高压直流输电系统采用的是一种标准的控制模型,那么新型高压直流输电系统的瞬态响应特征将要相应的改变。参考国际大电网会议上关于高压直流输电的第一个基准模型的主电路参数。这篇论文设计了一个相似的高压直流输电标准模型,该模型是基于换流变压器和一致感应滤波方法的专门特征的,包括了换流变压器和一致感应滤波装置的参数。而且,高压直流输电系统的典型瞬态响应已经通过计算机辅助仿真和电磁暂态仿真,结果表明,采用了标准控制模型的新型高压直流输电系统,有一个很好的瞬态响应特征。而且在外界干扰较大时也能够平稳的运行。 索引词:感应滤波方法,新型换流变压器,新型高压直流输电系统。瞬态响应特征。 1.说明 高压直流输电系统有很高的可控制性。它的有效运行依靠于它的可控制特征的合理运用,给电力系统的期望运行指明了一个方向。总之,新型高压直流输电系统采用了多种等级模型,这种模型为电力系统的控制提供了高效,稳定运行,灵活操作的方法。 新型高压直流输电系统采用了新的电气连接结构,以感应滤波方法取代了传统的被动式反应方法,他可以有效地提高传统高压直流输电中谐波抑制和无功补偿问题的普适性。文章研究了新型换流变压器和感应滤波方法的线路模型和技术特点,工作机制,最终引出了感应滤波的综合优化设计。同时研究了新型高压直流输电系统的稳定运行特征和无功补偿特点。基于以上这些,本篇论文将分析新型高压直流输电系统的典型瞬态响应。 2.新型高压直流输电系统的典型测试系统 新型换流变压器的参数设计: 图一,新型换流变压器的接线图和电压相位图。 在传统的12脉冲高压直流输电系统中,传统的换流变压器经常采用接线方法。它可以为12脉冲的直流系统提供12个相位源。而对与新型的换流变换器,为了达到与传统的换流器的相同效果,它将采用图一所示的接线图。在这种情况下,它不仅能够满足相位变换的要求,而且能够满足感应滤波方法的必要先决条件。他应当满足初次级线圈延长线和公共绕组的限制关系。为了简单讨论,我们选择了新型换流变压器的单相线圈来讨论。依据图

特高压直流输电线路基本情况介绍

特高压直流输电线路基本情况介绍 问:直流输电线路有哪些基本类型? 答:就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空——电缆混合线路三种类型。直流架空线路因其结构简单、线路造价低、走廊利用率高、运行损耗小、维护便利以及满足大容量、长距离输电要求的特点,在电网建设中得到越来越多运用。因此直流输电线路通常采用直流架空线路,只有在架空线线路受到限制的场合才考虑采用电缆线路。 问:建设特高压直流输电线路需要研究哪些关键技术问题? 答:直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。但在电气方面,则具有许多不同的特点,需要进行专门研究。对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究: 1. 电晕效应。直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。 2. 绝缘配合。直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。由于特高压直流输电在世界上尚属首例,国内外现有的试验数据和研究成果十分有限,因此有必要对特高压直流输电的绝缘配合问题进行深入的研究。 3. 电磁环境影响。采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。因此,认真研究特高压直流输电的电磁

综述高压直流输电线路继电保护技术的应用 张峥

综述高压直流输电线路继电保护技术的应用张峥 发表时间:2019-07-08T10:05:56.743Z 来源:《电力设备》2019年第4期作者:张峥[导读] 摘要:高压直流输电线路由于应用率高、电压大等原因,电路损毁情况较为严重。应用高压直流输电线路继电保护技术,可以有效改善这种情况。 (国网山西省电力公司检修分公司) 摘要:高压直流输电线路由于应用率高、电压大等原因,电路损毁情况较为严重。应用高压直流输电线路继电保护技术,可以有效改善这种情况。对高压直流输电线路继电保护进行方法设计,主要利用降序分段自适应匹配电路保护和实行直流线路行波测距对电路进行保护。具体地,阐述高压直流输电线路维护的手段,探究高压直流线路故障的排除,分析行波保护动作,从而对高压线路进行保护。实验数据表明,提出的高压直流输电线路继电保护设计方法较传统方法效率高18.8%,能有效降低高压输电线的损毁率。 关键词:高压直流输电线路;继电保护;技术应用 高压直流输电优势十分突出,由于高压直流输电作业中,载容量高、输送距离长、功率灵活度强,在世界范围内得到了广泛应用。国内用电量增加较快,直流输电量位居世界领先地位,但是核心技术仍对国外领域存在较高依赖性,同时直流输电工程受地理位置、输送距离等因素影响,需要考虑不同气候条件下输电特性,并且需要加强对高压输电线路的故障率的有效分析,避免直流输电线路缺陷问题等产生负面影响。 1.继电保护线路设计要点分析 1.1线路主保护 对于继电保护线路而言,其影响因素较多,设计人员需要结合实际进行合理分析,加强线路走向的合理布设,规划线路中,对于原理不同的装置一般需要设置多条通道,其中一套利用分相电流差动保护装置控制,还需要一套相电压补偿保护装置,二者共同完成线路保护功能。 1.2线路后备保护 后备保护是作为主保护辅助处理,设计中需要考虑控制线路端口位置的有效处理,避免故障问题等带来的危害。还要考虑接地间距、相间距离等要素,提高保护设备运行的合理性,及时进行配置功能的调整。设计环节中,距离保护要求一般灵活度较高,不局限于四边形、圆形等,可随时添加微机保护进行优化,提高整体稳定效果。 首先,并联电抗器保护,其主要作用是当直流线路发生故障时,相应的自动保护措施将会被激发,若是经过分析和评估,故障已经超过了线路所能承受的标准,则并联电抗器的保护动作会被触发,断路器将会被迅速的断开,这样可以有效的防止更严重后果的发生。 其次,自动重合闸,自动重合闸可以分为不同的模式,主要有单相、三相和快速三种模式,往往是通过过电压水平来选择合适的自动重合闸模式,一般情况下,在非全相的状态下,若是过电压处于允许的区间内,则选择单相重合闸,但若是过电压在允许的区间外,则应该采用三相重合闸,这样可以进一步的保证线路的安全性。 2.高压直流输电线路继电保护技术 2.1行波保护 当高压直流输电线发生故障后,会在线路中形成反行波,若想保证电力系统安全稳定运行,则需要进行行波保护工作,这也是对整个输电线路保护的关键性工作,现阶段,行波保护措施主要有两种方案,分别为SIEMENS方案与ABB方案,其中SIEMENS方案主要是以电压积分为原理,起保护时间在16-20s之间,相较于ABB方案,其起启动时间较长,但却具有更强的抗干扰性;ABB方案基于极波和地模波原理,能够在很短的时间内检测出反行波,并采取相应的保护措施。为了进一步的提升行波保护的质量,相关研究人员也引进了形态学梯度技术和数学形态学滤波技术,但是这两种技术都存在的一定的缺点,需要进一步的进行完善和优化。 2.2微分电压保护 微分电压保护作为一种继电保护技术,兼具主保护和后备保护的功能,现阶段,行波保护中无论是SIEMENS方案还是ABB方案的检测对象都是电压水平和电压微分,而SIEMENS方案的上升延时较长,往往起不到后备保护的作用,而ABB方案的上升延时为20ms,在电压变化率处在标准以下时,可以发挥出后备保护的功能,但是其抗干扰能力较弱。微分电压保护相较于行波保护具有更优越的可靠性和灵敏度,但是动作速度却低于行波保护,这两种形式的继电保护均存在着耐过度电阻能力较差,可靠性不足的弊端。 2.3低电压保护 低电压保护作为后备继电保护的常用措施,主要通过检测电压幅值来开展保护工作的,根据需要保护的对象差别,可以分为极控低电压保护和线路低电压保护,极控低电压保护的保护定值要低于线路低电压保护,当线路发生故障时,极控低电压保护会自动封闭故障极,而线路低电压保护会进行线路的重启。低电压保护形式较为简单,但是其缺乏科学合理的整定依据,不利于相关工作人员对故障类型的判断,并且动作速度相对较慢。 2.4纵联电流差动保护 纵联电流差动保护具有较好的选择性,但是对故障的反应较慢,需要较长的时间才能够采取保护措施,因此只能用于高阻故障的保护工作中,现阶段,因为影响因素较多,造成电流差动保护还没有与电压变化过程相联系,往往会造成保护措施的误动,这就造成电流差动保护在高压直流输电线路的继电保护中并没有发挥其应有的作用,还需要相关的工作人员对其性能进行进一步的完善和提高。 3.高压直流输电线路维护 3.1高压直流线路故障排除 对高压输电线路进行电路保护的首要目标,是对电路可能存在的故障进行排查清除。一旦发现故障就要及时解决,因为一旦由于外界因素而发生短路,就会导致电路发生放电现象,电流会转为热力破坏公共财产,严重威胁人民的生命安全。在发生故障的起始阶段,由于未进入稳态,故障点产生的正向行波和反向行波已经足以揭示故障位置的信息。它的特性并未受到整流控制系统的影响,可以进一步利用这些行波包含的信息实现对输电线路故障点具体位置的测量和定位。在相同介质的输电载体上,单位长度的电场与磁场是恒等的。因此,在不同的介质之间,行波会发生折射、反射,并和自身行波浪涌叠加,形成新的特性。

相关文档
最新文档