洛必达法则

洛必达法则
洛必达法则

洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母

分别求导再求极限来确定未定式值的方法。

(1)当x→a时,函数f(x)及F(x)都趋于零;

(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;

(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么

x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。

再设

(1)当x→∞时,函数f(x)及F(x)都趋于零;

(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;

(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么

x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:

①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥

用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这

时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。

②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往

计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因

子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当

函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:

f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn

其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项

称为拉格朗日型的余项。

(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)

证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出

的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:

P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n

来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数

P(x)满足

P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是

可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);

P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……

P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:

P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n.

接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有

Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……

=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))

/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x 之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项

Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:

f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……

+f(n)(0)/n!?x^n+Rn

其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。

证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:

f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……

+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1)

由于ξ在0到x之间,故可写作θx,0<θ<1。麦克劳林展开式的应用:

1、展开三角函数y=sinx和y=cosx。

解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx ,

f'''(x)=-cosx , f(4)(x)=sinx……

于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)

类似地,可以展开y=cosx。

2、计算近似值e=lim x→∞ (1+1/x)^x。

解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:

e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!

当x=1时,e≈1+1+1/2!+1/3!+……+1/n!

取n=10,即可算出近似值e≈2.7182818。

3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)

证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。泰勒展开式原理e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.

计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.

若将指数函数 ex 作泰勒展开,则得

以 x=1 代入上式得

此级数收敛迅速,e 近似到小数点后 40 位的数值是

将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由

透过这个级数的计算,可得

由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,

另方面,

所以,

我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.

甲)差分.

考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们

就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为

以后我们干脆就把简记为

(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...

注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.

差分算子的性质

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii)

其中 ,而 (n(k) 叫做排列数列.

(iv) 叫做自然等比数列.

(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分

给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的

结果:

定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则

和分也具有线性的性质:

甲)微分

给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为

f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即

若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.

微分算子的性质:

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii) Dxn=nxn-1

(iv) Dex=ex

(iv)' 一般的指数数列 ax 之导函数为

(乙)积分.

设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的

办法是对 [a,b] 作分割:

;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限(让每一小段的长度都趋近于 0).

若这个极限值存在,我们就记为的几何意义就是阴影的面积.

(事实上,连续性也「差不多」是积分存在的必要条件.)

积分算子也具有线性的性质:

定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)

定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则

注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!

上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.

我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满

足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.

甲)Taylor展开公式

这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清

两个问题:即如何选取简单函数及逼近的尺度.

(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有

n 阶的「切近」,即 ,答案就是

此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.

g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个Taylor 级数就等于 f 自身.

值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)

+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.

利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.

复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其

它函数就没有这么简单.

当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.

(二) 对于离散的情形,Taylor 展开就是:

给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:

答案是此式就是离散情形的 Maclaurin 公式.

乙)分部积分公式与Abel分部和分公式的类推

(一) 分部积分公式:

设 u(x),v(x) 在 [a,b] 上连续,则

(二) Abel分部和分公式:

设(un),(v)为两个数列,令 sn=u1+......+un,则

上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.

(丁)复利与连续复利 (这也分别是离散与连续之间的类推)

(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)

根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.

(二) 若考虑每年复利 m 次,则 t 年后的本利和应为

令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert

换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.

由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.

(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)

(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作

和(反过来亦然).亦即我们有

(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则

当然,变数再多几个也都一样.

(己)Lebesgue 积分的概念

(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.

(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到

b 所围出来的面积.

Lebesgue 的想法是对 f 的影域作分割:

函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相

应分割成 ,取样本点 ,作近似和

让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上

的 Lebesgue 积分. 余项泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! +

f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n 阶导数]

泰勒余项可以写成以下几种不同的形式:

1.佩亚诺(Peano)余项:

Rn(x) = o((x-a)^n)

2.施勒米尔希-罗什(Schlomilch-Roche)余项:

Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

3.拉格朗日(Lagrange)余项:

Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

4.柯西(Cauchy)余项:

Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

5.积分余项:

Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!

[f(n+1)是f的n+1阶导数]

也叫Cauchy中值定理。

设函数f(x),g(x)满足是在[a,b]连续,(a、b)可导,g'(x)≠0(x∈(a,b)) 则至少存在一点,ξ∈(a,b),使f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]

成立

几何意义若令u=f(x),v=g(x),这个形式可理解为参数方程,而

[f(a)-f(b)]/[g(a)-g(b)]则是连接参数曲线的端点斜率,f'(ξ)/g'(ξ)表示曲线上某点处的切线斜率,在定理的条件下,可理解如下:用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦,这一点Lagrange也具有,但是Cauchy中值定理除了适用y=f(x)表示的曲线,还适用于参数方程表示的曲线。

当柯西中值定理中的g(x)=x时,柯西中值定理就是拉格朗日中值定理。

证明令F(x)=f(x)-[f(a)-f(b)]g(x)/[g(a)-g(b)]

∵F(a)=F(b)=[f(a)g(b)-f(b)g(a)]/[g(b)-g(a)]

由罗尔定理知:存在ξ∈(a,b),使得F'(ξ)=0.

又知F'(x)=f'(x)-[f(a)-f(b)]g'(x)/[g(a)-g(b)]

故f'(ξ)-[f(a)-f(b)]g'(ξ)/[g(a)-g(b)]=0

即f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]

命题得证。

罗尔定理罗尔定理说明图片

如果函数f(x)满足:

在闭区间[a,b]上连续;

在开区间(a,b)内可导;

其中a不等于b;

在区间端点处的函数值相等,即f(a)=f(b),

那么在区间(a,b)内至少存在一点ξ(a<ξ

罗尔定理的三个已知条件的直观意义是:f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;f(a)=f(b)表明曲线的割线(直线AB)平行于x轴.罗尔定理的结论的直观意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,也就平行于x轴.

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:101lim ()lim ()0t x x t f x f t = →∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 0000221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim () ()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'()x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠,则 0()lim()0() x x f x k g x →+≠ 有00()()+()lim()=lim ()() x x x x f x f x kg x k g x g x →→+

洛必达法则泰勒公式

第三章微分中值定理与导数的应用 第二讲洛必达法则泰勒公式 目的1.使学生掌握用洛必达法则求各种类型未定式极限的方法: 2.理解泰勒中值泄理的涵: 3.了解汽沏&c。畀血("力,(1 +汙等函数的麦克劳林公式; 4.学会泰勒中值定理的一些简单应用. 重点1.运用洛必达法则求各种类型未泄式极限的方法: 2.使学生理解泰勒中值定理的涵. 难点使学生深刻理解泰勒中值左理的精髓. 一、洛必达法则 在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无 穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷 大之比的极限称为未定式,并分别简记为0和8 ? 由于在讨论上述未圮式的极限时,不能应用商的极限运算法则,这或多或少地都会给未立式极限的讨论带来一是的困难?今天在这里我们应用导数的理论推出一种既简便又重要的未定 式极限的汁算方法,并着重讨论当2CI时,0型未左式极限的计算,关于这种情形有以下立理. 定理1设 (1)当时,函数了⑴及列对都若于零; ⑵在点金的某去心邻域,/⑴及^⑴都存在,且那⑴吐°;

也就是说,当zR⑴存在时,2。去⑴也存在,且等于M 也是无穷大.这种在一左条件下,通过分子分母分别求导,再求极限来 确圧未左式极限的方法称为洛必达(L‘ Hospita 1)法则. 下而我们给出定理1的严格证明: 分析由于上述泄理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值立理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理. 于是由条件⑴和⑵知,/⑴及应⑴在点虫的某一邻域是连续的.设兀是这邻域一点,则在以兀及 山为端点的区间上,函数/〔X)和F&)满足柯西中值龙理的条件,因此在兀和a之间至少存在一点密,使得等式 儿)川)-畑「心) 应G)吩)-吒)应?(站兀与么之间) 成立. 对上式两端求兀To时的极限,注意到XTQ时匸则 穷大时, 证因为求极限 与了⑷及用⑷的取值无关, 所以可以假左 lim 又因为极限 F'G)存在(或为无穷大),所以 故沱理1成立. lim 注若z m 0 ,, 戸倉)仍为6型未左式,且此时了抵)和用,⑴能满足泄理1中/⑴和用⑴ 5F〔X) 所要满足的条件,则可以继续使用洛必达法则先确立从而确总

洛必达公式

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+ Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项

洛必达法则

利用导数求解函数问题是近年高考的一个热点,也是学生学习的一个难点,在高三数学复习备考中应引起关注。实施变式教学是探讨该类问题的一种有效方法。教学过程以数学问题为导引创设问题情境激发学生进行学习、探讨,领会不同背境下问题的本质;通过对函数典型问题的探讨求解,使学生形成基本的数学技能,在此基础上实施变式教学,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律;对新背景的综合问题更应引导学生敢于面对,能够运用已经掌握的数学思想和方法进行分析问题、解决问题,获得“未曾有过”的新认识、新境界,进一步增强求解数学综合题的信心,体会学习数学的乐趣。 在新课程标准的指引下,数学教学方法也在不断改进、创新,而“变式教学”是被广泛运用且公认有效的教学手段。以往人们通常把变式教学划分为概念性变式和过程性变式两类;现在,人们已经把变式教学划分为概念和原理的变式教学、数学技能的变式教学、数学思想方法的变式教学三种类型。对中学教学来说,变式教学最重要的是可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变” 的本质中探究“变”的规律,帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。从高考试题的研究中发现,利用导数求解函数问题是一个热点,值得我们在教学中关注到这一动向,并积极研究、探讨,尤其是函数解决不等式问题的求解学生比较陌生。本文以问题为导引,从回归教材学习中领会概念本质,在求解函数问题的探讨过程中实施教学,促使学生适时地归纳、总结,提炼方法规律,真正感悟解题实质,不断完善数学认知结构。 洛必达法则就是在型和型时,有。

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

利用洛必达法则和麦克劳林公式求极限之比较

利用洛必达法则和麦克劳林公式求极限之比较 关于洛必达法则和含x 的幂展开的带有佩亚诺型余项的泰勒公式(也就是麦克劳林公式),以及利用它们求函数极限所必须满足的条件,这里均不赘述.本文意图通过实例说明,利用洛必达法则和麦克劳林公式求极限,各有各的优势,同时如果糅合代数式的恒等变形、无穷小替换、变量代换和把极限存在的函数分离出来等等方法,有可能大大简化求极限的计算过程.当然,利用上述两种方法求函数极限也有其局限性,本文将就具体例子对利用这两种方法求函数极限作一比较. 例1 当0→x 时,函数x x x f 3sin sin 3)(-=与k cx 是等价无穷小,求k c ,. 解法一 利用洛必达法则. 由等价无穷小的定义知0()lim 1k x f x cx →=,这里0,0>≠k c .记0() lim k x f x I cx →=.第一次利用 洛必达法则,有1 03cos 3cos3lim k x x x I ckx -→-=;注意到上式分子趋于零,因而分母必趋于零, 且当1>k 时可再次利用洛必达法则,即有2 03sin 9sin 3lim (1)k x x x I ck k x -→-+=-;同样上式分子趋于 零,因此要求分母趋于零,则当2>k 时,可第三次利用洛必达法则,即 303c o s 27c o s 3 l i m (1)(2) k x x x I ck k k x -→-+=--.此时可见分子当0→x 时趋于24,因而不满足洛必达法则的条件.要使得当1=I 时,则必有24)2)(1(,03=--=-k k ck k .故解得4,3==c k . 解法二 利用麦克劳林公式展开. )(4)]()3(! 31 3[)](!333[3sin sin 3)(333333x o x x o x x x o x x x x x f +=+--+- =-= 则当4,3==c k 有3304() lim 1k x x o x I cx →+==.或注意到)(4)(33x o x x f +=,即34~)(x x f ,故有4,3==c k . 比较上两种方法,方法二似乎简单一些,但以笔者多年来的教学经验看,初学者(大 一新生)会有把x sin 和x 3sin 展开到多少阶为合适的问题.比如,把x sin 3和x 3sin 分别展开为)(3sin 3x o x x +=和)(33sin x o x x +=,则)()(x o x f =.这样的展开不仅对求解该题无任何帮助,反而会得出错误结果.若将两者展开到比方法二更高阶,即四阶及四阶以上,则必出现冗余.因此方法一对初学者而言不失为一种较为稳妥的方法,尽管步骤看起来多一些. 例2 已知2 tan (1cos )lim 2ln(12)(1) x x a x b x I c x d e -→+-==-+-,则下列四个结论正确的是( ). (A )d b 4=;(B )d b 4-=;(C )c a 4=;(D )c a 4-=.

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

洛必达法则

洛必达法则在参变分离中的应用 知识点:) ()(lim )()(lim )()()()(lim )()(lim 0 00)()(x g x f x g x f x g x f x x g x f x g x f x g x f t x x x t x t x ''=∞ ∞∞++∞→''=→+∞→+∞→→→则型,,即同时趋近于与时,则型,,即同时趋近于与时, 适用范围:有定义域下的 ,参变分离的恒成立问题。 模型: 带入值 结论:满足洛必达法则。分式即是一个分式,或可变为证明) 单调递增(猜想)(可在论应显然成立。 。如果为闭区间端点讨为开区间即端点取不到定义域满足以下条件, 的范围? 求恒成立,≤= +∞∈+∞∈+∞∈h(x)也可以。 例1:(2016年全国2卷文数) 的取值范围。求时,若当a x f x x a x x x f .0)(),1().1-(ln )1()(>+∞∈-+= 例2:(2017年全国2卷文数) 的取值范围。求时,若当)(a ax x f x e x x f x .1)(0.-1)(2+≤≥?=

例3:(2010年全国新课标理数) 的取值范围。求时,若当a x f x ax x e x f x .0)(0.1)(2≥≥---= 例4:的取值范围。恒成立,求时,有当a x x x a x x 1ln )1(ln 1+≤ --≥ 例5:.)1ln()1(0的取值范围恒成立,求时,有当a ax x x x >++>

专题 洛必达法则

洛必达法则 用分离参数(避免分类讨论)解决恒成立或存在性问题时,经常需要在区间端点处的函数(最)值,若出现00或∞ ∞时,就需要用到洛必达法则!洛必达主要用于求分式函数 )()(x g x f 在a x →时,00型或∞∞型的极限,可反复循环使用.1.若0)(lim =→x f a x 且0)(lim =→x g a x ,则) ()(lim )()(lim x g x f x g x f a x a x ''=→→;(证明:) ()(lim ])()()()([lim )()(lim x g x f a g x g a x a x a f x f x g x f a x a x a x ''=--?--=→→→)2.若∞=→)(lim x f a x 且∞=→)(lim x g a x ,则)()(lim )()(lim x g x f x g x f a x a x ''=→→.例1.设函数2 1)(ax x e x f x ---=,若当0≥x 时,0)(≥x f ,求实数a 的取值范围.

*例2.设函数x x x f cos 2sin )(+=,若对0≥?x 时,ax x f ≤)(恒成立,求实数a 的取值范围. *例3.设函数x ax x f ln )(+=,若对1≥?x 时,2 )(ax x f ≤恒成立,求实数a 的取值范围.

*例4.已知x x ax x f -++=)1ln()(有唯一零点,求正数a 的值. 例5.已知函数x e x x a ax x f x -+--=-13ln )(,若0)(>x f 在),1(+∞上恒成立,则a 的取值范围是 例6.已知函数x e ax x f x --+=-)1)(1()(,若0)(≤x f 在),0[+∞上恒成立,则a 的取值范围是 已知函数))(1(ln )(22R a x a x x x f ∈--=,若0)(≥x f 在10≤

洛必达法则word版

第十七讲 Ⅰ 授课题目: §3.2 洛必塔法则 Ⅱ 教学目的与要求: 1.掌握用罗必塔法则求极限; 2.明了使用罗必塔法则的条件; 3.了解将罗必塔法则与极限运算性质结合使用常能简化运算。 Ⅲ 教学重点与难点: 重点:各种类型的未定式转化为 00或∞ ∞ 型的未定式 难点:罗必塔法则与极限运算性质的结合使用 Ⅳ 讲授内容: §3.2 洛必塔法则 如果当a x →(或∞→x )时,两个函数)(x f 与)(x F 都趋于零或都趋于无穷大,那末极限)() (lim ) (x F x f x a x ∞→→可能存在、也可能不存在.通常把这种极限叫做未定式,并 分别简记为 00或∞∞.在第一章第六节中讨论过的极限x x x sin lim 0→就是未定式0 0的一个 例子.对于这类极限,即使它存在也不能用“商的极限等于极限的商”这—法则. 下面我们将根据柯西中值定理来推出求这类极限的一种简便且重要的方法. 我们着重讨论a x →时的未定式 的情形,关于这情形有以下定理: 定理1 设 (1)当a x →时,函数)(x f 及)(x F 都趋于零; (2)在点a 的某去心邻域内,)(x f '及)(x F '都存在且0)(≠'x F ; (3)) () (lim x F x f a x ''→存在(或为无穷大), 那么 ) () (lim )()(lim x F x f x F x f a x a x ''=→→. 这就是说,当)()(lim x F x f a x ''→存在时,)()(lim x F x f a x →也存在且等于)()(lim x F x f a x ''→;当) () (lim x F x f a x ''→为 无穷大时,

洛必达法则不能使用情况及处理

洛必达法则失效的种种情况及处理方法 我看到这样一道题?+∞→x x x x x 0d sin 1 lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则 的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )() (lim )() (lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(l i m =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)() (lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1 lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1 lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=? ?+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

最新3-2洛必达法则高数汇总

3-2洛必达法则高数

§3. 2 洛必达法则 主要内容:洛必达法则; 重点分析:利用洛必达法则求未定式的极限;洛必达法则的适用条件; 难点分析:洛必达法则与其它求极限方法结合使用求极限。 一、?Skip Record If...?型及?Skip Record If...?型未定式解法:洛必达法则 定义1如果当?Skip Record If...?时,两个函数?Skip Record If...?与?Skip Record If...?都趋于零或都趋于无穷大,那么极限?Skip Record If...?叫做未定式,并简记为?Skip Record If...?。 如重要极限?Skip Record If...?就是?Skip Record If...?型未定式的一个例子。此时“商的极限等于极限之商”法则失效。那其极限如何求? 1:?Skip Record If...?型未定式 定理1(洛必达法则):设?Skip Record If...? 2)在点?Skip Record If...?的某个去心邻域?Skip Record If...?内,?Skip Record If...?及?Skip Record If...?都存在且?Skip Record If...?; 3)?Skip Record If...?存在(或为无穷大), 那么?Skip Record If...?。 定义2在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法称为 洛必达法则。 仅供学习与交流,如有侵权请联系网站删除谢谢2

证明:利用柯西中值定理推导。 注意:1. .若?Skip Record If...?仍属?Skip Record If...?型,且?Skip Record If...?满足定理1条件,则 ?Skip Record If...?。 且可以类推下去,直到求出极限。 2.定理1中?Skip Record If...?换为?Skip Record If...??Skip Record If...?之一,条件2)作相应的修改,定理1仍然成立。 定理2设:设?Skip Record If...? 2) ?Skip Record If...?当?Skip Record If...?时,?Skip Record If...?及?Skip Record If...?都存在且?Skip Record If...?; 3)?Skip Record If...?存在(或为无穷大), 那么 ?Skip Record If...?。 注:定理2中把?Skip Record If...?换成?Skip Record If...??Skip Record If...?之一,条件2)作相应的修改,定理2仍然成立。 例1例1 求?Skip Record If...??Skip Record If...? 解:原式?Skip Record If...??Skip Record If...?=1 例2 求?Skip Record If...? 解:原式?Skip Record If...??Skip Record If...??Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢3

洛必达法则

1 洛必达法则 一.洛必达法则 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()() lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=()() lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.设函数2()1x f x e x ax =---。

最新32洛必达法则汇总

32洛必达法则

1.用洛必达法则求下列极限: ⑴?Skip Record If...?; 【解】这是“?Skip Record If...?”未定型商式极限,可以应用洛必达法则求解:?Skip Record If...??Skip Record If...? ---- 应用洛必达法则 ?Skip Record If...??Skip Record If...??Skip Record If...?。 ---- 代值计算 ⑵?Skip Record If...?; 【解】这是“?Skip Record If...?”未定型商式极限,可以应用洛必达法则求解:?Skip Record If...??Skip Record If...? ---- 应用洛必达法则 ?Skip Record If...? ---- 对未定型商式再应用洛必达 法则 ?Skip Record If...? ---- 套用极限公式?Skip Record If...? ?Skip Record If...? ⑶?Skip Record If...?; 【解】这是“?Skip Record If...?”未定型商式极限,可以应用洛必达法则求解:?Skip Record If...??Skip Record If...? ---- 应用洛必达法则 ?Skip Record If...? ---- 对未定型商式再应用洛必达法则 ?Skip Record If...? ---- 代值计算 ⑷?Skip Record If...?; 【解】这是“?Skip Record If...?”未定型商式极限,可以应用洛必达法则求解:?Skip Record If...??Skip Record If...? ---- 应用洛必达法则

洛必达法则解决高考导数问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞ '=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围

最新13洛必达法则(1)教案

教学过程:

1. 0 0型和∞ ∞型未定式的解法:洛必达法则 定义:若当a x →(或∞→x )时,函数)(x f 和)(x F 都趋于零(或无穷大),则极 限) ()(lim ) (x F x f x a x ∞→→可能存在、也可能不存在,通常称为0 0型和∞ ∞型未定式. 例如 x x x tan lim 0 →, (0 0型); bx ax x sin ln sin ln lim 0 →, (∞ ∞型). 定理1:设 (1)当0→x 时, 函数)(x f 和)(x F 都趋于零; (2)在a 点的某去心邻域内,)(x f '和)(x F '都存在且0)(≠'x F ; (3) ) ()(lim ) (x F x f x a x ∞→→存在(或无穷大), 则) ()(lim )()(lim x F x f x F x f a x a x ''=→→ 定义:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的 方法称为洛必达法则 证明: 定义辅助函数 ???=≠=a x a x x f x f ,0),()(1, ???=≠=a x a x x F x F , 0),()(1 在),(δa U ? 内任取一点x , 在以a 和x 为端点的区间上函数)(1x f 和)(1x F 满足柯西中值定理的条件, 则有 ) ()() ()()()(a F x F a f x f x F x f --= )()(ξξF f ''=, (ξ在a 与x 之间) 当0→x 时,有a →ξ, 所以当A x F x f a x ='' →)()(lim , 有A F f a =''→) ()(lim ξξξ 故A F f x F x f a a x ='' =→→) ()(lim )()(lim ξξξ. 证毕 说明: 1.如果)()(lim x F x f a x '' →仍属于0 0型, 且)(x f '和)(x F '满足洛必达法则的条件,可继 续使用洛必达法则, 即 =''''=''=→→→) () (lim )()(lim )()(lim x F x f x F x f x F x f a x a x a x ; 2.当∞→x 时, 该法则仍然成立, 有) ()(lim ) ()(lim x F x f x F x f x x ''=∞ →∞ →; 3.对a x →(或∞→x )时的未定式∞ ∞,也有相应的洛必达法则;

相关文档
最新文档