2010Adsorption of cesium and strontium on natrified bentonites

Adsorption of cesium and strontium on natri?ed bentonites

Michal Galambos

ˇ?Jana Kufc ˇa ′kova ′?

Ol’ga Rosskopfova

′?Pavol Rajec Received:22November 2009/Published online:30December 2009

óAkade

′miai Kiado ′,Budapest,Hungary 2009Abstract The in?uence of chemical activation–natri?ca-tion of bentonites on adsorption of Cs and Sr was studied with regards to utilization of bentonites for depositing high-level radioactive waste and spent nuclear fuel.Ben-tonite samples from three Slovak deposits in three different grain-size (15,45and 250l m),natural and natri?ed forms (Na-bentonites);under various experimental conditions,such as contact time,adsorbent and adsorbate concentra-tion have been studied.When comparing the Na-bentonites and their natural analogues,the highest adsorbed Cs and Sr amounts were reached on the natri?ed samples.After the Sr adsorption a drop in the pH equilibrium value was observed together with the increase of the initial Sr con-centration.A disadvantage of the natri?ed bentonite forms is formation of colloid particles.After 2h of phase mixing a gentle turbidity was observed as well as formation of a gel-like form.The above ?ndings were con?rmed by observing the particle distribution in dry and wet dispersion and centrifugation at two different speeds.Natri?cation as a technological process of bentonite quality improvement cannot be applied when constructing a long-term repository for high-level radioactive waste and spent nuclear fuel.The main problem of natri?cation is a technological process which leads to a signi?cant pH increase.Alkaline envi-ronment in combination with the K presence and increased temperature in the vicinity of radio-active waste can lead to a rapid illitization of smectite and loss of the original adsorption qualities.Moreover,sodium additions are a

signi?cant point of uncertainty since it is not possible to state what amount of Na enters the interlayer space and what amount stays in the inter-partition space.Keywords Chemical modi?cation áNatri?cation áActivation áSlovak Na-bentonite áSmectite á

Montmorillonite áAdsorption áCesium áStrontium áDeep geological repository

Introduction

Clay rocks—bentonites—have an extraordinary impor-tance in the waste and environmental management.Their properties are subject to their chemical and mineralogical composition.Bentonites consist of a mineral of the dioc-taedric smectite group—montmorillonite (50–85%)and accompanying materials such as clay minerals (illite,beidellite,nontronite,caolinite),quartz diatomite,calcite,organic materials and others [1–3].

The qualities of bentonites such as low permeability,large speci?c surface,high swelling ability,ability to interchange ions as well as their colloid-chemical prop-erties are planned to be taken advantage of in form of bentonite barriers in the deep geological repositories for high-level radioactive waste and spent nuclear fuel [4–14].

In connection with the above problematics the adsorp-tion properties of bentonites are studied and the effect of their modi?cation on adsorption processes,chemical and mineralogical stability are studied [15–25].The study of adsorption properties of bentonites is a step inevitable for working out a migration model for different eco-toxically signi?cant radionuclides such as Cs,Sr,Co,Tc,I,Rb,Pu,Am,U and others [26–35].

M.Galambos

ˇ(&)áJ.Kufc ˇa ′kova ′áO.Rosskopfova ′áP.Rajec Department of Nuclear Chemistry,Faculty of Natural Sciences,

Comenius University in Bratislava,Mlynska

′Dolina,84215Bratislava,Slovak Republic e-mail:galambos@fns.uniba.sk

J Radioanal Nucl Chem (2010)283:803–813DOI 10.1007/s10967-009-0424-9

The properties of bentonites are signi?cantly determined by the crystalline structure of smectites and are result of the following structure ratios[36–42]:

(1)Weak coupling forces among the basic triple-layers in

the direction of Z axis[43–48].The dimensions of the basic particles—the majority is smaller than2l m (natural nanomaterials).High swelling ability—enables them to increase their volume as much as 12times when in contact with water or polar liquids.

High speci?c surface of particles(incomparable with other clay minerals)—when in contact with water a high thixotropy is observed in dispersive state,high plasticity and denticity.

(2)Unlimited cation substitution in octahedral positions

and limited cation substitution in tetrahedral posi-tions[49–54].It has a principal in?uence on the presence of the negative charge on the surface of smectite particles immediately connected with the ability to accept and exchange in the interlayer area the so-called exchangeable cations(most often Na, Ca,Mg and K).This ability is the basic reason for the adsorption properties of smectites.

It is possible to use bentonites in natural,physically or chemically modi?ed state[55–59].Physical modi?cation comprises the basic mechanical processing of bentonites such as drying and grinding[60,61].By means of drying the original humidity of bentonite is decreased to desired 7–8%(when won on surface winning Na-bentonite about 30%,Ca-bentonite about25%).The temperature at which bentonites are being dried spans from100to200°C at entry and as much as800°C of exit temperature,according to the required application.The structural properties of smectites decrease considerably if this temperature is exceeded.A more demanding way of modi?cation of bentonites,nowadays rather common,is based on prepa-ration of chemically modi?ed forms[62–73].During chemical modi?cation the natural bentonite is processed by means of its?nal products being exposed to the in?uence of chemicals,which happens usually at the bentonite winning site(Mining Plant).Chemical modi?cation is possible thanks to the large speci?c surface with active sorption centres,presence of molecular water and exchangable cations in the smectite interlayer space. Monoionic forms are prepared of which protonisation is most commonly used(exchangeable positions in the smectite interlayer are saturated with H?cations)as well as natri?cation(exchangeable positions in the interlayer are saturated with the Na?cations).As natri?cation salt Na2CO3is used almost exclusively thanks to its?nancial accessibility and rather high speed of exchange.The amount of added salt changes according to the kind of bentonite and its?nal intended use.A more convenient way is the wet way of activation,which changes all the bentonite to Na-bentonite.Natri?cation best enables the division of the basic smectite layers which provides new space for cation exchange and leads increase in the overall adsorption capacity.Speci?c and more complicated way of chemical modi?cation is presented by intercalation and pillaring of the smectite structure.In the?rst case it is the process of intercalation by organic and organometallic cations during which the so-called organobentonites are prepared[74–77].Pillaring or strengthening of the smectite structure is done due to their low thermal stability[78–81]. Into the interlayer space a molecule of e.g.Al2O3is introduced,which functions as a pillar preventing the collapse of smectite structure.

Experimental

Solid phase

Samples of bentonite were taken from three Slovak deposits and technologically processed by Envigeo a.s. (Table1).Samples of bentonite were at disposal in three different grain sizes,samples ground under250,45and 15l m(what means,that these are fractions of bentonite with size of particles smaller than250,45and15l m).

The samples of bentonite were dried in Petri dish in drying oven at the temperature105°C approximately2–3h. Then they were taken into small plastic containers and lay aside into a desiccator,where they were stored till next use.

Chemical analyses

Chemical composition of bentonites from the deposits of Jelsˇovy′potok,Kopernica and Lieskovec is shown in Table2.The Jelsˇovy′potok and Kopernica bentonites are of a very similar chemical composition.The biggest dif-ference is in the higher content of Mg in Jelsˇovy′potok Table1Used samples of bentonites

Deposits Jelsˇovy′potok Kopernica Lieskovec

Type Smectic bentonite Smectic bentonite Smectic bentonite Locality Middle Slovakia Middle Slovakia Middle Slovakia

Natural forms

Sample designation J K L Grain size[l m]15,45,25015,45250

Natri?ed forms

Sample designation BJ BK BL Grain size[l m]15,45,25015,4545

804M.Galambosˇet al.

bentonite which apart from the exchangeable positions is also signi?cantly present in the octahedron of montmoril-lonite.The Lieskovec bentonite has a signi?cantly higher Fe content in comparison to the previous two bentonites.It is due to its other mother rock—andesite.When comparing the chemical composition of particular fractions(15,45 and250l m)from one deposit no signi?cant differences were observed.When comparing the Kopernica and Jelsˇovy′potok bentonites the differences are minimal.In the Lieskovec bentonites it is possible to spot slight differ-ences.In L250fraction the SiO2content is almost4% lower than in L45fraction and the difference is equalized by a higher Al and Fe content in L250sample.

Mineralogical analyses

The use of bentonites is signi?cantly subject to the content of smectites,their crystal-chemical composition and addi-tions of clay and other minerals.Other clay minerals are mostly represented by kaolinite especially in deposits of hydro-thermal origin.Halloysite,even in the case of ben-tonite,belongs to the accessory present clay minerals and has no signi?cant impact on its properties and use.Illite is likely to be found in the sediment deposits in which case it can have a negative impact.Cristobalite is one of the other minerals occurring as an addition in bentonite and belongs usually to hyalite.It occurs on all genetic bentonite types, but mainly in volcanic-sedimentary where it forms during volcanic glass alteration.As an addition its volume reaches sometimes as much as40%.It can not be effectively removed by means of any modi?cation,therefore its use is considerably limited,especially with its more demanding applications.

Lieskovec,Kopernica and Jelsˇovy′potok have similar qualitative mineral composition(Table3).Kopernica and Jelsˇovy′potok are similar quantitative as well.Lieskovec has signi?cantly lower content of smectite(about20% less),its representation is substitute mainly by kaolinite and cristobalite.

Aqueous phase and radiotracer

Adsorption experiments were realized in the Cs and Sr concentration range1910-5–1910-1mol dm-3solu-tions prepared from CsCl and Sr(NO)3(Table4).

Table2Chemical analysis of samples from Jelsˇovy′potok,Kopernica and Lieskovec deposits

Sample designation SiO2[%]Al2O3[%]CaO[%]Fe2O3[%]MgO[%]MnO[%]Na2O[%]K2O[%]TiO2[%]P2O5[%]SO3[%]

J1567.9021.12 1.61 2.88 3.440.080.64 1.670.160.320.21

J4567.4121.32 1.78 2.81 4.220.090.40 1.010.090.710.21

J25068.3320.50 2.03 2.52 4.370.070.64 1.230.180.060.07

BJ1565.2521.51 2.62 2.65 2.840.07 3.09 1.000.080.730.16

BJ4566.0022.67 1.55 2.62 2.840.07 3.02 1.040.120.010.07

K1566.0923.96 1.90 2.69 2.930.050.43 1.680.150.010.11

K4566.0523.93 2.00 2.61 2.780.050.26 1.210.090.980.06

L1565.2221.00 1.437.02 1.820.080.59 1.870.700.080.20

L4567.2619.54 1.31 6.98 1.680.090.51 1.700.750.090.11

L25063.4022.29 1.178.19 1.590.040.46 1.730.870.200.07 Table3Mineralogical

composition

Sample Quartz Albite Biotite Kaolinite Smectite K-felspar Cristobalite

J159.5– 1.53768.5 1.5

J456S1 2.586 3.51

J250 2.50.522829.5 1.5

K156S 2.52808 1.5

K45 6.5S 2.518262

L15 5.51 1.5 6.567.5126

L4512 1.50.56649.5 6.5

L2509.50.529.5649.55

BJ152S0.5–94 3.5–

BJ45111 1.5–7411 1.5

BJ2506S1–84.58.5–Adsorption of cesium and strontium on natri?ed bentonites805

In experiments chemicals of ordinary laboratory purity from supplies companies Slavus,s.r.o.,Bratislava SR,or Lachema n.p.,Brno CZ were used.Radionuclides 137Cs with the volume activity 1MBq mL -1and 85Sr with the volume activity 3.7MBq mL -1was used as a radiotracer.Batch method and measuring of radioactivity

Adsorption of Cs and Sr on samples of bentonites was studied through radioisotope indication using radioisotopes of 137Cs and 85Sr in static arrangement of experiment,in aerobic conditions at laboratory temperature.Adsorption parameters were determined after mixing in 0.05g of adsorbent with 5mL of water phase in plastic test tubes with internal diameter 14mm and capacity 10mL in lab-oratory extractor with constant speed of mixing both pha-ses.After realization of adsorption and subsequent centrifugation (t =15min,3500rpm or t =10min,10000rpm)1mL was extracted from supernatant to measure radioactivity.

Radioactivity determination of 137Cs and 85Sr solutions was done with spectrometer Modumatic using NaI(Tl)detector.

Results and discussion

Adsorption properties of bentonite were calculated by following equations:

Distribution coefficient K d ?a 0àa a ?V m

;mL g à1

?

?e1TAdsorption percentage R ?

100?K d

K d tV m ;%? e2TAdsorption capacity C ?K d ?c eq ;mmol g à1

??

e3T

where c eq ,equilibrium concentration [mol dm -3];V ,aqueous phase volume [mL];m ,adsorbent mass [g];a 0,

volume activity of initial solution [mL s -1];a ,equilibrium

volume activity of solution [mL s -1].

Speci?c surface area and cation exchange capacity Speci?c surface area is characterized by the active surface of the adsorbent,which enables high reactivity with the environment in which the bentonite becomes adsorbent.When stating the speci?c surface we used the method of EGME (ethylengklykolmonoethyleter)sorption and its gradual releasing.EGME is a medium used to state the total speci?c surface.The method is based on construction of curve of process of releasing of EGME through the sample weight,from which we obtain the retention EGME (R )necessary for calculation of the measurable surface (SA)[40]:eSA T?

R

M

á0:326e4T

where R ,retention EGME;M ,sample weight.

The natri?ed samples from the Jels

ˇovy ′potok deposit have the largest speci?c surface (Fig.1).Partly lower values were reached in Kopernica samples and the natural

samples of Jels

ˇovy ′potok.Lieskovec bentonites show the lowest values.Natri?cation enables the most effective division of the basic smectite layers which provides new space for EGME sorption.The drop in speci?c surface from the ?nest to the thickest fraction was gentle and equal for all samples.

Cation Exchange Capacity (CEC)is de?ned by the ability of bentonites to adsorb the cations and keep them in the exchangeable positions—in smectites in the interlayer.During the characterisation of technological types of bentonites three methods of cation exchange determination were used.These are the Ba-method,Mg-method and Cu-trietylentetramin method.The qualitative analysis of particular exchangeable cations con?rmed the dominion of

Table 4Cesium and strontium ions concentration used in adsorption studies

c [mol dm -3

]1910-55910-51910-4

5910-4

1910

-3

5910-31910-25910-21910-1

Fraction of bentonites [μm]

J 15BJ 15K 15J 45BJ 45K 45J 250BJ 250L 250

S p e c i f i c s u r f a c e [m 2.g -1]

200

400

600

800

1000

Fig.1Speci?c surface values in different grinding fractions

806

M.Galambos

ˇet al.

Ca and Mg over Na and K elements.The distribution of original cations indicates a match between Kopernica, Lieskovec and Jelsˇovy′potok bentonite samples,the only difference being that Lieskovec samples show a slightly higher content of Na.The CEC values for particular deposits drop in the following order:Jelsˇovy′potok[ Kopernica[Lieskovec.

Adsorption kinetics

The adsorption of cesium and strontium was investigated as a function of shaking time in previous experiments and the results show that the adsorption is very fast and equi-librium is reached almost instantaneously after mixing[23, 24,39,40,51].The adsorption process was fast,maximum K d was nearly reached within1min from the beginning of contact of solid and liquid phase.The comparable values of K d were reached in a time interval of1–480min(Fig.2).

A period of2h was chosen for the further adsorption experiments.Almost‘‘instantaneous’’capture of the cesium ions on the bentonite can be explained by adsorp-tion and ions exchange on the surface for the cesium ions.

Cs-adsorption experiments

The results reached in Cs adsorption on the Jelsˇovy′potok and Kopernica benotnite samples were modelled by means of Langmuir isotherm(Fig.3).The amounts sorbed in natri?ed samples were compared to those sorbed in their

natural analogues.Higher values of sorbed Cs were reached on the natri?ed samples.Cation exchange is used as the basic sorption mechanism.The highest values of Cs sorbed were reached on the Kopernica bentonite samples—in natri?ed as well as natural forms.

Natri?cation causes a signi?cant growth of the total speci?c surface and enables best division of the basic smectite layers which leads to new space for adsorption of ions.Speci?c surface is the active surface of the observed row material,surface which eventually can take part in the interaction with surrounding agents.

A disadvantage of the natri?ed bentonite forms is the formation of colloid particles.After2h of mixing the phases turbidity was observed as well as formation of a gel-like form.

With low Cs cation concentration in the solution low K d values(on BJ250)were reached—an evidence of the presence of colloids.With a gradual increase of Cs cation concentration in the solution the K d value increased as well.The value kept increasing until the concentration of 5910-3mol dm-3,when a lack of bentonite sorption centers started to be apparent(Table5).

When comparing the natural and natri?ed forms,the highest value of the distribution ratio was reached with the natri?ed bentonite sample of the Jelsˇovy′potok location BJ250.

The in?uence of adsorbent concentration

The in?uence of ratio change of solid and liquid phase on distribution coef?cients for the bentonite sample BJ250 was studied(Fig.4).A system was studied in which the

Adsorption of cesium and strontium on natri?ed bentonites807

weight of bentonite was changing from50to500mg at the constant volume(of5mL)of CsCl water phase in con-centration of c=1910-4mol dm-3.

When increasing the weight of adsorbent a change in the properties of the system was observed.A gel-like forms of phase appeared in the solution which could not be sepa-rated by centrifugation or by?ltration using micro-?lters in pore size of0.4l m.This is the result of the presence of colloid particles in the solution.

The particle distribution in the dry and wet dispersion The particle distribution for bentonite samples BJ45and BJ15was measured in dry and wet dispersion.The pres-ence of small particles in the studied samples can be observed in Figs.5,6and7.The middle values measured for BJ15in dry form are approximately7l m,but it is also possible to see fractions with smaller particle size(Fig.5). It is likely that if a measuring was carried out in the 0.1mol dm-3Na2P2O7solution,a presence of smaller particles would be discovered,just like in the case of BJ45bentonite(Fig.6).For BJ45values of23–27l m were measured(Fig.7).

Sr-adsorption experiments

The Sr adsorption on the Jelsˇovy′potok,Kopernica and Lieskovec bentonite samples was modeled by means of the Langmuir isotherm(Figs.8,9).The sorbed amounts for natri?ed samples and their natural analogues were com-pared,where higher values of sorbed Sr were reached with the natri?ed samples.

Cation exchange is taking place as the basic sorption mechanism.The highest sorbed amounts of Sr,similarly as

Table5Cs distribution coef?cients for Jelsˇovy′potok and Kopernica bentonites

c(Cs)[mol dm-3]K d[mL g-1]

BJ250BJ45BJ15BK45BK15

1910-4460231263255295 5910-4619315401327362 1910-3513297352249261 5910-3366369552318537 1910-2135143182192166 5910-21919191918 1910-1551399

Fig.5Particle distribution BJ15dry dispersion

Fig.6Particle distribution BJ45dispersant0.1M Na4P2O7

Fig.7Particle distribution BJ45dry dispersion

808M.Galambosˇet al.

with the Cs adsorption,were reached with the bentonite samples of Kopernica on natri?ed as well as natural forms.

In the following part values of K d were compared which were obtained in Sr2?cation adsorption on natri?ed BJ45, BK15,BK45and BL45samples.Values of K d were compared after the?rst and the second centrifugation (Figs.10,11,12,13).After the second centrifugation at 10000rotations/min higher values of K d were reached which is a result of partial separation of colloid forms from the solution.K d values kept increasing gradually from the lowest concentration of Sr2?in the solution.A pronounced drop of K d in BK15,BK45and BL45samples was observed from concentration of5910-3mol dm-3.In case of BJ45sample this was true from concentration of 1910-3mol dm-3.The highest K d values were reached in bentonite samples BK15(K d=1686mL g-1in con-centration Sr2?1910-3mol dm-3).The lowest values of K d were reached at the highest Sr2?ion concentration in the solution.In solutions,where multivalent cations are present,such as Sr2?,coagulation of colloid particles occurs.

Adsorption of cesium and strontium on natri?ed bentonites809

pH after adsorption

A drop of the pH value has been observed in the span of Sr concentrations1910-4–5910-2mol dm-3with increas-ing of Sr adsorption on the bentonite samples.The Fig.14 shows the dependency of the solution pH value on the initial concentration of strontium after the adsorption equilibrium.

The pH value of the natri?ed forms of bentonite(J250, J45,BJ250,BJ45,K45,BK15)is already in the alkaline area and during the Sr adsorption moves to the lower values.The pH values for the natural bentonites(J15,J45, K45)occurs in a neutral or in an acidic area.

The tendency of pH value drop with the increase of the initial Sr cation concentration in the concentration span 1910-4–5910-2mol.dm-3has its cause most probably in the mechanism of Sr adsorption,where apart from the exchange of Sr for the cations present also the exchange of protons for Sr ions on OH groups happens.

Conclusion

Jelsˇovy′potok and Kopernica bentonites have a very similar chemical composition.The most pronounced difference is in the higher Mg content in the Jelsˇovy′potok bentonite, which apart from the exchangeable positions is signi?-cantly present in the montmorillonite octahedron.The Lieskovec bentonite has a signi?cantly higher Fe content in comparison to the Jelsˇovy′potok and Kopernica samples. Natri?ed bentonite samples in comparison to their natural analogues contain signi?cantly higher amounts of Na2O, which comes as a result of the nature of their chemical activation.The Jelsˇovy′potok,Kopernica and Lieskovec samples have similar qualitative mineral composition.The bentonites from the Jelsˇovy′potok and Kopernica deposit are similar quantitative as well.The sample of Lieskovec bentonite has signi?cantly lower content of smectite(about 20%less),its representation is substitute mainly by kao-linite and cristobalite.The natri?ed bentonite samples from the Jelsˇovy′potok deposit have the biggest speci?c surface. Partially lower are the values reached with the Kopernica deposit samples and the natural samples from the Jelsˇovy′potok deposit.The Lieskovec deposit samples show the lowest values.The drop in speci?c surface from the?nest to the thickest fraction was gentle and common for all the samples.The qualitative analysis of particular exchange-able cations con?rmed the dominion of Ca and Mg over Na and K elements.The distribution of original cations indi-cates a match among the Jelsˇovy′potok,Kopernica and Lieskovec bentonite samples,the only difference being that

810M.Galambosˇet al.

Lieskovec samples show a slightly higher content of Na. The CEC values for particular deposits drop in the fol-lowing order:Jelsˇovy′potok[Kopernica[Lieskovec.

Natri?ed bentonite forms come with a disadvantage, which is formation of the colloid particles.After2h of mixing the phases a slight turbidity was observed as well as a formation of a gel-like form.The mentioned?ndings were con?rmed by observation of the particle distribution in dry and wet dispersion and centrifugation at two dif-ferent speeds.When comparing the natri?ed bentonites and their natural analogues the highest values of Cs and Sr amount sorbed were reached on samples which had been chemically activated by natri?cation.Looking at all sam-ples studied,the highest values of amount sorbed were reached with the Kopernica deposit samples,which is true for both—natri?ed as well as natural forms.The results show a signi?cant in?uence of natri?cation on adsorption process of both cations.The in?uence of adsorbent con-centration on Cs adsorption on natri?ed form has been con?rmed.With the increasing weight of adsorbent the distribution coef?cient values of Cs were dropping.With the increase of initial Sr concentration,after Sr adsorption a drop in equilibrium pH value was observed.The pH value of the natri?ed forms of the studied bentonites is already in the alkaline area and during the Sr adsorption moves to the lower values.The pH values for the natural bentonites occurs in a neutral or in a slightly acidic area.

Chemical activation–natri?cation as a technological process of bentonite quality increase,where a part of the natural exchangeable cations is substituted for a Na?cation can not be applied in the construction of a long-term radio-active waste and spent nuclear fuel repository.The main problem with natri?cation is a technological process during which a signi?cant increase in pH value occurs.Alkaline environment in combination with the K presence and increased temperature in the vicinity of radio-active waste can lead to a rapid illitization of smectite and loss of the original adsorption properties.Moreover,the sodium additions create a signi?cant area of uncertainty in the system since it is not possible to state what amount of Na is that gets into the interlayer and what amount remains in the inter-particle space.Sodium as well as carbonate cation are at the same time free for further reactions,which in the long run,are dif?cult to predict or simulate.It is also possible to assume,that natri?cation will cause a too much pressure during swelling of the bentonite barrier. References

1.Sˇucha V(2001)I′ly v geologicky′ch procesoch.Acta Geologica

Universitas Comenianae,Bratislava

2.Meunier A(2005)Clays.Springer,Berlin

3.Gregor M,Cˇ?′cˇel B(1969)Bentonit a jeho vyuzˇite.SAV,

Bratislava

4.GalambosˇM,Rosskopfova′O,Paucˇova′V,Adamcova′R,Rajec P

(2009)Sorption properties of bentonites barriers.Bezpecˇnost jaderne′energie(in process)

5.GalambosˇM,Rosskopfova′O,Danˇo M,Adamcova′R,Rajec P

(2009)Slovak bentonites utilization in deposition of radioactive waste and spent nuclear fuel(in process)

6.GalambosˇM,Kufcˇa′kova′J,Rajec P(2009)Sorption of strontium

on Slovak bentonites.J Radioanal Nucl Chem281(3):347–357 7.GalambosˇM,Kufcˇa′kova′J,Rajec P(2009)Adsorption of cesium

on domestic bentonites.J Radioanal Nucl Chem281(3):485–492 8.GalambosˇM,Kufcˇa′kova′J,Rajec P(2009)Adsorption of cesium

on bentonites and montmorillonite.J Radioanal Nucl Chem (in process)

9.Bela′nˇJ(2007)Minulostˇa su′cˇasne′trendy jadrovej che′mie.

Omega Info,Bratislava

10.Adamcova′R,Haasova′Z(2005)Vybrane′fyzika′lne vlastnosti

bentonitu pre u′lozˇisko ra′dioakt?′vneho odpadu.Mineralia Slovaca 37(3):387–389

11.Rajec P,Matel L,Orechovska′J,Sˇucha V(1996)Sorption of

radionuclides on inorganic sorbents.J Radioanal Nucl Chem 208(2):477–486

12.GalambosˇM,Rajec P(2009)Adsorpcia ce′zia na bentonite

Jelsˇovy′potok–konkurencia katio′nov.Radiologicke′metody v hydrosfe′rˇe09–Zborn?′k,Chrudim,Zˇdˇa′r nad Sa′zavou,85–92 13.GalambosˇM(2009)Prva′Interakt?′vna konferencia mlady′ch

vedcov,49,Na′mestovo

14.GalambosˇM,Rosskopfova′O,Paucˇova′V,Rajec P(2009)Ad-

sorpcia ce′zia na smektitickom bentonite z lozˇiska Jelsˇovy′potok, XI.Banskosˇtiavnicke′dni2009–zborn?′k abstraktov,Zvolen, 81–87

15.Dyer A,Chow JKK,Umar IM(2000)The uptake of caesium and

strontium radioisotopes onto clays.J Mater Chem10(12):2734–2740

16.Gu BX,Wang LM,Minc LD,Ewing RC(2001)Temperature

effects on the radiation stability and ion exchange capacity of smectites.J Nucl Mater297(3):345–354

17.Gens A,Guimaraes LdoN,Garcia-Molina A,Alonso EE(2002)

Factors controlling rock–clay buffer interaction in a radioactive waste repository.Eng Geol64(2–3):297–308

18.Adamcova′R(2002)Retardation capability of mineral linings of

waste disposal sites.Acta Geologica Universitas Comenianae 57:5–33

19.Andrejkovicˇova′S,Madejova′J,Cz?′merova′A,Galko I,Dohr-

mann R,Komadel P(2006)Mineralogy and chemistry of Fe-rich bentonite Lieskovec deposit(Central Slovakia).Geologica Carphatica57(5):371–378

20.Morel J-P,Marry V,Turq P,Morel-Desrosiers N(2007)Effect of

temperature on the retention of Cs?by Na-montmorillonite: microcalorimetric investigation.J Mater Chem17:2812–2817 21.Andrejkovicˇova′S,Rocha F,Janotka I,Komadel P(2008)An

investigation into the use of blends of two bentonites for geo-synthetic clay liners.Geotext Geomembr26:436–445

22.Andrejkovicˇova′S,Janotka I,Komadel P(2008)Evaluation of

geotechnical properties of bentonite from Lieskovec deposit, Slovakia.Appl Clay Sci38:297–303

23.Osacky′M,Honty M,Madejova′J,Bakas T,Sˇucha V(2009)

Experimental interactions of slovak bentonites with metalic iron.

Geologica Carpathica60(6):535–543

24.Str?′cˇek I,Sˇucha V,Uhl?′k P,Madejova′J,Galko I(2009)Mineral

stability of Fe-rich bentonite in the Mock-Up-Cz experiment.

Geologica Carpathica60(5):431–436

25.Holmboe M,Wold S,Jonsson M,Garc?′a-Garc?′a S(2009)Effects

of c-irradiation on the stability of colloidal Na?-montmorillonite dispersions.Appl Clay Sci43(1):86–90

Adsorption of cesium and strontium on natri?ed bentonites811

26.Adamcova′R,Madsen FT(1996)Heavy metal retardation in

some Slovak clays and clayey soils.Geologica Carpathica Clays 5(1):13–20

27.Murali MS,Mathur JN(2002)Sorption characteristic of Am(III),

Sr(II)and Cs(I)on bentonite and granite.J Radioanal Nucl Chem 254(1):129–136

28.Khan SA(2003)Sorption of the long-lived radionuclides cesium-

134,strontium-85and cobalt-60on bentonite.J Radioanal Nucl Chem258(1):3–6

29.GalambosˇM,Kufcˇa′kova′J,Rajec P,Paucˇova′V(2007)Adsorpcia

io′nov stroncia na bentonitoch slovenske′ho po?vodu–vplyv zmeny pH prostredia,IX.Banskosˇtiavnicke′dni2007–zborn?′k abstraktov,Zvolen,81–87

30.GalambosˇM,Paucˇova′V(2002)Vplyv zmeny pH prostredia

na sorpciu Sr(II)na bentonite Jelsˇovy′potok.Sˇtudentska′vedecka′konferencia PriF UK v Bratislave,zborn?′k abstraktov 2,20–22

31.GalambosˇM,Paucˇova′V(2009)Vplyv pH na sorpcˇne′vlastnosti

bentonitu Kopernica.Sˇtudentska′vedecka′konferencia PriF UK v Bratislave,zborn?′k recenzovany′ch pr?′spevkov,830–835

32.Hurel C,Marmier N,Bourg AC,Fromage F(2009)Sorption of

Cs and Rb on puri?ed and crude MX-80bentonite in various electrolytes.J Radioanal Nucl Chem279(1):113–119

33.GalambosˇM,Kufcˇa′kova′J,Rajec P(2006)Bentonites from

Slovak deposits—study of sorption characteristics.XXVIII.Dny radiacˇn?′ochrany–zborn?′k abstraktov,97–99

34.GalambosˇM,Kufcˇa′kova′J,Rajec P(2008)In?uence of com-

petitive ions on sorption of strontium on Slovak bentonites.XXX.

Days of radiation protection—collection of abstracts,Liptovsky′Ja′n,179–183

35.GalambosˇM,Rosskopfova′O,Paucˇova′V,Danˇo M,Rajec P

(2009)Bentonitove′barie′ry v multibarie′rovom syste′me hlbinny′ch geologicky′ch u′lozˇ?′sk–sˇtu′dium adsorpcˇny′ch procesov.XXXI.

Days of radiation protection—collection of abstracts,Kouty nad Desnou,Hruby′Jesen?′k,97

36.Emmerich K,Wolters F,Kahr G,Lagaly G(2009)Clay pro?ling:

the classi?cation of montmorillonites.Clays Clay Miner57(1): 104–114

37.Chatterjee A,Iwasaki T,Hayashi H,Ebina T,Torii K(1998)

Electronic and structural properties of montmorillonite—a quantum chemical study.J Mol Catal A136(2):195–202

38.Odom IE(1987)Na/Ca montmorillonite:properties and uses.

Trans AIME,Part A-Industrial Minerals282:1893–1901

39.Odom IE(1984)Smectite clay minerals:properties and uses.

Philos Trans R Soc Lond A311:391–409

40.Permien T,Lagaly G(1994)The rheological and colloidal

properties of bentonite dispersions in the presence of organic compounds:I.Flow behaviour of sodium-bentonite in water–alcohol.Appl Clay Sci29:751–760

41.Permien T,Lagaly G(1994)The rheological and colloidal

properties of bentonite dispersions in the presence of organic compounds:IV.Sodium montmorillonite and acids.Appl Clay Sci9:251–263

42.Permien T,Lagaly G(1994)The rheological and colloi-

dal properties of bentonite dispersions in the presence of organic compounds:III.The effect of alcohols on the coagu-lation of sodium montmorillonite.Colloid Polym Sci272: 1306–1312

43.Komine H,Ogata N(1996)Prediction for swelling characteristics

of compacted bentonite.Can Geotech J33:11–22

44.S′rodon′J,Andreolli C,Elsass F,Robert M(1990)Direct high-

resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rocks.

Clays Clay Miner38:373–379

45.Santamarina JC,Klein KA,Wang YH,Prencke E(2002)Speci?c

surface:determination and revelance.Can Geotech J39:233–24146.Hauser EA,Reed CE(1937)Studies in thixotropy.II.The

thixotropic behaviour structure of bentonite.J Phys Chem41(7): 911–934

47.Masahiko Y,Naoki A(2005)Thixotropy and thermophysical

properties of bentonite suspension.Thermophys Prop26:496–498 48.Sridharan A,Rao AS,Sivapullaiah PV(1986)Swelling pressure

of clays.Geotech Test J9:24–33

49.Cˇ?′cˇel B,Komadel P,Bedna′rikova′E,Madejova′J(1992)Miner-

alogical composition and distribution of Si,Al,Fe,Mg and Ca in the?ne fractions of some Czech and Slovak bentonites.Geol Carpath Clays43:3–7

50.Huertas FJ,Carretero P,Delgado J,Linares J,Samper J(2001)

An experimental study on The ion-exchange behaviour of the smectite of Cabo de Gata(Almeria,Spain):FEBEX.Colloid Interface Sci239(2):409–416

51.Degryse F,Smolders E,Cremers A(2004)Enhanced sorption

and?xation of radiocaesium in soils amended with K-bento-nites,submitted to wetting–drying cycles.Eur J Soil Sci55(3): 513–522

52.Alther GR(1986)The effect of the exchangeable cations on the

physico-chemical properties of Wyoming bentonites.Appl Clay Sci1:273–284

53.Keren R(1989)Effect of clay charge density and adsorbed ions

on the rheology of montmorillonite suspensions.Soil Sci Am J 53:25–29

54.Kufcˇa′kova′J,GalambosˇM,Rajec P(2005)Sorption of strontium

on selected group of bentonites.ChemZi1(3):270

55.Kufcˇa′kova′J,GalambosˇM,Rajec P(2005)Sorption of strontium

on bentonites from Slovak deposits.XXVII.Days of radiation protection—collection of abstracts,Liptovsky′Ja′n,119–120 56.Cuevas J,Villar MV,Mart?′n M,Coben?a JC,Leguey S(2002)

Thermo-hydraulic gradients on bentonite:distribution of soluble salts,microstructure and modi?cation of the hydraulic and mechanical behaviour.Appl Clay Sci22(1–2):25–38

57.Villar MV,Mart?′n PL,Barcala JM(2005)Modi?cation of

physical,mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients.Eng Geol81(3):284–297

58.Makhoukhi B,Didi MA,Villemin D(2007)Modi?cation with

diphosphonium salts:synthesis and characterization.Mat Lett 62(16):2493–2496

59.Nowicki A,Przybytniak G,Kornacka A,Mirkowski K,Zimek Z

(2007)Radiation-induced modi?cation of montmorillonite used as a?ller in PP composite.Radiat Phys Chem76(5):893–900 60.Bojemueller E,Nennemann A,Lacaly G(2001)Enhanced pes-

ticide adsorption by thermally modi?ed bentonites.Appl Clay Sci 18(5–6):277–284

61.Villar MV,Cuevas J,Martin PL(1996)Effects of heat/water?ow

interaction on compacted bentonite:preliminary results.Eng Geol41:257–267

62.Babaki H,Salem A,Jafarizad A(2007)Kinetic model for the

isothermal activation of bentonite by sulfuric acid.Mater Chem Phys108(2–3):263–268

63.Komadel P,Schmidt D,Madejova J,Cˇ?′cˇel B(1990)Alteration of

Smectite by treatments with hydrochloric acid and sodium car-bonate solutions.Appl Clay Sci5:113–122

64.Onal M,Sarikaya Y,Alemdaroglu T(2002)The effect of acid

activation on some physicochemical properties of a bentonite.

Turk J Chem26:409–416

65.Onal M,Sankaya Y(2007)Preparation and characterization of

acid-activated bentonite powders.Powder Technol172(1):14–18 66.Bleifuss RL(1973)Activation of non-swelling bentonite.Clay

Miner10:41

67.Saidi A,Shamanian M,Barati M,Azari K(2004)Hyperactiva-

tion of bentonite in pelletizing process.Int J ISSI1(1):38–41 68.Madejova′J,Bujda′k J,Janek M,Komadel P(1998)Comparative

FT-IR study of structural modi?cations during acid treatment of

812M.Galambosˇet al.

dioctahedral smectites and hectorite.Spectrochim Acta A 54:1397–1406

69.Sarikaya Y,Onal M,Ceylan H,Bozdogan I(1994)Soda acti-

vation of Giresun bentonite.Turk Chem J18:11–20

70.Szanto F,Gilde-Farkas M,Varkonyi B,Balazs J(1967)Binding

of Na2CO3by bentonite fractions.Acta Geol Acad Sci Hung 11(4):409–418

71.Tombacz E,Balazs J,Lakatos J,Szanto F(1989)In?uence of the

exchangeable cations on stability and rheological properties of montmorillonite suspensions.Colloid Polym Sci267:1016–1025 72.Volzone C,Garrido LB(1991)The effect of some physico-

chemical and mineralogical properties on the Na2CO3activation of Argentine bentonites.Appl Clay Sci6:143–154

73.Yildiz N,Erol M,Baran B,Sarikaya I,Calimli A(1998)Modi-

?cation of rheology and permeability of Turkish ceramic clays using sodium silicate.Appl Clay Sci13:65–77

74.Bakhmatyuk BP,Grygorchak II,AYu Pidluzhna,Ripetskii EI

(2007)Intercalation of bentonite:thermodynamics,kinetics,and practical applications.Inorg Mater43(5):537–540

75.Hrachova′J,Komadel P,Fajnor VSˇ(2007)The effect of

mechanical treatment on the structure of montmorillonite.Mater Lett61(16):3361–336576.Kim BH,Jung JH,Kim JW,Choi HJ,Joo J(2001)Effect of

dopant and clay on nanocomposites of polyaniline(PAN)inter-calated into Na?-montmorillonite(Na?-MMT).Synth Met121: 1311–1312

77.Kadlecova′Z,Puffr R,Baldrian J,Schmidt P,Roda J,Brozˇek J

(2008)Homoionic inorganic montmorillonites as?llers for polyamide6nanocomposites.Eur Polym J44:2798–2806

78.Panasyugin AS,Kitikova NV,Bondareva GV,Ratˇko AI(2003)

Adsorption and structural properties of montmorillonite pillared with hydroxocomplexes of iron and rare-earth metals.Colloid J 65(4):478–481

79.Mody HM,Oza PM,Pandya VP(1993)Alumina-pillared clay of

improved thermal stability.Appl Clay Sci8:53–60

80.Bahranowski K,Serwicka EM(1993)Preparation and physico-

chemical characterization of vanadium-doped pillared montmo-rillonites.Geol Carpath Clays44:17–20

81.Vaughan DEW(1988)Pillared clays—a historical perspective.

Catal Today2:187–198

Adsorption of cesium and strontium on natri?ed bentonites813

浅谈3D游戏模型与贴图技术

浅谈3D游戏模型与贴图技术 摘要:优秀的模型为工作提供了一个好的开端,合适的贴图会使这个模型锦上添花,一个好的游戏模型是优秀模型和优秀贴图的结合体,二者相辅相成,缺一不可。 关键词:3D游戏;游戏模型;游戏贴图;游戏美术;模型贴图制作流程 在多样的游戏类型中,电视游戏是对游戏画面质量要求最高的一类游戏,这是由于电视平台的自身特点决定的,由于目前电视分辨率普遍较高,因此也需要电视游戏在制作开发时,必须考虑画面质量,而画面质量的好坏又直接取决于游戏中模型的品质和贴图的品质。模型的精细度和贴图的清晰度都会给玩家直接带来视觉上的美感,加强画面视觉感染力。这样的电视机游戏也通常被称为次世代游戏。本文将针对次世代游戏中的游戏模型和游戏贴图技术进行讨论。 一个优秀模型制作前要做好几项准备工作,首先要全方位的了解这个模型。以角色类模型举例,要做某一个角色,就要做到了解它的外貌特征、性格特征、生活背景等。优秀的角色模型应该是具有一定生命力的,而且要体现出它的特点和地域文化。这种想法和理念应该贯穿原画设计、3D模型制作和动作设计始终。这三个方面共同塑造着角色的这一特点。在建模的时候要时刻感觉它的生命的存在,感觉它的性格以及情感动作等,这样才有可能做出一个具有生命力的高品质模型作品。 游戏模型按精度的不同,可以分为高模和简模,制作高模的意义在于生成法线贴图,法线贴图会携带高模的表面起伏信息,把这样的携带高模起伏信息的法线贴图再回贴给简模,这样简模也具备了一定的高模特征,这就是游戏中应用简单模型却可以表现出足够多细节的基本原理。无论是高模还是简模,都要具备一些最基本的要求,如造型准确、布线合理、形神兼备等。 一个优秀的建模师应该注意对事物的观察,如角色建模师就应该平时多观察肌肉结构、骨骼特征、动作动态,分析不同动作给肌肉和骨骼带来的不同影响等。了解这些内容需要配合一定的解剖知识。模型的质感表现也是一个不容忽视的内容,如钢铁、青铜、麻布、丝绸、皮肤等,不同质感给人不同软硬度的直觉。对于某一种质感由于或崭新或破旧,或华丽或古老等差异,也给模型塑造带来不同的要求。对生物体的塑造,结构必须是合理的,在游戏的生产流程当中,建模师要参照原画师做的原画设定来进行三维建模,而事实上原画师提供的原画往往只是一种意象上的构思,不具备太多的细节,而对模型的细节刻画往往都落在建模师肩上,建模师需要对结构进行补充,这个过程也是对角色的二次设计。 如果把模型比喻成卸妆后的女人,那么贴图的过程就可以看做是给这个女人化妆的过程,行业里流行着这样的一句话“三分模,七分贴”,可见贴图的重要性。一个次时代模型所需要加载的贴图最基本的有三张,分别是固有色贴图、高光贴图和法线贴图。不同的贴图放置在不同的贴图通道中,分别起着各自不同的作用。固有色是指物体在正常光线下所呈现出来的颜色。对于一个物体,它自身的固有色是尤为重要的,一个物体受到光照后,固有色主要表现在受光面和背光面之间的中间调部分,也是素描中常提到的明暗交界线部分的颜色,因为这部分受外部环境色影响较少。而固有色贴图的任务就是把物体表面不受外界环境影响的固有色表现出来。绘制固有色时,要观察实物或原画,分析物体的质感、不同材料的搭配以及物体表面的新旧等等。高光贴图主要来影响物体表面的反光特性。高光

中国移动合作协议

代办点移动业务代理合同 甲方:__________________________________ 乙方:__________________________________ 签订地点:_______________________________ 签订时间:_______________________________

为满足社会需要,方便广大客户购买及办理移动电话业务,甲乙双方就甲方委托乙方代理甲方业务一事,达成如下协议: 第一条协议宗旨 1、甲乙双方依据中华人民共和国有关法律、法令和规定,本着“友 好合作、互惠互利、共同发展”的原则,经充分友好协商,签 订本协议,以资双方共同遵守。 2、订立本协议旨在促进甲乙双方互惠互利,在提高移动通信服务 质量的同时,取得双方企业的共同发展。 3、甲乙双方均不具备超出本协议范围内的任何约束双方企业或 双方相关企业的权利。 4、本协议中涉及到的移动业务的最终解释权归属于甲方;涉及到 终端销售的“三包”承诺的解释权归乙方。 5、本协议营业场所位于_________________________________, 营业面积为_____________平方米。 第二条经营范围 1、移动电话入网、业务办理 2、移动电话卡类销售(如:充值卡、缴费卡等) 3、甲方根据业务发展的需要可以对乙方代理的业务种类进行调 整。 第三条甲方权利和义务 1、对乙方的代理资格和代理形式进行审核与评估。乙方不得有以 下行为,否则甲方有权解除双方代理协议,并追回相关损失。

(1)借用中国移动的声誉,在营业厅出售假冒伪劣商品,造 成极其恶劣的社会影响或者引起媒体曝光。 (2)拒绝办理营业受理范围内的业务。 (3)在移动公司营业场所附近地区,采取哄骗、利诱、胁迫 等不正当手段从事拉客活动。 (4)未及时或按要求划拨营收款及代收通信费,情节严重的。 (5)为了个人私利,发生窜货行为,扰乱市场秩序。 2、有权制定并适时修改代理考核办法和业务操作规范。 3、有权对乙方代办业务的情况和服务情况进行监督和检查。 4、及时告知乙方移动电话方面的业务政策调整,并负责向乙 方解释。 5、在乙方缴纳人民币(大写)__________万元(¥) 代办保证金后,甲方向乙方提供符合移动V1标准要求的首次 门头整修、业务宣传资料等。 6、向乙方有偿提供号源、卡品等,并提供开户支撑,业务答 疑服务。 7、按规定标准向乙方及时足额支付代办费。 第四条乙方的权利和义务 1、代办点由乙方投资,乙方依据法律法规和移动公司各项规章制度、业务规范及本协议,自主经营,自负盈亏。乙方的营业执照等工商登记手续由乙方以自己名义按国家规定及时办理,否则承担相应法

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

@3D网络游戏的发展史

3D网络游戏的发展史 3D网游的特点是立体感强,具有较高的真实性,对玩家来说有更好的游戏体验。随着玩家游戏年龄的增长,会逐渐出现“2D回合制---2D即时制----3D即时制”的转变。因为2D 回合制以及2D即时制对于游戏开发的难度较低,所以一般进入网游开发行业的都是先从这里做起,客观条件下2D回合制和即时制的竞争压力会越来越大。现在的3D网游的开发成为了网游的未来的战略高地。 第一代3D网游(又称2.5D网游,或假3D网游) 第一代3D网游从游戏体验上来说并不比2D即时制强多少。仅仅是在2D即时制网游的基础上对于场景贴图使用了3D效果,部分网游有游戏人物动物模型的翻转效果。对体验者而言,第一代3D网游跟2D网游几乎无差别,但其技术上来说第一代3D网游已经说明其开发实力进入3D时代了。可以认为,第一代3D网游属于网游开发商在进入3D时代的垫脚石。从运营上来说第一代3D网游是在跟2D网游抢市场,但如果走自主研发路线第一代3D网游又是不得不经历的体验。 国内运营的第一款3D网游是《精灵》,它属于第一代3D网游,但是因为引擎上的漏洞导致BUG过多终过早夭折。 随着越来越多的2D网游开发商的转型,一部分较为成功的3D网游出现。例如网易的《大话西游三》和《大唐豪侠》属于3D场景贴图;巨人网络的《巨人》属于3D贴图3D人物;以及国家816项目3D引擎开发出的《天龙八部》等都属于3D贴图3D人物。 第二代3D网游 从体验效果上来说,第二代3D网游已经算是正式步入3D时代。玩家可以自由翻转视

角,技能效果出现了“面向错误”的判断,出现真实的可供攀爬的山坡,甚至因为设计的原因玩家能被“卡”在地洞里面。而因为依然采用2D点对点算法模式,所以在动作表现上依然不尽人意。例如:你向B发出的子弹或者火球,而C在你和B之间,但是效果是C没有受到任何伤害,并且B无法“闪躲”开你的子弹或者火球。第二代3D网游保留了对战斗判定的特点是先选中然后攻击。 在中国大陆运营的第一款第二代3D网游是《笑傲江湖OL》,因为已经具有与2D网游截然不同的效果,所以在很短时间内就聚集和很高的人气。但是因为引擎的不完善BUG丛生,甚至用游戏修改就能修改游戏很多参数,终于在风靡一时之后停运。 第二代3D网游已经以其较好的体验效果在国内占据了不少份额,并且随着玩家群网龄的成长,第二代3D网游越来越容易被更多人接受。暴雪的《魔兽世界》.完美时空的《完美系列》.网易的《天下二》都是第二代网游的佼佼者。 第三代3D网游(又称真3D网游) 第三代网游现在可以被称为动作3D网游,现阶段的第三代网游基本都是动作网游,例如《RUSH冲锋》。 比较第二代3D网游有了更好的体验效果,代入了载体理论,让网游的战斗效果更加具有真实感。玩家放出的远程技能不再是必中目标,也不再会无视型的穿过第三者的身体,甚至近身战斗也变成因为动作轨迹造成群体命中判定。还记得《街头霸王》里面小白小红的大馒头以及印第安人的喷火球吗?那个其实就是载体在横板游戏应用上的成功例子。 第三个3D网游的共同特点是:1.视角多为第一人称或者固定于游戏角色后上方的第三人称视角;2.取消的选中目标的概念,取而代之的是类似于CS一样的准星瞄准目标。 中国第一款第三代3D网游是天联的《天之游侠》,同精灵和笑网一样,当第一都命苦。《天之游侠》也具有很多难以修改的重大BUG导致在线并不多,由于游戏的真实体验感而

中国移动通信集团终端有限公司互联网渠道产品及价格管理办法(V1.1版)0704(1)

中国称动通信集团终端有限公司互联网渠道产品及价格管理办法 (V1.0版) 为贯彻中国移动通信集团终端有限公司(以下简称“终端公司总部”)电子商务运营策略,更加市场化开展互联网渠道终端裸机零售及基于互联网渠道开展的裸机分销业务,基于互联网运营中心“准事业部”管理原则,特制定中国移动通信集团终端有限公司互联网运营中心(以下简称“互联网运营中心”)互联网渠道产品及价格管理办法。 第一条、适用范围 本管理办法仅适用于互联网渠道裸机零售及基于互联网渠道的裸 机分销。互联网渠道合约机分销按终端广东分公司针对实体渠道的产品及价格管理办法执行。 第二条、主要定义 (一)价格定义 1、采购价:互联网运营中心向供货方购进终端、配件时的采购价格; 2、互联网零售价:指互联网运营中心在自有商城、平台店铺等零售渠道面向末端客户开展裸机零售的价格; 3、互联网分销价:指互联网运营中心面向互联网销售商(包括其他商城、其他互联网卖家)开展批量销售的价格。 (二)产品定义

1、终端类: (1)总部类终端:总部集采类终端、总部集采且代理类终端、总部代理类终端; (2)广东分公司省代理类终端:指终端广东分公司与终端生产厂家或生产厂家指定的国包商签订代理协议,并以此为基础,负责在各渠道开展销售推广的产品。 (3)广东分公司代销类终端:终端广东分公司与终端生产厂家或省代通过代销合同建立合作关系,并以此为基础开展销售推广的产品。 (4)他省类终端:指由互联网运营中心与其他省终端分公司建立合作关系,并以此为基础在互联网渠道开展销售推广的产品。从合作模式来看,具体包括省际铺货代销和分省发货两种模式。 (5)互联网专属类终端:指由互联网运营中心通过买断或代销的方式,与厂家或供应商建立合作关系,并以此为基础开展基于互联网渠道的销售推广产品。 2、配件类: (1)终端广东分公司类配件:终端广东分公司与配件合作商通过购销或代销的合作方式建立合作,并以此为基础开展销售推广的配件。 (2)互联网专属类配件:指由互联网运营中心通过买断或代销的方式,与配件厂家或供应商建立合作关系,并以此为基础开展基于互联网渠道的销售推广产品。

中国移动代理合作协议书范本

协议编号: 中国移动代理合作协议 (□合作营业厅□卖场) 甲方: 乙方: 签订日期:年月日

目录第一章合同双方资格和权限 3 第二章合作原则及围 3 第三章合作容 3 第四章双方的权利与义务 4 第五章条款 6 第六章知识产权 7 第七章违约责任 7 第八章免责条款 7 第九章争议的解决 8 第十章协议的生效 8 第十一章通知 8 第十二章其他 8

第一章合同双方资格和权限 第一条合作双方基本情况 甲方: 授权代表: 乙方: 授权代表: 乙方在甲方代理商管理系统中的相关信息(计算发放佣金时使用): 提卡商名称:,提卡代码: 开通商名称:,开通代码:。 开户银行名称: (要结算): 户名: 第二条双方法律权限 (一)甲方是中国移动股份依照中华人民国法律在市设立的分支机构,有合法经营国家授权的移动业务的资格。甲方承诺已合法办理开展本协议规定的经营所需的法律手续,并承诺若其行为与法律相抵触由此引起的责任由甲方自行承担。(二)乙方是企业,营业执照注册号为。乙方承诺已合法办理开展本协议规定的经营所需的法律手续,并承诺若其行为与法律相抵触由此引起的责任由乙方自行承担。 第二章合作原则及围 第三条为充分利用双方的资源和优势共同发展通信业务,甲乙双方(以下简称“双方”)同意依照中国法律法规之相关规定及移动行业管理规定,本着互惠互利、优势互补、共同发展的原则达成本协议。

第四条甲方授权乙方代理业务的经营地域围为:市区/县 第五条甲方授权乙方代理甲方业务网点的类型为: 1、合作营业厅 2、卖场 第三章合作容 第六条代理商准入资格 (一)乙方注册资本在人民币贰万元以上。 (二)乙方须具有合法的通信终端设备以及无线电通讯设备经营许可资格。 (三)乙方须无、违规经营的不良记录。 (四)乙方须具有无线通信产品销售实力和经验,自身拥有发展较稳定的销售网络和较好的商业道德规和营业服务水准。 (五)乙方须拥有平方米的营业场所用于代理甲方业务。(如乙方为卖场,须拥有节柜台的营业场所用于代理甲方业务。) (六)乙方须提交以下资料,并保证其真实有效: 1、企业法人营业执照复印件(加盖公章) 2、税务登记证(加盖国税、地税公章) 3、经营场所房屋租赁合同复印件 4、企业法人复印件 5、代理业务申请表 第七条代理业务容 甲方授权乙方代理甲方业务。(以下所有业务项目均为举例可选容,可根据实际代理业务容填列) 1、中国移动CDMA UIM卡并办理入网开户业务。 2、中国移动固定业务。 3、中国移动互联网宽带业务。 4、话费代收业务。 5、新业务受理。

三维游戏模型基本规范

教程] [三维]游戏模型基本规范(转) 2011-04-19 11:15:15 [三维]游戏模型基本规范 经常看见模型要求多少多少面这样的制作要求,那么你们是怎样计算面数的? A 通常我们提到游戏模型的面数都是指的三角面,而通常在你在3D软件中所看到它计算的面数都是四边面。一个四边面等于两个三角面,但并不是说你想了解你的模型有多少面就直接将你看到面数*2就行了。因为如果你的模型中还有三角面的结构甚至大于四条边的结构(当然这是不允许的),你所计算的面数就会有所出入。所以保险的办法还是将你的模型先用工具转换为全三角结构后再看他的面数。在3DSMAX中你只需要很简单的将他塌陷为Editable Mesh就可以了。 Q 那么一个游戏角色通常要求多少面呢? A 那要看这是一个什么游戏了,还有他使用的什么引擎。比如格斗游戏每个角色的面数就比动作游戏多很多,因为格斗游戏整个画面通常就两个人,而动作游戏同画面会有一大堆人出现。而网络游戏角色的面数就更为节约,因为几十上百个玩家在同一画面出现并不是什么新鲜事,为了不让玩家的机器因此而卡住他们只好最大限度缩减角色的面数。再一方面,主角的面数通常比配角多,配角的面数又比敌人多,但是有一个例外,那就是BOSS,BOSS的面数可能比主角还要多。为什么呢?因为决定一个游戏角色的面数并不完全是按照角色本身在故事中的重要性的,而是按照这个角色在出场的时候同画面可能会有多少角色出现。而在BOSS出场的时候,通常只有主角和BOSS两个人而已(喜欢带着一堆小敌撑腰的没胆BOSS除外),所以BOSS可以有很多面。而主角则不一样了,他贯穿整个游戏,如果他的面数太多,遇到同屏幕有很多敌人的情况,游戏就会很卡了。说到这个问题,有人又会问照这么说主角的面数应该非常少,但是为何在一些特写镜头的时候看着这么细腻呢?这是因为在游戏中通常会为主角制作几

中国移动集团业务代理商要求(SA)

中国移动通信集团天津有限公司集团业务代理总则 1.1 目的 为规范合作,明确权责,构建公平、公开、公正的市场环境,保障集团客户市场形成有序竞争、利益共享、风险共担的良好秩序,特制定本制度。 1.2 适用范围 本制度适用于中国移动天津公司集团业务代理管理工作。本制度将根据市场和业务发展的需要适时进行修改,其所有权、最终解释权、修订权归属于中国移动天津公司。 1.3 概念定义 1、集团客户 集团客户是指以组织名义与中国移动天津公司签署协议,订购并使用中国移动天津公司通信产品和服务的法人单位及所附属的产业活动单位。 2、集团业务 集团业务是指通过中国移动通信的网络和业务平台,面向集团客户,以集团客户或其员工、客户、服务对象为使用对象的各类移动通信产品和移动信息化产品。 3、集团业务代理工作 集团业务代理工作是指企事业单位经中国移动天津公司(以下简称“移动公司”)授权,直接面向客户,进行集团产品应用推广以及相关服务等工作。集团业务代理在信息化价值链中的作用是,充当集团信息化产品、解决方案和应用通向集团客户的渠道,或者提供必要的客户关系,完成集团业务销售与服务。 4、集团业务代理商 集团业务代理商(以下简称“代理商”)是指通过移动公司审核及授权,成为具有集团业务代理资格,负责面向集团客户进行集团业务销售、服务的法人单位。 1.4 代理范围 纳入代理的集团业务应遵循如下原则:具有业务成熟度高、标准化程度高,正式发文推广且有完整业务规范、已在自有渠道先行推广等关键特征的集团业务,可借助代理商进行有效、快速的市场推广与销售。 目前,可授权代理商销售的集团业务包括:企业信息机、手机邮箱、集团短信、企业邮箱、无线网站、校讯通、移动定位、BlackBerry。 1.5 代理职责分工 1、移动公司职责 移动公司委托代理商在代理范围内开展集团业务的销售与服务工作,同时遵循本制度和具体集团业务代理细则对代理商的日常运营进行管理和监督,给予代理商开展代理必要的业务规范、营销宣传、技术培训等方面的支撑,并按照代理商履行的职责内容对代理商进行考核及支付代理酬金。 2、代理商职责 代理商受移动公司的委托,在代理范围内开展集团业务的销售与服务工作。主要包括客户关系建立、向集团客户推荐与介绍集团业务、促进并完成集团业务销售签约、客户关系交接以及催缴费用等。 二、集团业务代理的申请、变更和退出 2.1 代理商的申请

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

中国移动社会渠道管理中的面临的严重问题

中国移动社会渠道管理中的面临的严重问题社会渠道队伍庞杂和放号酬金虚高是目前中国移动社会渠道管理中面临的两大问题。中国移动拥有数量最为众多的社会渠道,包括代理商、指定专营店、特约代理点等多种类型,业务代理形式既有实体店面类型,又有代理人类型。大规模、类型多样的社会渠道队伍,在新增用户快速增长的市场阶段为中国移动带来了用户规模的快速扩张。但在用户增长速度逐渐趋稳的市场阶段下,规模、类型过于庞杂的社会渠道给渠道管理带来了很大难度,社会渠道管理成本逐渐升高。并且,中国移动拥有数量最为众多的是社会渠道,80%——90%的放号业务是由社会渠道承担的。可以说,社会渠道一直是移动运营商发展新增用户的主要渠道。但是,由于部分省市公司对社会渠道的监控和管理力度不够,且酬金与放号量关系过于紧密,导致部分社会渠道,尤其是规模较大的代理商办理虚假业务骗取酬金,造成大量用户频繁的非正常入网和离网,从市场整体情况来看用户总数没有明显增幅,但用户的大进大出现象严重,业务量虚高,并由此导致社会渠道酬金总额虚高。社会渠道管理模式的转变由于目前社会渠道队伍过于庞杂,需要从管理模式、酬金和非酬金激励两方面加强社会渠道管控力度,在管理成本有限的条件下提升管理效率。一方面需要加强资质审核,纯化社会渠道队伍;另一方面需要识别优质、高价值的社会渠道,重点加强对该类渠道的管控力度;同时,调整现有酬金体系,从单纯的计件形式的酬金向长期激励酬金演化,通过利益引导方式提高酬金使用效率,抑制用户大进大出现象;并将酬金资源和非

酬金激励向优质核心社会渠道倾斜,加强核心渠道的利益捆绑和情感、服务维系。 建立社会渠道分层分级管理体系,识别优质渠道,纯化社会渠道队伍 通过分层分级体系的构建, 识别对移动公司市场发展贡献较大的核心、 优质渠道, 加强 对其的管理精细度, 并强化酬金激励和非酬金的关系维护, 在控制社会渠道总体成本的同时, 提高对高层级社会渠道的掌控力度。

三维程序、游戏制作的基本常识

三维程序、游戏制作的基本常识 很多游戏制作初学者都是从各行转行的。,对三维方面的常识的确理解甚少,即使是天天玩三维游戏的人。虽然这些信息对一些三维经验丰富的朋友是简单的不能再简单的东西,但本文对某一些新上手的朋友是很有必要的。 一、建模 建模至少包括两个步骤: 1 模型的建立,每个顶点的空间位置的确定。 2 确定模型每个顶点对应的贴图位置,以便能够正确的贴图 而这两个步骤,人类不靠建模max,maya,xsi等等建模工具是无法完成的。 理论上来说,只要知道一个模型的所有顶点和对应的贴图位置,就能不靠三维软件也能建模,但问题就是稍复杂点的模型至少都是几百个点到几万个点,人类不靠三维软件是根本无法知道这些顶点和对应贴图的位置的。 二、引擎 …引擎?的定义现在看来已经包括三种: 1) 图形引擎 最简单的理解就是一个成像的东西。把三维的数据变成图像,放映给观众。就像一个电视机一样,把接收到的数据信息变成图像。这是我们最早称作…引擎?的东西。它的目的就是减少游戏编程者的工作,因为图形编程的工作量很庞大的,避免每次重复开发,和让游戏编程者尽量把精力集中在游戏本身的逻辑和规则的开发,而不是怎么显示图形上。现在很经典的游戏图形引擎比如DOOM,虚幻等等。Pv3d,away3d等等都是ActionScript写的图形引擎。 2) 动力引擎 个人认为动力引擎最初的目的应该是“编程人员向动画人员发起的挑战”。以前的三维游戏,动态全是靠动画人员制作出来。有些简单游戏使用动画人员又有些不必要,简单动作希望能用程序模拟出来。 动力引擎的好处是每次模拟出来的动态随受力不同会有改变,这是动画师无法达到的,因为动画师做出什么动作就是什么,无法随机变化,头发,布料,高处下落,吹飞,拖扯都是动力引擎的强项。但弊端是无法制作出复杂的动态。 所以现在的大作,一般都是动画师和动力引擎共同实现,动力引擎处理一些随机的动态,动画师(和动态捕捉)处理人物的基本动作。 游戏界hover这个三维动力引擎是非常有名的。Box2d是一个可以说小巧完美的flash 的二维动力引擎,用它可以做一些非常有趣的小游戏。Wow则是我们flash3d的三维动力引擎,比起前两者还是非常不完善的。不知道以后会否有hover的支持,(shockwave是可以用hover的) 3) 游戏引擎 比如说我们现在说的…《上古卷轴》引擎?的意思就是说能够轻松做出自制任务的引擎,这种引擎制作者根本不用考虑游戏的规则,逻辑判断,或者图形效果等等,大部分精力完

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知 发文机关:卫生部(已撤销) 发布日期: 2001.01.09 生效日期: 2001.02.01 时效性:现行有效 文号:卫医发(2001)10号 各省、自治区、直辖市卫生厅局: 为贯彻实施《脐带血造血干细胞库管理办法(试行)》,保证脐带血临床使用的安全、有效,我部制定了《脐带血造血干细胞库设计管理规范(试行)》。现印发给你们,请遵照执行。 附件:《脐带血造血干细胞库设置管理规范(试行)》 二○○一年一月九日 附件: 脐带血造血干细胞库设置管理规范(试行) 脐带血造血干细胞库的设置管理必须符合本规范的规定。 一、机构设置 (一)脐带血造血干细胞库(以下简称脐带血库)实行主任负责制。 (二)部门设置 脐带血库设置业务科室至少应涵盖以下功能:脐带血采运、处理、细胞培养、组织配型、微生物、深低温冻存及融化、脐带血档案资料及独立的质量管理部分。 二、人员要求

(一)脐带血库主任应具有医学高级职称。脐带血库可设副主任,应具有临床医学或生物学中、高级职称。 (二)各部门负责人员要求 1.负责脐带血采运的人员应具有医学中专以上学历,2年以上医护工作经验,经专业培训并考核合格者。 2.负责细胞培养、组织配型、微生物、深低温冻存及融化、质量保证的人员应具有医学或相关学科本科以上学历,4年以上专业工作经历,并具有丰富的相关专业技术经验和较高的业务指导水平。 3.负责档案资料的人员应具相关专业中专以上学历,具有计算机基础知识和一定的医学知识,熟悉脐带血库的生产全过程。 4.负责其它业务工作的人员应具有相关专业大学以上学历,熟悉相关业务,具有2年以上相关专业工作经验。 (三)各部门工作人员任职条件 1.脐带血采集人员为经过严格专业培训的护士或助产士职称以上卫生专业技术人员并经考核合格者。 2.脐带血处理技术人员为医学、生物学专业大专以上学历,经培训并考核合格者。 3.脐带血冻存技术人员为大专以上学历、经培训并考核合格者。 4.脐带血库实验室技术人员为相关专业大专以上学历,经培训并考核合格者。 三、建筑和设施 (一)脐带血库建筑选址应保证周围无污染源。 (二)脐带血库建筑设施应符合国家有关规定,总体结构与装修要符合抗震、消防、安全、合理、坚固的要求。 (三)脐带血库要布局合理,建筑面积应达到至少能够储存一万份脐带血的空间;并具有脐带血处理洁净室、深低温冻存室、组织配型室、细菌检测室、病毒检测室、造血干/祖细胞检测室、流式细胞仪室、档案资料室、收/发血室、消毒室等专业房。 (四)业务工作区域应与行政区域分开。

脐带血间充质干细胞的分离培养和鉴定

脐带血间充质干细胞的分离培养和鉴定 【摘要】目的分离培养脐带血间充质干细胞并检测其生物学特性。方法在无菌条件下用密度梯度离心的方法获得脐血单个核细胞,接种含10%胎牛血清的DMEM培养基中。单个核细胞行贴壁培养后,进行细胞形态学观察,绘制细胞生长曲线,分析细胞周期,检测细胞表面抗原。结果采用Percoll(1.073 g/mL)分离的脐血间充质干细胞大小较为均匀,梭形或星形的成纤维细胞样细胞。细胞生长曲线测定表明接后第5天细胞进入指数增生期,至第9天后数量减少;流式细胞检测表明50%~70%细胞为CD29和CD45阳性。结论体外分离培养脐血间充质干细胞生长稳定,可作为组织工程的种子细胞。 【关键词】脐血;间充质干细胞;细胞周期;免疫细胞化学 Abstract: Objective Isolation and cultivation of mesenchymal stem cells (MSCs) in human umbilical cord in vitro, and determine their biological properties. Methods The mononuclear cells were isolated by density gradient centrifugation from human umbilical cord blood in sterile condition, and cultured in DMEM medium containing 10% fetal bovine serum. After the adherent mononuclear cells were obtained, the shape of cells were observed by microscope, then the cell growth curve, the cell cycle and the cell surface antigens were obtained by immunocytochemistry and flow cytometry methods. Results MSCs obtained by Percoll (1.073 g/mL) were similar in size, spindle-shaped or star-shaped fibroblasts-liked cells. Cell growth curve analysis indicated that MSCs were in the exponential stage after 5d and in the stationary stages after 9d. Flow cytometry analysis showed that the CD29 and CD44 positive cells were about 50%~70%. Conclusions The human umbilical cord derived mesenchymal stem cells were grown stably in vitro and can be used as the seed-cells in tissue engineering. Key words:human umbilical cord blood; mesenchymal stem cells; cell cycle; immunocytochemistry 间充质干细胞(mesenchymal stem cells,MSCs)在一定条件下具有多向分化的潜能,是组织工程研究中重要的种子细胞来源。寻找来源丰富并不受伦理学制约的间充质干细胞成为近年来的研究热点[1]。脐血(umbilical cord blood, UCB)在胚胎娩出后,与胎盘一起存在的医疗废物。与骨髓相比,UCB来源更丰富,取材方便,具有肿瘤和微生物污染机会少等优点。有人认为脐血中也存在间充质干细胞(Umbilical cord blood-derived mesenchymal stem cells,UCB-MSCs)。如果从脐血中培养出MSCs,与胚胎干细胞相比,应用和研究则不受伦理的制约,蕴藏着巨大的临床应用价值[2,3]。本研究将探讨人UCB-MSCs体外培养的方法、细胞的生长曲线、增殖周期和细胞表面标志等方面,分析UCB-MSCs 作为间充质干细胞来源的可行性。

中国移动代理合作协议(全版)

中国移动代理合作协议 第一章合作双方基本情况 甲方: 授权代表: 乙方: 授权代表: 第一条乙方在甲方代理商管理系统中的相关信息(计算发放佣金时使用): 提卡商名称:,提卡代码: 开通商名称:,开通代码:。 开户银行名称: 帐号(要求是结算帐号): 户名: 第二条双方法律权限 (一)甲方是中国移动股份有限公司依照中华人民共和国法律在焦作市设立的分支机构,有合法经营国家授权的移动业务的资格。甲方承诺已合法办理开展本协议规定的经营所需的法律手续,并承诺若其行为与法律相抵触由此引起的责任由甲方自行承担。 (二)乙方是企业,营业执照注册号为。乙方承诺已合法办理开展本协议规定的经营所需的法

律手续,并承诺若其行为与法律相抵触由此引起的责任由乙方自行承担。 第二章合作原则及范围 第三条为充分利用双方的资源和优势共同发展通信业务,甲乙双方(以下简称“双方”)同意依照中国法律法规之相关规定及移动行业管理规定,本着互惠互利、优势互补、共同发展的原则达成本协议。 第四条甲方授权乙方代理业务的经营地域范围为:市 区/县 第五条甲方授权乙方代理甲方业务网点的类型为: 1、合作营业厅 2、卖场 第三章合作内容 第六条代理商准入资格 (一)乙方注册资本在人民币贰万元以上。 (二)乙方须具有合法的通信终端设备以及无线电通讯设备经营许可资格。 (三)乙方须无违法、违规经营的不良记录。 (四)乙方须具有无线通信产品销售实力和经验,自身拥有发展较稳定的销售网络和较好的商业道德规范和营业服务水准。 (五)乙方须拥有平方米的营业场所用于代理甲方业务。(如乙方为卖场,须拥有节柜台的营业场所用于代理甲方业务。) (六)乙方须提交以下资料,并保证其真实有效:

脐带血干细胞检测

脐带血干细胞检测 对每份脐血干细胞进行下列检测: ①母体血样做梅毒、HIV和CMV等病原体检测,这一检测使脐血干细胞适合于其它家庭成员应用。如任何一种病原体测试阳性,需重复测定。 ②每份脐血干细胞样本同时检测确定没有微生物污染。 ③细胞活性检测、有核细胞数、CD34+细胞数、集落形成试验等。CD34是分子量115KD 的糖蛋白分子,使用特定单克隆抗体(抗-CD34)确定,脐血祖细胞的大部分,包括体外培养产生造血集落的细胞都包含在表达CD34抗原的细胞群中。 ④HLA组织配型、ABO血型。 一、采血方式及其优点 再生缘生物科技公司采用最严谨的封闭式血袋收集法,避免在收集脐带血液时可能遭受微生物污染的发生,且以最少之操作步骤,收集最大量之脐带血液方式,在产房内即可完成。 二、脐带血处理与保存 脐带血收集于血袋,经专人运送至再生缘生物科技公司之无菌细胞分离实验室后,由专业的技术人员于完全无菌的环境下,依标准操作程序将血液进行分离,收集具有细胞核的细胞,其中含有丰富的血液干细胞,经加入冷冻保护剂和适当品管检测后,并进行以最适合

血液干细胞的冷冻降温程序方式,进行细胞冷冻程序,达到避免细胞受到冷冻过程之伤害。完成后,冷冻细胞立刻保存于摄氏零下196度的液态氮槽中。所有操作程序记录和细胞保存相关数据,均由计算机条形码系统追踪确认,完全符合国际脐带血库之标准操作程序和品管要求。 母亲血液之检测 为确保所操作和保存的脐带血液细胞,符合国际血液操作规范,并提供客户最大的保障,对于产妇血液必须同时进行一些病毒传染病的检测,以确保没有下列病毒,如艾滋病毒(HIV)、C型肝炎病毒(HCV)、人类T细胞淋巴病毒(HTLV)和梅毒(syphilis),同时对于B型肝炎病毒(HBV)和巨细胞病毒(CMV)加以侦测和纪录,作为将来可能应用脐带血细胞时之必要参考数据并符合卫生医疗之要求。 脐带血细胞之品管 对于所保存之脐带血细胞均进行多项操作流程监控和品管检测,如微生物污染检测、血液细胞浓度、细胞存活率、细胞活性测定等,每一步骤均有详细之纪录,在操作方法和使用仪器方面均定期进行验证和校验,以符合国际医疗标准。 三、实验室、贮存处所介绍 再生缘生物科技公司拥有符合美国联邦标准(FED-STD-209E)和中华民国优良药品制造标准(一区、二区、三区)的生物安全实验室和无菌操作设备,在专业的技术人员依标准操作程序下进行血液分离和保存步骤,保障客户珍贵样品和权益。 分离后之细胞将依浓度分装入4-6个冷冻管,计算机降温冷冻完成后,即由食品工业发展研究所国家细胞库专业液态氮库房人员,将冷冻细胞分别存放于二个不同的脐带血细胞专属液态氮槽中保存,在安全机制上更有保障。液态氮库房拥有五吨的液态氮供应系统,每一液氮槽均有自动充填装置和异常警报系统,和每日值勤人员监控,确保冷冻细胞处于最佳的冷冻状态。 四、安全管制措施 脐带血液经快递送达无菌细胞分离实验室后,每一步骤均有专业技术人员操作和监督,并将所有分析数值详细填于具有条形码管制之分析表格和计算机数据表中,利用条形码和读码系统确认样品之专一性,避免人为失误,且便于追溯和数据品管。 在冷冻细胞保存上

相关文档
最新文档