气体传感器实验

气体传感器实验
气体传感器实验

气体传感器实验

学院:计信专业:自动化

姜木北

【实验目的】

1. 理解气体传感器的工作原理;

2. 掌握单片机驱动气体传感器的方法。

【实验设备】

1. 装有IAR 开发工具的PC机一台;

2. 下载器一个;

3. 物联网多网技术综合教学开发设计平台一套。

【实验原理】

1. 气体传感器简介

气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。

2. 气体传感器分类及在本实验中的应用

气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。如图 1.112所示:

根据其气敏机制可以分为电阻式和非电阻式两种。

本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。

3. 气体传感器MQ-6灵敏度特性灵敏度特性如下图:1.16所示。

当检测到气体时,气体传感器MQ-6的电导率会发生变化,通过调节滑动电阻器(R18)的阻值调配适当的输出电压,以便单片机检测输出信号,做出相应的判断。图中J15为传感器模组与单片机的接口。传感器的6引脚为输出引脚,C27为滤波电容。

【程序流程图】

程序流程图如图 1.114所示。

【气体传感器的驱动程序】

#include "Basic.h"

#include "UART.h"

void main(void)

{

uint8 SensorValue;

LEDPortInit();

UART0_Init( BAUD_115200 );

SetIOInput(0,0);

for( ; ; )

{

SensorValue = GetIOLevel( 0, 0 );

UART0_Send( "Gas Sensor:", sizeof("Gas Sensor:")-1 );

UART0_Dis_uNum(SensorValue);

if(0 == SensorValue)

UART0_Send( "Safe", sizeof("Safe")-1 );

else if(1 == SensorValue)

UART0_Send( "Alarm!", sizeof("Alarm!")-1 );

UART0_Send( "\r\n", sizeof("\r\n")-1 );

SET_LED_D8;

Delay(5);

CLR_LED_D8;

Delay(120);

}

}

#include "Basic.h"

void delay(uint n)

{

uint i;

for(i=0;i

for(i=0;i

for(i=0;i

for(i=0;i

for(i=0;i

}

void Delay(uint n)

{

uint i,j,k;

for(i=0;i

for(j=0;j<100;j++)

for(k=0;k<100;k++)

}

void LEDPortInit(void)

{

P1SEL &= ~0X02;

P2SEL &= ~0X01;

P1DIR |= 0X02;

P2DIR |= 0X01;

CLR_LED_D8;

CLR_LED_D9;

}

uint8 GetCh08bitADC(void)

{

uint8 v = 0;

ADCCFG = 0x01;

ADCCON1 = 0x33;

ADCCON2 = 0xB0;

ADCCON1 |= 0x40;

while(!(ADCCON1 & 0x80));

v = ADCL;

v = ADCH;

return(v);

}

void SetIOInput(uint8 group, uint8 bit)

{

switch(group)

{

case 0: P0DIR &= ~(1 << bit); P0SEL &= ~(1 << bit); P0INP |=(1 << bit); break;

case 1: P1DIR &= ~(1 << bit); P1SEL &= ~(1 << bit); P1INP |=(1 << bit); break;

case 2: P2DIR &= ~(1 << bit); P2SEL &= ~(1 << bit); P2INP |=(1 << bit); break;

}

}

void SetIOOutput(uint8 group, uint8 bit)

{

switch(group)

{

case 0: P0DIR |= (1 << bit); P0SEL &= ~(1 << bit); break;

case 1: P1DIR |= (1 << bit); P1SEL &= ~(1 << bit); break;

case 2: P2DIR |= (1 << bit); P2SEL &= ~(1 << bit); break;

}

}

uint8 GetIOLevel(uint8 group, uint8 bit)

{

switch(group)

{

case 0: return !!(P0 & (1 << bit));

case 1: return !!(P1 & (1 << bit));

case 2: return !!(P2 & (1 << bit));

}

return 0;

}

void SetIOLevel(uint8 group, uint8 bit, uint8 value)

{

switch(group)

{

case 0:

if(value)

P0 |= (1 << bit);

else

P0 &=~(1 << bit);

break;

case 1:

if(value)

P1 |= (1 << bit);

else

P1 &=~(1 << bit);

break;

case 2:

if(value)

P2 |= (1 << bit);

else

P2 &=~(1 << bit);

break;

}

}

#include "UART.h"

void UART0_Init(BaudSel baud)

{

CLKCONCMD &= ~0X40; //晶振

while(!(SLEEPSTA & 0X40)) ; //等待晶振稳定

CLKCONCMD &= ~0X47; //TICHSPD128分频,CLKSPD不分频SLEEPCMD |= 0X04; //关闭不用的RC振荡器

PERCFG = 0X00;//位置1 P0口

P0SEL |= 0X0C;//P0用作串口

U0CSR |= 0X80;//UART方式

switch(baud)

{

case BAUD_2400: U0GCR |= 6; U0BAUD |= 59; break;

case BAUD_4800: U0GCR |= 7; U0BAUD |= 59; break;

case BAUD_9600: U0GCR |= 8; U0BAUD |= 59; break;

case BAUD_14400: U0GCR |= 8; U0BAUD |= 216; break;

case BAUD_19200: U0GCR |= 9; U0BAUD |= 59; break;

case BAUD_28800: U0GCR |= 9; U0BAUD |= 216; break;

case BAUD_38400: U0GCR |= 10; U0BAUD |= 59; break;

case BAUD_57600: U0GCR |= 10; U0BAUD |= 216; break;

case BAUD_76800: U0GCR |= 11; U0BAUD |= 59; break;

case BAUD_115200: U0GCR |= 11; U0BAUD |= 216; break;

case BAUD_230400: U0GCR |= 12; U0BAUD |= 216; break;

default : U0GCR |= 11; U0BAUD |= 216; break;

}

UTX0IF = 0;

U0CSR |= 0X40;//允许接收

IEN0 |= 0X84;//开总中断,接收中断}

void UART0_Send(char *Data,int len)

{

int i;

for(i=0;i

{

U0DBUF = *Data++;

while(UTX0IF == 0)

UTX0IF = 0;

}

}

void UART0_Dis_uNum(uint16 uValue )

{

uint8 i;

char cData[5] = {'0','0','0','0','0'};

cData[0] = uValue % 100000 / 10000 + '0';

cData[1] = uValue % 10000 / 1000 + '0';

cData[2] = uValue % 1000 / 100 + '0';

cData[3] = uValue % 100 / 10 + '0';

cData[4] = uValue % 10 / 1 + '0';

if(0 != uValue )

{

for( i=0; i<5; i++)

{

if('0' != cData[i] )

break;

if('0' == cData[i] )

cData[i] = ' ';

}

}

else if(0 == uValue )

{

for( i=0; i<4; i++)

{

cData[i] = ' ';

}

}

UART0_Send(" ", 1);

UART0_Send(cData, 5);

UART0_Send(" ", 1);

}

void UART0_Dis_fNum(float fValue )

{

uint16 uValue = (uint16)( 100 * fValue );

char cData[5] = {'0','0','.','0','0'};

cData[0] = uValue % 10000 / 1000 + '0';

cData[1] = uValue % 1000 / 100 + '0';

cData[2] = '.';

cData[3] = uValue % 100 / 10 + '0';

cData[4] = uValue % 10 / 1 + '0';

UART0_Send(" ", 1);

UART0_Send(cData, 5);

UART0_Send(" ", 1);

}

#pragma vector = URX0_VECTOR

__interrupt void UART0_ISR(void)

{

// static char temp[1];

// temp[0] = U0DBUF;

// UART0_Send(temp, 1);

URX0IF = 0;//清中断标志

}

【实验结果及现象】

当运行该程序并用火焰燃烧传感器端口时可以在串口执行软件窗口中看到如下结果:

传感器原理及应用实验讲义

传感器原理及应用

CSY-998系列传感器实验台 主要技术参数、性能及说明 CSY系列传感器系统实验仪是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,组成一个完整的测试系统。 实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。传感器位于实验工作台右边,装在圆盘式工作台的四周,依次为(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。光纤传感器的一端已固定在“光电变换器”上,另一端为活动的圆柱形探头,可根据要求加以固定。 一、传感器安装台部分: 双平行振动梁的自由端及振动 圆盘下面各装有磁钢,通过各自测微 头或激振线圈接入低频激振器VO 可做静态或动态测量。 应变梁:应变梁采用不锈钢片, 双梁结构端部有较好的线性位移。 传感器: 1.应变式传感器 箔式应变片阻值:350Ω,应变 系数:2。 2.热电偶(热电式) 直流电阻:10Ω左右,由两个铜 一康铜热电偶串接而成,分度号为T冷端温度为环境温度。 3.差动变压器 量程:≥5mm,直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体。 4.电涡流位移传感器 量程:3mm,直流电阻:1Ω-2Ω,多股漆包线绕制的扁平线圈与金属涡流片组成。 5.霍尔式传感器 日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。量程:±1mm。 6.磁电式传感器 直流电阻:30Ω-40Ω,由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s。 7.压电加速度传感器 PZT-5双压电晶片和铜质量块构成。谐振频率:>-10KHz。 8.电容式传感器 量程:+5mm,由两组定片和一组动片组成的差动变面积式电容传感器。 9.压阻式压力传感器

化学传感器的研究背景及发展趋势

引言 化学传感器(Chemical sensor)是由化学敏感层和物理转换器结合而成的,是能提供化学组成的直接信息的传感器件。它用来某种化学物质敏感并将其浓度转换为电信号进行检测来进行化学测量。化学传感器在生产流程分析、环境污染监测、矿产资源的探测、气象观测和遥测、工业自动化、医学上远距离诊断和实时监测、农业上生鲜保存和鱼群探测、防盗、安全报警和节能等多个方面有重要应用。 对化学传感器的研究是近年来由化学、生物学、电学、热学微电子技术、薄膜技术等多学科互相渗透和结合而形成的一门新兴学科。化学传感器的历史并不长,但世界各国对这门新学科的开发研究,投以大量的人力、物力和财力。研究人员俱增,正在向产业化方面开展有效的工作。化学传感器是当今传感器领域中最活跃最有成效的领域。 化学传感器的重要意义在于可把化学组分及其含量直接转化为模拟量(电信号),通常具有体积小、灵敏度高、测量范围宽、价格低廉,易于实现自动化测量和在线或原位连续检测等特点。国内外科研人员很早就致力于研究化学传感器的检测方法和控制方法,研制各式各样的化学传感器分析仪器,并广泛应用于环境监测、生产过程中的监控及气体成分分析、气体泄漏报警等。 第一章化学传感器的研究背景 1.1 化学传感器的产生与发展阶段 1906年Cremer首次发现了玻璃膜电极的氢离子选择性应答现象。随着研究的不断深入,1930年,使用玻璃薄膜的pH值传感器进人了实用化阶段。以后直至1960年,化学传感器的研究进展十分缓慢。1961年,Pungor发现了卤化银薄膜的离子选择性应答现象,1962年,日本学者清山发现了氧化锌对可燃性气体的选择性应答现象,这一切都为气体传感器的应用研究开辟了道路。 真正意义上的化学传感器的发展可分为两个阶段,在60年代和70年代,化学

传感器实验

传感器实验 精04 张为昭 2010010591

实验二电涡流传感器变换特性 一、实验目的 1. 了解电涡流传感器的结构、工作原理及应用; 2. 了解电涡流传感器调频电路的特点,测试电涡流传感器变换特性。 二、实验装置及原理 1.装置 图2.1 电涡流传感器装置 2.原理 涡流传感器是七十年代以后发展较快的一种新型传感器。它广泛应用在位移振动监测、金属材质鉴别、无损探伤等技术领域中。 涡流传感器通常由扁平环形线圈组成。在线圈中通以高频(通常为2.5MHz 左右)电流,则在线圈中产生高频交变磁场。当导电金属板接近线圈时,交变磁场在板的表面层内产生感应电流即涡流。涡电流又产生一个反方向的磁场,从而减弱了线圈的原磁场,也就改变了原线圈的自感量L、阻抗Z及Q值。线圈上述参数的变化在其它条件不变的情况下仅是线圈与金属板之间距离的单值函数。 实验中采用了测量线圈自感量L的调频电路,即把线圈作为谐振回路的一个电感元件。当线圈与金属板之间距离h发生变化时,谐振回路的频率f也发生变化,再用鉴频器将频率变化转换成电压变化输出。 图2.2 电涡流传感器原理 三、实验内容及步骤 1. 测量前置器输出频率f与距离h之间的关系;输出电压V与距离h之间

(1)被测金属板先采用铝板。转动微调机构或千分尺使金属板与传感器端面接触即h=0,记下相应的输出信号频率,然后改变h并记下相应的输出频率f 的数值于表2-1中。 (2)改变h并记下涡电流传感器相应的输出电压峰峰值于表2-2中。 (3)改变h并记下测量电路最终的输出电压于表2-3中。 2. 换上钢板重复1的步骤,注意钢板在与传感器距离很小时传感器无输出,调整距离至有输出时作为零点,再开始进行后续测量。 3. 估测电涡流传感器的工作测量范围: 铝板:1.5mm 钢板:1.5mm(相对零点的位移) 四、数据整理及问题分析 1.实验数据整理

传感器实验报告.doc

实验一金属箔式应变片性能—单臂电桥 1、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、实验方法在CSY-998传感器实验仪上验证应变片单臂单桥的工作原理 3、实验仪器CSY-998传感器实验仪 4、实验操作方法 所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、F/V表、主、副电源。 旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。 实验步骤: (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。 (3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V 档,F/V表置20V档。开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 (4) 将测微头转动到10㎜刻度附近,安装到双平行梁的右端即自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5) 往下或往上旋动测微头,使梁的自由端产生位移记下V/F表显示的值,每旋动测微头一周即 压值的相应变化。

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μm 近红外波长域具有最大的辐射强度。例如汽油燃烧时的火焰辐射强度的波长。 火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。 火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。 火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。 理; 2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序; 2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1; 3、用按键KEY1控制ZIGBEEN是否发送数据。 6.4.1硬件部分 1、ZIGBEE调试底板一个; 图6-1 ZIGBEE调试底板 2、20PIN转接线一条和带USB的J-Link仿真器一个; 图6-2 J-Link仿真器 3、转接板一个; 实验内容 6.3 实验设备 6.4 电 源 开 关 电 源 传感器C端口 指示灯 2 J-LINK接 ZigBee_DEBUG 复位键 节点按键 拨码开关 ZigBe按键 红 外 发 射 指 示 灯 1 ZigBee复位键 可 调 电 阻传 感 器 A 端 口 传感器B端口 方口USB线,另一端连接电上电指示灯 20PIN转接线,另一端接转接板 20PIN转接线接口 10PIN转接线接口 串口接口

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

CSY-2000系列传感器与检测技术实验台

CSY-2000系列传感器与检测技术实验台 编写:吴爱平审核:孙士平 一、设备名称: 传感器与检测技术实验台 二、型号/规格: CSY-2000 三、生产厂家: 浙江高联科技开发有限公司 杭州高联信息技术有限公司 四、操作面板: 五、功能说明: CSY2000系列传感器与检测技术实验台,主要用于各大专院校开设的“自动检测技

术”“传感器原理与技术”“工业自动化控制”“非电量电测技术”等课程的教学实验。CSY2000系列传感器与检测技术实验台上是采用最新推出的模块化结构的产品。希望通过实验能让学生加强对书本知识的理解,并在实验进行的过程中,通过信号的拾取、转换、分析掌握作为一个科技工作者应具备的基本的操作技能与动手能力。 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、传感器(基本型18个、增强型23个)、相应的实验模板等四部分组成。 (1) 主控台部分,提供高稳定直流稳压电源、音频信号源、低频信号源、气压源,其中电源、音频、低频均具有断路保护功能;主控台面板上还装有电压、气压、 频率、转速的3位半数显表及计时表、RS232计算机串行接口、流量计、漏电 保护器。高精度温度转速两用仪表,调节仪置内为温度调节、置外为转速调节。 (2) 三源板提供振动源、转动源、加热源。 (3) 传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔式转速传感器、磁电式传感器、压 电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、 100铂电阻、Cu铜电阻、湿敏传感器、气敏传感器K型热电偶、E型热电偶、P t 共十八个。 (4) 实验模块部分提供相应的实验电路。普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个 模块。 六、参数指标: 直流电源: ±15V、+5V、±2V±4V±6V±8V±10V +2V∽+24V连续可调 音频信号源(音频振荡器):1KHZ∽10KHZ 低频信号源(低频振荡器):1HZ∽30HZ 气压源:0∽20kpa 振动频率:1HZ∽30HZ 转速:0-2400转/分 加热源:常温∽150℃(可调)

传感器实验

传感器实验

实验一金属箔式应变计性能——应变电桥 实验目的: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。 实验原理: 本实验说明箔式应变片及直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也 随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时, ∑ ? = R R R;当二个应变片组成差动状态工作,则有∑ ? = R R 2 R;用四个应变片 组成二个差动对工作,且R1= R2= R3= R4=R,∑ ? = R R 4 R。 实验所需部件:(括号{ }内为2001B型内容) 直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表 实验步骤: 1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1) 2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。 将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。 3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的W D电位器,使桥路输出为零。 4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm记录一个输出电压值,并记入下表: 位 移 mm 电 压V 根据表中所测数据在坐标图上做出V—X曲线,计算灵敏度S:S=X V? ?。 / 注意事项: 1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。 2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。 3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试

传感器实验报告

实验一 箔式应变片性能 一、实验目地: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、了解实际使用的应变电桥的性能和原理。 二、实验原理: 本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R = ∑;当二个应变片组成差动状态工作,则有R R R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,R R R Δ4=∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无

关。 三、实验所需部件: 直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。 四、实验步骤: 1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 2、按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图 (1) 3、确认接线无误后开启仪器电源,并预热数分钟。 +-

电涡流传感器系列实验

电涡流传感器系列实验 实验一:电涡流传感器的静态标定 摘要:电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率,导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。① 1实验目的 了解电涡流式传感器的原理及工作性能 2实验所用仪器设备 涡流变换器、F/V表、测微头、铁测片、涡流传感器、示波器、振动平台、主副电源② 3实验原理 通以高频电流的线圈产生磁场,当有导体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体的材料以及和线圈的距离有关,因此可以进行位移测量。② 4实验步骤 (1)装载好传感器 (2)连接电路,电压表置于20V档,开启主副电源 (3)用示波器观察涡流变换器的输入端波形 (4)调节传感器的高度值,改变高度,记下示波器及电压表的示数 5实验结果与分析 (1)涡流变换器输入端的波形为正弦波,示波器的时基为0.2μs/cm (2)改变传感器的高度值,记录电压表示数,记录如下表 X(mm) 16.150 16.050 15.950 15.850 15.750 15.650 15.550 15.450 Vp-p(v) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 V(v) -4.10 -4.14 -4.18 -4.21 -4.24 -4.27 -4.31 -4.33 V—X曲线如下图所示

《传感器与检测技术》实验指导书(四个实验)

实验一金属箔式应变片单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,英电阻值发生变化,这就是电阻应变效应,描 述电阻应变效应的关系式为: △R/R=K£ 式中AR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,t =Al/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,输出电压UO=EK£(E为供桥电压),对单臂电桥而言,电桥输出电压,U01=EK e /4o (E为供桥电压)。 三、器件与单元:应变式传感器实验模板、应变式传感器、磁码(每只约20g)、数显表、±15V电 源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的 Rl、R2、R3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=35OQ,加热丝阻值约为50Q左右。 应变片托盘 图1-1应变式传感器安装示意图 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上 主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调丹到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱而板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电 桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块已连接好),接好电桥调零电位器Rwl,接上桥路电源±4V(从主控箱引入),检査接线无误后,合上主控箱电源开关,先粗调VTRwl,再细调RW4使数显表显示为零。

传感器系列实验讲义

请勿带走!!! 传 感 器 系 列 实 验 讲 义 中国科学技术大学物理实验教学中心 2015-09

目录 实验一电阻应变片传感器DIY电子秤 ................................................................... 实验二DIY温度控制系统&测记忆合金的恢复温度 ............................................. 实验三压力传感器..................................................................................................... 实验四气敏传感器..................................................................................................... 实验五热释电传感器.................................................................................................

实验要求 目前传感器实验有5个系列实验(见下表),共30套设备,实验时要求每人操作一套设备。实验课的基本任务是每人至少要完成2个实验,其中标“★”号是要求必做的实验,可以完成多于2个实验。为了确保实验课程的顺利运行,超过16:30或者21:30后,原则上不安排基本任务之外的实验。

实验一电阻应变片传感器DIY电子秤 实验目的 1、了解电阻应变片的组成、结构 2、了解直流电桥的应用 3、DIY电子秤称重的原理 实验仪器 直流电源悬臂梁(已贴应变片)电子秤底座(已焊好接线柱) 托盘1个1000 Ω电阻3个C形砝码6个 待测物1个香蕉插头6个螺丝刀1把 导线2根万用表1台(公用) 实验原理 1、电阻应变式传感器的结构 右图中的1是敏感栅,它用厚度为0.003~0.101mm的金属箔栅状或用金属线制作。 2、电阻应变式传感器的原理 金属箔电阻应变片贴牢在悬臂梁上下表面,悬臂梁远端加砝码使它弯曲,有的表面受到拉伸,有的表面受到压缩。所以受到拉伸的电阻阻值变大,受到压缩电阻阻值变小。分别将一个、两个或四个电阻应变片与固定电阻组成电桥(所谓单臂、半桥或全桥),以电压表为平衡检测器。未加砝码时,调节电桥平衡,输出电压为零。随着负载增加,电桥不平衡性加大,电压表读数越大。做M-U图,是线性关系。对应三种情况,分别求出电桥灵敏度(单位质量变化引起电压的变化ΔU/ΔM)。 实验中采用如下图的电桥电路,电源电压为E,桥臂电阻均取1000.0Ω,悬臂梁未受力时应变片阻值R=1000.0Ω。根据伏安关系可求得桥电压U与应变片电阻R之间近似满足以下关系:

传感器实验

传感器实验 实验十四差动变压器性能 一、实验目的: 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。二、实 验原理: 差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。差动变压器是开磁路,工作是建立在互感基础上的。其原理及输出特性见图(9) 图(9) 三、实验所需部件: 差动变压器、音频振荡器、测微头、示波器。四、实验步骤: 1.按图(10)接线,差动变压器初级线圈必须从音频振荡器LV 端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv /格。 2.音频振荡器输出频率5KHZ ,输出值V P -P 2V 。 3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变 两个次级线圈的串接端。 示波器 图(10) 4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压V P -P 值,读数过程中应注意初、次级波形的相位关系。 5.仔细调节测微头使次级线圈的输出波形至不能再小,这就是零点残余电压。可以 看出它与输入电压的相位差约为π/2,是基频分量。 6.根据表格所列结果,画出Vop-p -X 曲线,指出线性工作范围。 五、注意事项: 示波器第二通道为悬浮工作状态。 实验二十激励频率对电感传感器的影响

一、实验目的: 说明在不同的激励频率影响下差动螺管式电感传感器的不同特性。二、实验所需部件: 图(15) 三、实验步骤: 1.按图(15)接线,音频振荡器置5KHZ ,幅值居中,差动放大器增益适度。 2.装上测微头,调整衔铁处于线圈中间位置,调节电桥使系统输出为最小。 3.旋动测微头, 移动衔铁,每隔1mm 从示波器读出V P-P 值,填入表格 4.改变音频振荡器频率,并重新调好零位,重复2-3步骤,将结果填入下表。 5.根据所测数据在同一坐标上做出V -X 曲线,计算灵敏度,并做出灵敏度与频率 的关系曲线。 由此可以看出,差动螺管式电感传感器的灵敏度与频率特性密切相关,在某一个特定 频率时,传感器最为灵敏,在其两边,灵敏度都有所下降,故测试系统中应选用这个激励 频率。 实验二十一热电式传感器――热电偶 一、实验目的: 观察了解热电偶的结构,熟悉热电偶的工作特性,学会查阅热电偶分度表。二、实 验原理: 热电偶的基本工作原理是热电效应,当其热端和冷端的温度不同时,即产生热电动势。通过测量此电动势即可知道两端温差。如固定某一端温度(一般固定冷端为室温或0℃),则另一端的温度就可知,从而实现温度的测量。CSY 系列实验仪中热电偶为铜一康铜(T 分度)和镍铬-镍硅(K 分度)。三、实验所需部件: 热电偶、加热器、差动放大器、电压表、温度计(自备)四、实验步骤: 1.打开电源,差动放大器增益放100倍,调节调零电位器,使差放输出为零。 2.差动放大器双端输入接入热电偶,打开加热开关,迅速将差动放大器输出调零。 3.随加热器温度上升,观察差动放大器的输出电压的变化,待加热温度不再上升时(达到相对的热稳定状态),记录电压表读数。 4.本仪器上热电偶是由两支铜-康铜热电偶串接而成,(CSY 10B 型实验仪为一支K 分度热电偶),热电偶的冷端温度为室温,放大器的增益为100倍,计算热电势时均应考

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

基本传感器实验报告

目的:了解电阻应变仪的工作原理和应用,掌握应变仪的测量电路。2,基本原理:电阻应变仪传感器是由电阻应变仪经过特定的工艺粘贴在弹性元件上组成的。一种利用电阻材料的应变效应将工程结构的内部变形转化为电阻变化的传感器。这种传感器主要是通过某种机械装置来测量弹性元件的变形,然后通过电阻应变仪将弹性元件的变形转换为电阻的变化,然后将电阻的变化转换为电压。或由测量电路输出的电流变化信号。它可以用于检测各种可以转化为变形的非电气物理量,例如力,压力,加速度,转矩,重量等。它广泛用于机械加工,测量,建筑测量和其他行业。1.应变仪的电阻应变效应,即所谓的电阻应变效应,是指具有规则形状的金属导体或半导体材料在外力作用下产生的应变,其电阻值会相应变化。该物理现象称为“电阻应变效应”。以圆柱导体为例:如果导体的长度为l,半径为R,电阻率为ρ,则根据电阻的定义,(1-1)当导体由于某种原因产生应变时,长度L的变化,截面积a和电阻率ρ为DL,Da,Dρ,相应的电阻变化为Dr。由公式(1-1)的总微分得出的电阻变化率DR / R 为:(1-2)其中DL / L是导体εL的轴向应变; DR / R是导体的横向应变,εR是从材料力学中获得的:εL =-μεR(1-3),其中μ是材料的泊松比,大多数金属材料的泊松比约为0.3 -0.5;负号表示它们朝相反的方向变化。通过将公式(1-3)代入公式(1-2),我们得到:(1-4)公式(1-4)表明,电阻应变效应主要取决于其几何应变(几何效应)及其自身的独特性。电导率(抗压效应)。2.应变敏感性,是指在单位应变作用下,电阻应变计产生的电阻的相对变化。(1)金属

传感器实验报告

实验一金属箔式应变片――单臂电桥性能实验四、实验结果: 表1:

由表1可得出:计算系统灵敏度S=ΔU/ΔW=g; 非线性误差δ=Δm/y×100%=40% 五、思考题: 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。 答:正、负应变片都可以,因为正负对单臂电桥的传感器特性无影响 总结:由图可知,单臂电桥理想下是线性的,但实际存在非线性误差。 实验二金属箔式应变片—半桥性能实验

五:实验结果: 重量(g)020406080100120140160180200电压(mv)09182837475666758594

2040608010020 40 60 80 100 120 140 160 180 200 灵敏度S =U /W=g ,非线性误差δ=94=% 六思考题: 1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。 答:应放在邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。 答:因为电桥原理上存在非线性误差。 总结:由图可知,半桥的传感器特性曲线非线性得到了改善,电桥输出灵敏度提高。 实验三 金属箔式应变片—全桥性能实验 四、实验步骤: 1、 将托盘安装到应变传感器的托盘支点上。 将实验模板差动放大器调零: 用导线将实验模板上的±15v 、⊥插口与主机箱电源±15v 、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i =0);调节放大器的增益电位器R W3 大约到中间位置(先逆时针旋到底,再顺时针旋转 2 圈);将主机箱电压表的量程切换开关打到 2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4 ,使电压表显示为零。

相关文档
最新文档