蓄热式连续加热炉的基本结构组成

蓄热式连续加热炉的基本结构组成
蓄热式连续加热炉的基本结构组成

蓄热室连续加热炉的基本结构组成

连续式加热炉由以下几个基本部分组成:炉子基础和钢结构、炉膛与炉衬、燃料燃烧系统、排烟系统、余热利用装置、冷却系统、装出料设备、检测及调节装置、计算机控制系统等。

1炉子基础和钢结构

炉子基础将炉膛、钢结构和被加热钢坯的重量所构成的全部载荷传到地面上。一般采用混凝土基础。

炉子钢结构是由炉顶钢结构、炉墙钢结构和炉底钢结构的一个箱形框架结构,用以保护炉衬和安装烧嘴。水梁、立柱及各种炉子附件的固定主要由型钢和钢板组成。

(1)炉膛与炉衬

炉膛是由炉墙、炉顶和炉底围成的空间,是对钢坯进行加热的

地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的一个关

键技术条件。再加热炉的运行过程中,不仅要求炉衬能够在高

温和载荷条件下保持足够的温度和稳定性,要求炉衬能够耐受

炉气的冲刷和炉渣的侵蚀,而且要求有足够的绝热保温和气密

性能。为此,炉衬通常耐火层、保温层、防护层和钢结构几部

分组成。其中耐火层直接承受炉膛内的高温气流冲刷和炉渣侵

蚀,通常采用各种耐火材料经砌筑、捣打或浇筑而成;保温层

通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条

件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气

密性,保持多孔保温材料形成的保温层免于损坏。钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设备、检测设施、检测仪器、炉门、炉前管道以及检测、操作人员所形成的载荷,提供有关设施的安装框架。

A炉墙

炉墙分为侧墙和端墙,沿炉子长度方向上的炉墙成为侧墙,炉子两端的炉墙。整体捣打、浇注的炉墙尺寸可以根据需要设计。炉墙采用可塑料或浇注料内衬和绝热层组成的复合砌体结构。为了使炉子具有一定的强度和良好的气密性,炉墙外壁为5mm或6mm厚的钢板外壳。

蓄热式连续加热炉的炉墙上除了设有炉门、窥视门、烧嘴孔、测温孔等孔洞,还有蓄热室和高温通道(蓄热式烧嘴的蓄热室一再少嘴里),所以炉墙要能够承受高温。为了防止砌体受损,炉墙应尽可能避免直接承受附加载荷,所以炉门,冷却水管等构件通常都直接安装在钢材上。

B炉顶

加热炉的炉顶按其结构分为拱顶和吊顶两种。现在大多采用可塑料或浇注料内衬和绝热层组成的符合砌体吊顶结构。这种吊顶结构不受炉子跨度的影响且使用寿命长。

C炉底

炉底一般采用砖砌复合结构,高温炉底还要承受炉渣的化学侵

蚀。

2供热与排烟系统

A煤气管道

煤气进车间后设有专用煤气操作平台,煤气总管上一般配有双偏心金属硬密封蝶阀、手动或自动眼镜阀、气动快速调节切断阀各一套。煤气总管上还装有流量孔板和温度、压力测量点,其信号分别送到加热炉仪表及采集站。煤气总管最低点设置连续排水系统装置。煤气从总管送至隔断分管,再经由流量孔板、气动调节阀,供给相应控制段的烧嘴。每个烧嘴前都设置一道双偏心金属硬密封蝶阀,用于煤气流量平衡分配调节。在每段煤气管的末端,下部设置排污阀,侧部设置一个煤气取样阀,以排除煤气管道内的积水和开炉时的取样。

设有吹扫放散系统。开炉时用氮气吹扫煤气管道中的空气,防止通入煤气时,煤气与管道中的空气混合;停炉时吹扫煤气管道中的煤气,防止管道存留煤气逸出。吹扫气体通过放散热管排至厂房外,放散管一般应高出附近10m内建筑物通气口4m,距地面高度不低于10m。

B空气管道

助燃空气由鼓风机供给,经冷风总管、空气换热器、热风总管、各段分管送至加热炉的烧嘴。空气各段分管上分别设有流量孔板、气动调节阀,配合煤气进行比例调节。

为了使空气流量平衡分配,在每一个烧嘴前设有热空气手动蝶阀,以方便调节空气流量。在每一个烧嘴前的支管上均安装不锈钢波

纹补偿器。

C排烟系统

常规加热炉排烟方式上有上排烟、下排烟和侧排烟,上排烟和下排烟方式能防止炉内烟气的偏流,炉压、炉温分布稳定均匀。根据需要,烟道可布置在地下或地面上,地下烟草不会妨碍交通和地面的操作。烟道内衬一般采用轻质砖砌筑,采用管式钢结构烟道可有效防止地下水且密封性好。烟道设有闸板以调节炉压。

常规加热炉一般采用烟筒自然排烟,烟筒一般为混凝土结构,内衬粘土耐火砖及保温材料。因蓄热式加热炉排烟温度低,使用钢烟筒,采用引风机强制排烟。

2冷却系统

加热炉的冷却系统是由加热炉炉底的冷却水管和其他冷却构件构成。冷却方式分为水冷却和汽化冷却两种,其中水冷却又分净环水开式和净环水闭式冷却方式两种。

A炉底水冷结构

炉底水管承受柸料的全部重量(静负荷),并经受坯料推移时所产生的动载荷。因此,纵水管下需要有支撑结构。炉底水管的支撑结构形式很多,推钢式加热炉一般在高温段用横水管支撑,横水管两端穿过炉墙靠钢架支持,这种结构只适用于跨度不大的炉子。当炉子很宽,上面坯料的负载很大时,需要采用双横水管或回线性横支撑管结构。

进步式两世加热炉水梁和立柱是重要条件,在保证不同长度的坯

料在炉内安全运行的前提下,一般纵水梁采用错位梁技术,这样坯料在加热段形式的水管黑印在进入均热段后由于水梁位移而脱离滑道,黑印逐步消失,而坯料在均热段滑道还尚未形成明显的黑印即准备出炉。采用直线滑道的坯料黑印温度为40--50℃,采用错位梁后坯料黑印温差可以减少15--20℃。纵向支撑梁采用20G厚壁钢管制作的双水管结构,在相同的断面模数下,刚度大管径小,对钢坯的遮蔽系数小,减少水管黑印。支撑梁立柱是用20G钢管制作的双层套管。

坯料在纵水梁上按不同的长度范围,定位装载在不同位置。原则上一组长度范围的坯料,定位后无过大跨度、大悬臂,运动时不刮碰其他水梁。

在选择炉底水管支撑结构时,除了保证其他强度和寿命外,应力求简单。这样一方面为了减少水管以减少热损失,另一方面避免下加热空间被占去太多,这一点对下部的热交换和炉子生产率的影响很大。所以现代加热炉设计中,力求加大水冷管间距,减少横水管和支柱水管的根数。

B炉底水管的绝热

炉底水管滑管和支撑管加在一起的水冷表面达到炉底面积的40%--50%,带走大量热量。又由于水管的冷却作用,使坯料与水管滑轨接触处的局部温度降低,200--250℃,使坯料下面出现两条水印(黑印)在压力加工时很容易造成废品。例如,轧钢加热炉加热板坯时出现的黑印影响很更大,温度的不均匀可能导致钢板的厚薄不均匀。降低热损失和减少黑印影响的有效措施,就是对炉底水管实行绝

热包扎。

蓄热式加热炉传热基本知识

蓄热式加热炉传热基础知识 一传热的基本方式 钢坯加热是通过炉内热交换过程进行的。只要有温度差存在 热量,热量总是由高温向低温传递,这种热量传递过程称为传热。传热是一种复杂的物理现象,根据其物理本质的不同,把传热过程分为三种基本方式:传导、对流和辐射。 1传导传热 没有质点相对位移情况下,物体内部或直接接触的不同物体因为温度差,将热量由高温部分依次传递给低温部分的现象,称为传导传热。 传导传热快慢主要影响因素有: (1)材料的导热系数。各种材料的导热系数都由实验测定。气体、液体和固体三种比较来看,气体的导热系统一般比较小(仅为 0.006—0.58W/(m·℃)),液体的导热系数一般比气体大(在 0.09—0.7W/(m?℃)之间),固体的导热系数一般比较大,其 中以金属的导热系数最大(在2.8--419W/(m?℃)之间,纯银的导热系数最高)。而且随着温度的变化,物体导热系数也随着变化。 (2)温度差。温度差越大,传导传热也越强烈,另外温差越大,传热不可逆损失越大。 2对流传热 依靠对流的各部分发生相对位移,把热量由一处传递到另一处的

现象,称为对流传热。

对流传热主要因素不仅有物体的温度差,而且与下列因素有关:(1)流体流动的情况。 (2)流体流动的性质。 (3)流体的物理性质。 (4)工体表面的形状、大小和位置。 3 辐射传热 依靠物体表面。对外界发蛇的电磁波(辐射能)来传递热量,当辐射能投射到另一物体时,能被另一物体吸收又变成热能。这种依靠电磁波来传递热能的过程叫辐射传热,辐射是一切物体固有的特征,辐射传热不需要任何中间介质或物体的直接接触,在真空中同样可以传播。 辐射传热主要影响因素: | (1)辐射传热量的大小与辐射体的温度的4次方成正比,因此,提高炉温对加热速度有决定性意义。蓄热式加热炉燃烧温度比常温燃烧高许多,因此烟气的辐射传热效果远远好于常温燃烧。 (2)辐射传热量的大小与辐射体的黑度成正比,因此,提高加热炉内壁和火焰黑度对提高加热速度和节能降耗有重要意义。 二蓄热式加热炉炉内综合传热 在加热炉的炉膛内,热的交换过程是辐射、对流和传导同时存在,我们把这种传热方式叫做炉内综合传热。

加热炉操作基础

加热炉操作基础 1、阻火器的作用和工作原理是什么? 答:阻火器的作用:是防止明火或常明灯的明火进入燃料气系统,造成燃烧爆炸事故。 其工作原理是:当火焰通过狭小孔隙时,由于热损失突然增大,使燃烧不能继续而熄火。 2、加热炉为什么要设置防爆门? 答:在加热炉未点火之前,如果炉膛内充满易燃气体,一遇明火或静电即会爆炸,这时防爆门被顶开,使炉膛内的压力能迅速泄出,防止炉体被损坏。可见,加热炉设置防爆门的目的是为了防止加热炉爆炸时造成过大的损害。 3、风门的作用?烟道挡板的作用是什么? 答:风门的作用是通过风门调节入炉空气量来调节火焰燃烧情况。 烟道挡板的作用是调整进出加热炉空气量,以此调整炉内负压,达到调节火焰燃烧情况的目的。 4、加热炉的负压是怎样产生的?为什么在负压下操作? 答:由于烟囱内的烟气温度比外界空气高,气体密度相对较小,容易向上流动,这样就使烟囱入口存在抽力。在此抽力的作用下,使炉内产生负压。 负压大小对操作影响很大,负压过大,入炉空气量多,使烟气氧含量增加,降低了炉子的热效率,且炉管氧化加剧,负压过小,空气入炉量过小,导致燃烧不完全,也降低了炉子的热效率,因此要在适当的负压下操作。 5、加热炉为什么要保持一定的负压? 答:燃料需要有一定量的空气存在才能燃烧,只有保持一定的负压,炉内压力比炉外压力低一些,才能使炉外空气进入炉内,若炉内负压很小时,炉内吸入的空气量就很小,燃料燃烧不完全,炉热效率下降,烟囱冒黑烟,炉膛不明亮,甚至往外喷火,会打乱系统的操作。 6、负压值应该保持多少为合适? 答:一般炉膛负压应保持在-50~-100pa,烟道挡板开度增大还不能增加抽力,则应该减少燃料量和降低加热炉的负荷。

分散换向蓄热式加热炉操作规程

王工: 您好,此规程仅供参考,不足之处,敬请指正。 胖子 操作规程 开炉前煤气管道吹扫步骤: 1、将煤气总管蝶阀、盲板阀、蓄热箱前的手动蝶阀处于关闭状态,打开放散阀。 2、将煤气总管的氮气吹扫阀打开,吹扫十至二十分钟。 3、打开盲板阀。 4、关闭氮气吹扫阀。 5、打开煤气总管蝶阀,置换五分钟。 6、关闭放散阀。 停炉前煤气管道吹扫步骤: 若出现长时间停炉时,需关闭煤气总管阀门。 1、关闭煤气总管蝶阀和所有蓄热箱前的手动蝶阀,打开煤气放散阀。 2、打开氮气吹扫阀,吹扫十至二十分钟。 3、关闭煤气总管盲板阀。 4、关闭氮气吹扫阀。 5、关闭放散阀。 开炉前的检查: 1、所有空、煤气管道,试压、试漏合格。煤气总管阀门处于关闭状态。

2、所有阀门开启灵活,阀位显示正确。 3、换向阀、助燃风机、引风机单机试车合格并验收。 4、所有加热炉设备调试完毕并验收。 5、安全指示、报警、各设备之间连锁按设计要求调试合格并验收。 6、加热炉砌筑工程验收合格。 7、加热炉自动化仪表系统调试完毕。 8、汽化冷却系统打压调试完毕,工程验收合格。 9、检查煤气三位三通换向阀是否运转灵活,工作是否正常。 10、检查各空气、煤气调节阀、烟气调节阀是否工作正常。 11、检查蓄热箱,启动助燃风机,启动三位三通换向阀换向程序,检查蓄热箱向炉内送煤气状况。检查蓄热箱的所有焊缝连接处是否漏气,如存在漏气及时处理。检查蓄热箱喷口气流是否均匀、通畅,确认蓄热箱工作正常。 12、氮气系统、吹扫放散系统、炉区供电系统等验收合格,煤气管路系统吹扫完毕。 开炉: 首先确定蓄热箱及烧嘴前蝶阀、烟气调节阀、煤气调节阀、空气调节阀是否处于关闭状态,没有处于关闭状态的阀门均要关闭。 1、首先开启助燃风机,调节助燃风机出口蝶阀,使风机运转平稳。 2、打开所有空气的蝶阀对加热炉进行吹扫,直至炉内无可燃气体存在,关闭点火烧嘴前空气调节阀。 3、在加热炉靠近点火烧嘴处,用木柴点燃1~2堆明火。 4、先开点火烧嘴的嘴前空气调节阀,然后再开点火烧嘴的嘴前煤气调节阀,点燃该点火烧嘴。

蓄热式加热炉

一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。在工业企业中广泛应用,对节能减排工作起着重要的促进作用。 二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。它分为预热段、加热段和均热段三个主体。其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。是一种新型的高效、节能的加热炉。参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。可以说它是整个加热炉的心脏。它的

换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。也就是说换向控制系统的正常运行决定着整个加热炉的正常燃烧和炉温的控制。所以在控制系统上采用计算机控制系统,由传感器采集各种变量PLC,再由PLC根据设定控制方式和目标值,分别驱动相应的换向装置和相应的执行机构,调节过程变量,实现对温度、压力、流量的调节控制。操作人员可通过键盘和鼠标经工控机HMI界面来设定炉子的各项热工参数,计算机根据设定的参数送上工控机处理,并在HMI上显示.同时随时可查看各种历史参数和打印各种生产报表。声光报警系统可即时对故障进行报警,并向操作者提示处理方法是目前较先进、实用的计算机控制系统。2、换向控制换向控制系统设有自动、手动控制两部分。在正常的运行过程中

蓄热式连续加热炉的基本结构组成

蓄热室连续加热炉的基本结构组成 连续式加热炉由以下几个基本部分组成:炉子基础和钢结构、炉膛与炉衬、燃料燃烧系统、排烟系统、余热利用装置、冷却系统、装出料设备、检测及调节装置、计算机控制系统等。 1炉子基础和钢结构 炉子基础将炉膛、钢结构和被加热钢坯的重量所构成的全部载荷传到地面上。一般采用混凝土基础。 炉子钢结构是由炉顶钢结构、炉墙钢结构和炉底钢结构的一个箱形框架结构,用以保护炉衬和安装烧嘴。水梁、立柱及各种炉子附件的固定主要由型钢和钢板组成。 (1)炉膛与炉衬 炉膛是由炉墙、炉顶和炉底围成的空间,是对钢坯进行加热的 地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的一个关 键技术条件。再加热炉的运行过程中,不仅要求炉衬能够在高 温和载荷条件下保持足够的温度和稳定性,要求炉衬能够耐受 炉气的冲刷和炉渣的侵蚀,而且要求有足够的绝热保温和气密 性能。为此,炉衬通常耐火层、保温层、防护层和钢结构几部 分组成。其中耐火层直接承受炉膛内的高温气流冲刷和炉渣侵 蚀,通常采用各种耐火材料经砌筑、捣打或浇筑而成;保温层 通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条 件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气

密性,保持多孔保温材料形成的保温层免于损坏。钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设备、检测设施、检测仪器、炉门、炉前管道以及检测、操作人员所形成的载荷,提供有关设施的安装框架。 A炉墙 炉墙分为侧墙和端墙,沿炉子长度方向上的炉墙成为侧墙,炉子两端的炉墙。整体捣打、浇注的炉墙尺寸可以根据需要设计。炉墙采用可塑料或浇注料内衬和绝热层组成的复合砌体结构。为了使炉子具有一定的强度和良好的气密性,炉墙外壁为5mm或6mm厚的钢板外壳。 蓄热式连续加热炉的炉墙上除了设有炉门、窥视门、烧嘴孔、测温孔等孔洞,还有蓄热室和高温通道(蓄热式烧嘴的蓄热室一再少嘴里),所以炉墙要能够承受高温。为了防止砌体受损,炉墙应尽可能避免直接承受附加载荷,所以炉门,冷却水管等构件通常都直接安装在钢材上。 B炉顶 加热炉的炉顶按其结构分为拱顶和吊顶两种。现在大多采用可塑料或浇注料内衬和绝热层组成的符合砌体吊顶结构。这种吊顶结构不受炉子跨度的影响且使用寿命长。 C炉底 炉底一般采用砖砌复合结构,高温炉底还要承受炉渣的化学侵

加热炉标准操作.

加热炉标准操作 一、加热炉概述 1、概述 在一个有衬里的密闭体内设置有大量的相互连接的优质或合金无缝钢管,被加热介质在一连串的无缝钢管内以高流速通过,燃料在密闭体内燃烧产生高温烟气,高温烟气通过辐射、对流和传导把热量传给被加热介质,把被加热介质加热到生产工艺规定的温度或完成一定的化学反应深度;这类设备称为加热炉。 2、本车间所有加热炉 本车间共有加热炉7台,一套制氢原料气预热炉、一套制氢转化炉、一套加氢反应炉、一套加氢分馏炉、二套制氢原料气预热炉、二套制氢转化炉、二套加氢反应炉。其中一套制氢转化炉和二套制氢转化炉为顶烧炉。 二、烘炉操作 1 烘炉目的 新建加热炉内部衬里等耐火材料含有较多的自然水和结晶水,不经过烘炉而直接使用,温升较快,容易导致衬内及耐火材料开裂和脱落。通过烘炉,脱除衬里中自然水和结晶水,以增加加热炉炉墙强度和使用寿命。 2 烘炉应具备的条件 2.1加热炉各部分施工验收合格 2.2耐火烧注料均按规定进行了养生 2.3炉墙在环境温度下(25~40℃)自然干燥 72小时以上 2.4加热炉经水压试验,各相关系统已经吹扫、置换完毕 2.5鼓风机、引风机经验收及单机试运合格 2.6经有关人员联合检查,确认具备烘炉条件 3 烘炉前检查及准备

3.1检查各部件安装是否正确,主要受力件的焊接是否符合要求。清除炉膛杂物,封好人孔 3.2检查加热炉设备是否齐全好用,烟囱、烟道挡板、各烟道风门挡板是否灵活。 3.3检查燃料气、点火瓦斯(常明灯)、蒸汽管线连接是否合适、有无泄漏。 3.4拆除燃烧器上的喷头(或取下喷枪)对燃料气、蒸汽管线进行吹扫,除去施工中的残留物(如铁锈、砂粒等杂物),保证燃烧器的正常燃烧,可用空气、氮气吹扫,但从安全上考虑,对燃料气管线用空气吹扫后应进行氮气置换。 3.5炉膛灭火蒸汽管线排凝设施是否合理,管线内应无液滴存在。 3.6检查燃烧器喷枪是否对准中心线,燃料气喷孔是否向心安装。 3.7点火孔位置安装是否合适,常明灯安装是否妥当并作好点火试验。 3.8在炉前放空阀放空瓦斯,将燃料气压力调整在 0.05MPa以上。 3.9点火前在炉前采样分析,分析其中的 O2含量,控制 O2%<0.5%(V)方能使用。 3.10烘炉前画出理论升温曲线。

蓄热式推钢加热炉操作作业指导书

2号加热炉操作作业指导书 宽板技[2008]第22号 1 目的 通过建立2号加热炉操作作业指导书,规范2号蓄热式推钢加热炉的操作,防止因操作不正确而引发事故,同时满足加热质量要求。 2 适用范围 本作业指导书适用于本厂2号蓄热式推钢加热炉。 3 实施步骤 3.1 加热炉主要设计参数 3.1.1加热炉主要尺寸如下 炉内过钢线标高: +800 mm 炉子有效长度:26800 mm 炉子全长:28000 mm 炉子内宽:8100 mm 炉子外宽:10100 mm 上加热炉膛高度: 800 mm 下炉膛高度:2400 mm 炉坑底面标高:-3940 mm 3.1.2 各段供热比例分配情况 均热段: 20% 二加热段:28% 一加热段:30% 预热段:22% 3.2 2号蓄热式推钢加热炉点炉操作 3.2.1 点炉前的检查及准备 3.2.1.1点炉前看火工应与当班相关的运行人员一起对燃烧系统、控制系统、4个固定式CO检测报警仪器和风机系统、冷却系统、炉体等进行彻底检查,发现问题应立即处理好后才能进行下一步操作;

3.2.1.2检查各气动调节阀、换向阀压力表,压力为0.4~0.6 MPa,否则,通过稳压阀将其调整到此范围内。检查电磁阀、气缸及气动件尼龙管快插头是否漏气,发现异常立即处理; 3.2.1.3检查并清理炉内、烧嘴砖及点火孔内杂物; 3.2.1.4高炉煤气烧嘴前的所有阀门是否处于关闭状态;所有排水阀(差压变送器、压力变送器等)是否处于关闭状态;煤气操作平台总管上的密封蝶阀、盲板阀及烘炉总管道上的密封蝶阀、盲板阀是否处于关闭状态。 3.2.1.5 CO检测仪探头已进行标定,发现探头误差应该立即调整,若误差较大或探头失效应立即更换; 3.2.1.6 检查煤气管道系统,各支管、放散、取样阀是否灵活,各处冷却水是否流畅和开启; 3.2.1.7 对换向系统、煤气快速切断阀、鼓风机及引风机等进行彻底检查与保养。检查所有气控系统油雾器油位,并将其加满,按上面标明的位置加入10#机油或变压器油,然后拧紧加油口,检查气动系统有无漏气部位,发现问题及隐患立即处理; 3.2.1.8 检查各快切阀连接螺母有无松动,并将转动部位注油; 3.2.1.9 分别用手扳动换向系统主气缸电磁阀手动开关,检查换向系统是否正常换向,然后扳动其他电磁阀手动开关检查气缸和电磁阀是否动作自如,发现异常立即处理。检查完毕,必须将电磁阀手动开关扳动下方,即电动位置,否则会因电动工作无效而无法工作; 3.2.1.10接通仪表及控制系统电源后,检查HMI上的显示画面。系统未启动时应显示煤气总管快切阀应为关闭状态,其他各处显示应无异常; 3.2.1.11 检查水冷系统是否运行正常,各回水口是否流动稳定,出水量是否稳定、均匀,否则调整各回路进水阀门; 3.2.1.12准备好点火用工具; 3.2.2点燃烘炉煤气烧嘴 接到车间调度停炉通知后,执行点炉操作。通知煤气站人员到操作现场。 3.2.2.1启动鼓风机,阀门开度50%;启动空侧引风机,开度50%;启动换向控制系统,启动水冷系统。 3.2.2.2打开进料炉门,打开出料炉门。 3.2.2.3打开烘炉煤气放散总管上的阀门(日常此阀应处于常开状态),打开六个烘炉烧嘴前的放散管上的旋塞阀,打开烘炉煤气总管道上的闸阀,连接氮气吹扫管道,打开氮气吹扫管道上的阀门,吹扫烘炉煤气管道30分钟。 3.2.2.4关闭氮气吹扫管道上的阀门,打开烘炉总管上的盲板阀,打开烘炉总管上的密封蝶阀。用煤气吹扫烘炉煤气管道10分钟。取样化验合格,方可点火。否则继续吹扫,直至取样化验合格为止。

加热炉操作、维护与检修

加热炉操作 (一)试运投产 ?设备和管道及炉管试压 ?烘炉 ?点火启动 1.设备、管道和炉管试压 加热炉、锅炉等热力设备建成或大修后,在投入使用前,要进行试压。试压分单体严密性试压和炉管承压能力试压两步进行。 单体严密性试压是按照热力系统所属设备和管线的规格标准、承压级别等,以蒸气作试压介质,以设计正常运行压力为压力的试压。其目的是检验设备及管线的施工质量,严密性等。 炉管试压是在严密性试压合格后的试压,一般用水或油作介质,以实际最大操作压力的~2倍为试压压力。其目的是检验炉管的承压能力。 整个试压过程分3~4个升压阶段,逐步升压至所要求的试压压力。每次升压力后要维持5分钟左右,检查无问题时,再行升压;如果在试压时发现问题,则应泄压、放空、扫线、处理问题后,重新试压。 试压时要做到勤检查,对弯头、盲板、法兰、垫片、胀口、焊口等处重点检查。 … 当压力达到要求的试压压力后,稳压24小时,压力基本不变为合格。 试压合格后,泄压、放空、扫线备用。在我国北方,冬天试压时,也可考虑用热水试压,以防工艺管线和设备冻结。 2、烘炉 (1)烘炉的目的: 一是缓慢除去砌筑炉墙及绝热材料中的水分,并使耐火胶泥得到充分的烧结,以免在装置投产时因炉膛内急骤升温、水分大量气化、体积膨胀而造成炉体衬里裂纹、变形、炉墙裂开、倒塌等现象。 二是对系统所属的设备、管线和自动控制系统进行热负荷试运,检验燃烧器的使用效果和炉子零部件在热状态下的性能。 (2)烘炉前的准备 烘炉应在试压合格后进行。 打开加热炉的防爆门、检查门及烟道挡板等全部门孔,自然通风三天以上(如遇阴雨应适当延长时间)或强行通风。 向炉内各种炉管通水或油循环。 对炉子的零部件,燃料系统所属设备,烟气热回收系统所属设备,工艺管线和仪表等进行全面检查。 , (3)烘炉操作 ①在炉膛底部堆放3~4堆木柴,点燃后不断添加木柴,用火嘴风门供风,以3~4℃/h的升温速度进 行烘炉。 ②当炉温升至120~150℃左右时,恒温一天,以除去耐火材料中的水分。 ③恒温后,可点燃一个火觜,控制小火,以5~6℃/h的速度继续升温,注意火焰不能直接烧在炉管 和炉墙上。 ④当炉温超过200℃以上时,可点燃其它火嘴,点火时,应首先点燃中部火嘴,逐步向两侧对称的点燃。 ⑤炉温升至320℃左右时,再恒温一段时间,以除去耐火材料中的结晶水。恒温后以7~8℃/h升温 速度继续升温。 ⑥当炉温升至700℃左右时,再恒温一天,同时从炉体外部进行全面检查。

蓄热式加热炉运行中的问题及处理方法

蓄热式加热炉运行中的问题及处理方法 发表时间:2018-11-05T19:25:07.040Z 来源:《防护工程》2018年第19期作者:张晓军 [导读] 近几年来,我国在经济迅速发展的同时,对各种事物的需求也越来越高,其中钢材作为现代社会生产和生活中必不可少的材料 江苏凤谷节能科技有限公司江苏无锡 214000 摘要:近几年来,我国在经济迅速发展的同时,对各种事物的需求也越来越高,其中钢材作为现代社会生产和生活中必不可少的材料,占有十分重要的位置,当前钢材厂仍然采用热轧的方式进行钢材的生产,因此加热炉也就成为轧钢厂热轧工作的主要设备,随着相关技术不断发展,我国的加热炉发生了很大的变革,现在工厂多沿用蓄热式加热炉,但是蓄热式加热炉在运行的过程中会出现很多问题,文章就围绕出现的问题来提出一些解决方法,希望能够促进轧钢厂的正常生产。 关键词:蓄热式加热炉;问题;处理 一、前言 随着工业化和城市化水平的不断推进,人们的物质生活条件和水平在不断改善和提高,对生活环境的要求也越来越高,但是钢材厂一直在消耗过多的能源,十分不利于生态环境的改善,因此相关人员希望能够通过技术的改进,来进一步减少对能源的消耗,与此同时新技术被不断应用于加热炉中,很多人员在炉型结构、性能等方面都做出了很大的改进,于是就出现了现在的蓄热式加热炉,但是它也存在着很多问题,影响着热轧工作的正常进行,希望能够得到缓解或解决。 二、蓄热式加热炉 2.1蓄热式加热炉的基本介绍 蓄热式加热炉主要是拥有独立设置的蓄热室或者蓄热式烧嘴,这样就可以在进行加热之前先将空气或者煤气进行预热,它实际上是由常规的加热炉和高效蓄热式换热器结合而成的,基本构成有蓄热室、燃料、排烟系统、加热炉炉体、换向系统以及供风[1]。蓄热室主要为蓄热式加热炉进行烟气余热回收的工作,它是空气和烟气流动通道的一部分,在其内部充满蓄热体,通常情况下在加热炉中是成对使用的,具有改善加热质量、均匀炉内温度、提升产品合格率等多种优点[2]。 2.2蓄热式加热炉的分类 蓄热式加热炉按照不同的标准可以分成不同的类型,其中按照预热介质的种类可以分为空气单预热方式和同时预热空气和煤气式;根据结构形式对其进行分类,则可以有通道式和烧嘴式两种,其中的烧嘴式还可以分为群组换向和全分散换向两种;如果将运料方式作为划分的依据,则蓄热式加热炉又能够分为推钢式和步进式[3]。不同的蓄热式加热炉有着不同的性能,其中全分散换向烧嘴式蓄热加热炉可以满足各种钢种对炉温的不同要求,尽可能地对炉温进行灵活的控制[4]。 三、蓄热式加热炉运行中的问题 3.1蓄热式加热炉运行中出现的炉压及冒火问题 蓄热式加热炉在运行的过程中总是会出现炉内压力过大的现象,而炉压过大就会容易导致炉内冒火,这时候对炉压进行调节,其难度就会增加很多,造成炉压过大的原因两种,一种是当前生产也为了不断提高生产技术和工艺水平,就会在蓄热体一定量的情况下不断加大炉内的负荷,从而加大炉压[5];另一种是在运行的过程中蓄热小球可能会因为自身的抗震性能较低而出现板结的现象,这就会造成炉内的排烟不通畅,或者煤气较脏,灰附着在小球表面影响生产效果,造成炉内高压的现象[6]。 3.2蓄热式加热炉运行中出现的煤气问题 煤气泄漏也是影响蓄热式加热炉正常运行的主要原因之一,一般情况下出现煤气泄漏现象主要是由于炉体或烧嘴的裂缝问题,因为蓄热式加热炉本身的工作性质,相关人员就采用低水泥浇注料来制作炉体,希望能够提升其使用寿命,但是由于加热炉内的空气和煤气通道、燃烧喷口以及排烟道等都是由耐火材料构成,所以就会具有不稳定性和不严密性,经过长期工作的蓄热式加热炉就会产生裂缝,从而造成煤气的泄露,煤气泄漏又会直接造成炉体冒火的事故,不利于其正常工作。 3.3蓄热式加热炉运行中出现的蓄热小球滑落问题 蓄热式加热炉内部的蓄热室经常会出现蓄热小球滑落的现象,这个是不可避免的事情,只能通过一些手段来减少或者延缓此类现象发生,通常情况下下,在蓄热式加热炉投入生产之后的三个月就会出现蓄热小球滑落的现象,主要可以通过蓄热小球滑落过程中撞击管道的声音来进行判断,蓄热小球滑落会对炉内的温度造成影响,会直接使该段炉内的温度上升,一旦蓄热小球全部滑落,加热炉内部就会发生严重的事故,可能会造成安全隐患。 3.4蓄热式加热炉运行中出现的排烟温度问题 蓄热式加热炉在运行的过程中排烟温度通常要比预计的低一些,如果蓄热式加热炉被分散控制,那么排烟温度就会更低,排烟温度过高或者过低都不利于蓄热式加热炉的正常生产,但排烟温度过低的时候,烟气中的二氧化硫不能够被完全转换,就会与水发生化学反应,从而对管道造成一定程度的腐蚀,当头部排烟温度降低的时候,排烟量也会随之降低,但是尾部的排烟量会增加,会影响加热炉的使用寿命。 3.5蓄热式加热炉运行中出现的节能环保问题 蓄热式加热炉与其它一些加热炉相比,在节能效率上有了很大的改进与提升,但是前提是这些加热炉都属于传统的加热炉,蓄热式加热炉虽然对烟气进行了利用,同时也使用蓄热体提前对空气和煤气进行预热,但是它的节能效率仍然会受到轧钢制度的限制,当相关工作人员按照轧钢制度进行生产的时候,就会产生较长的待炉时间,大大降低蓄热式加热炉的节能效率,我国的蓄热式加热炉在节能环保上还有着很大的问题和进步空间,需要相关人员不断改进技术。 四、对蓄热式加热炉运行中问题的处理 4.1改善炉压操作,减少冒火现象 因为炉压问题在蓄热式加热炉的正常运行中占有重要位置,所以相关工作人员应该加强对炉压的控制和操作。首先,要让与工作人员

蓄热式加热炉(教学参考)

蓄热式加热炉 一、蓄热式加热炉的分类和特点: 1、分类 蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空气和煤气式和空气单预热方式。 按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。其中烧嘴式又分为全分散换向和群组换向两种;通道式也可分为单通道和双通道两种方式。 按运料方式来分,蓄热式加热炉分为推钢式和步进式。 全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,与常规加热炉操作类似,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。 2、蓄热式加热炉的优点 蓄热式加热炉有如下优点: ①能将空气、煤气预热到800~1000℃的高温,有利于低热值燃料的利用; ②充分利用烟气余热,节约燃料; ③排烟温度低,氮氧化物含量少,环境污染少; ④每对烧嘴交替燃烧,炉内温度均匀,可提高钢坯加热质量。 二、蓄热式加热炉燃烧系统简介 1、蓄热式加热炉的蓄热体 蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4~5倍。同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3~1/4。采用蜂窝体的烧嘴结构紧凑轻巧。 蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3左右。 蜂窝体壁薄,仅为0.5~1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40~80秒,换向时间短,被预热介质的平均温度高,热回收效率高。由于换向时间短,因此换热

加热炉操作说明书

第一章加热炉煤气操作说明 1 .高炉煤气送气说明 1.1 送气前的检查 ●送高炉煤气前检查10只点火烧嘴的燃烧状况或炉内温度(应高于800℃)。 ●检查鼓风机(开)、引风机(开)的运转状况。 ●高炉煤气总管盲板阀关,金属硬密封蝶阀关,快速切断阀开。 ●各煤气两位四通换向阀的工作状态是否正常。 ●各煤气蓄热式烧嘴前的手动蝶阀是否关死。 1.2 高炉煤气管道的分段吹扫 ●将三段煤气调节阀关至最小,然后将煤气侧的三段烟气调节阀关至最小。 ●检查换向阀,将3段煤气调节阀重新开至最大。 ●打开高炉煤气管各段末端放散阀,并检测其下面的取样口是否关闭。 ●手工打开高炉煤气吹扫阀,接入氮气进行吹扫约30分钟。(在此之前应进 行煤气总管金属硬密封蝶阀之前的管路吹扫和放散,同时高炉煤气应送达该处。) ●密切注意接点处煤气总管道内的压力,绝对不允许超过10kPa,若超过此压 力就有可能损坏煤气管道上安装的压力变送器。 ●吹扫气源切断。 1.3 送高炉煤气 ●将三段煤气侧烟气调节阀开大,将炉膛压力降为负压(约-10~0Pa),但应 注意尽量不要影响炉温。 ●将三段煤气调节阀和二段空气调节阀关至最小(均热段除外,因为均热段 风机供给的风同时也供给点火烧嘴,点火烧嘴的煤气单独有一路供给)。 ●确认换向2~3次后,将换向方式设为定时方式。 ●打开均热段最靠近烘炉烧嘴的上部及下部各一对煤气蓄热式烧嘴及空气蓄 热式烧嘴的手动阀,即MD和K1以及MD和K2,共4个,送气入炉,注意炉两侧对称操作。 ●逐渐开大均热段煤气调节阀,观察燃着后即逐渐开大均热段空气调节阀。

●照以上方法点燃其后的烧嘴及第二加热段、第一加热段烧嘴。 ●确认高炉煤气点燃后打开均热段的空气调节阀,调整空煤气比例为0.75﹕1。 ●在炉温升至840℃以上时,将换向方式设为自动定时换向。同时炉内有明火、 高炉煤气稳定燃烧,可以关闭烘炉烧嘴。 3 . 烘炉用高炉煤气切断说明 ●关闭所有烘炉烧嘴,空气蝶阀微微打开保护烧嘴直至炉温降至常温。 ●关闭烘炉用高炉煤气总管金属硬密封蝶阀。 ●关闭烘炉用高炉煤气总管盲板阀。 ●若决定不再使用烘炉用高炉煤气,则打开放散阀,接入氮气吹扫约20分钟。 4 . 高炉煤气切断说明 4.1正常停高炉煤气 ●关闭所有烧嘴前手动煤气阀门。 ●关闭高炉煤气总管金属硬密封蝶阀。 ●若长时间不用高炉煤气,则应关闭高炉煤气总管盲板阀,打开各段放散阀, 接入氮气吹扫约20分钟。 ●其余操作参见第三章加热炉正常停炉说明。 4.2 非正常停高炉煤气 ●参见第四章加热炉紧急停炉说明。

蓄热式加热炉点火操作规程

指导和规范生产作业区对蓄热式加热炉岗位人员的操作。 2.适用范围 本规程适用于生产作业区在蓄热式加热炉操作的相关岗位。 3.术语/定义 4.管理内容及要求 设备技术性能 所使用的设备性能达到使用维护规程的要求并验收合格。 4. 主要技术参数: 4.1加热炉类型 用于板坯加热、采用双排布料的空气和高炉煤气双蓄热连续式推钢加热炉。 4.2燃料 800℃以下燃料采用纯焦炉煤气,烘炉管和点火烧嘴烘炉;煤气压力:大于 6kPa 800℃以上燃料采用纯高炉煤气,采用蓄热式烧嘴技术;煤气压力:大于6kPa, 4.3燃烧系统 加热炉采取6个温度控制段,即均热段上、均热段下、加热三段上、加热三段下、加热二段、加热一段。蓄热式烧嘴的空/烟气、煤

气/烟气三通换向阀采用双执行器结构。蓄热式燃烧系统由蓄热式烧嘴、换向装置、供风系统、煤气系统、排烟系统、汽化冷却系统、氮气、压缩空气系统等部分组成。 4.4点火烘炉系统 点火烘炉烧嘴分别位于各段侧墙上,共设8只点火烧嘴,并辅烘炉管道,点火烘炉系统设置独立的焦炉煤气管路,烘炉烧嘴供风由3#加热炉空气主管接引,与高炉煤气系统共用。冷炉启动时先利用这部分独立的烧嘴将炉子加热至800℃后再将蓄热式烧嘴打开,待炉子完全启动后再将点火烧嘴关闭。点火烘炉烧嘴从焦炉煤气总管引入专有管道,管道设置一道闸阀、眼镜阀、快切阀。每只点火烧嘴嘴前分别设置调节煤气及空气流量的手动调节阀。 4.5供风系统 3#加热炉设两台鼓风机,一台工作,一台备用。助燃空气经空气总管将助燃空气分别送至各供热段,各段支管将空气送入各三通换向阀,再经三通换向阀送到各蓄热室,蓄热烧嘴置于炉墙中,空气经蓄热到1000℃左右后喷入炉内与煤气混合燃烧。 4.6煤气系统 加热炉高炉煤气主管设蝶阀、稳压阀、眼镜阀和气动快速切断阀(蝶阀、眼睛阀、快切阀设置在厂房外)。突然停电和煤气超低压时迅速将切断阀切断以满足炉子安全操作的要求。煤气经煤气总管,分别进入各段支管,再通过烧嘴前煤气侧的快速换向切断阀送到各蓄热室,经蓄热到1000℃左右后喷入炉内,与高温空气混合燃烧。煤气各段支管上均设有流量孔板和自动调节阀,用来调节各段的供热负荷。快切阀前设有手动密闭阀门,用以设定烧嘴的供热量。 4.7排烟系统

加热炉操作规程

一加热炉技术性能 1、炉子形式:蓄热推钢式连续加热炉 2、装出料方式:端进侧出 3、用途:钢坯轧制前加热 4、钢坯规格:断面:150×150 60×160 165×225 165×280 180×280mm 长:2700~4500mm 5、加热钢种:普碳钢、低合金钢 6、钢坯装料温度:常温20℃(冷料) 7、出钢温度:1150~1250℃ 8、炉温均匀性:钢坯断面温差≤30℃ 9、炉子额定产量:冷装最大80t/h 10、燃料种类:发生炉煤气 11、燃料发热量:发生炉煤气,1350×4.18kj/kg 12、蓄热体型式:陶瓷蜂窝体 13、蓄热室换向周期:60s(可调) 14、蓄热体后排烟温度:≤150℃ 15、炉底水管冷却方式:汽化冷却 16、炉子有效尺寸:32.0×5.1m 二加热炉基本操作要点 1.热炉烘炉准备工作 1.1.新加热炉或加热炉大修之后在投产前须进行烘烤,烘炉过程应严格按耐火 厂提供的烘炉曲线进行烘炉。 1.2.全部砌筑工程验收合格。

1.3.炉底滑道验收合格。 1.4.煤气快切阀、换向阀、鼓风机、引风机、汽化冷却系统等单体设备运行合 格。 1.5.推钢机等炉用机械设备单机试车正常。 1.6.快切系统、换向系统和蓄热式烧嘴处于正常待投入使用状态。 1.7.空气流量调节阀、空气排烟流量调节阀、鼓风机、引风机的控制、安全显 示、报警、信号连锁按设计和使用要求调试合格。 1.8.从鼓风机出口到蓄热式烧嘴前空气蝶阀之间的空气管网、从煤气总管阀到 烧嘴前煤气蝶阀之间的煤气管网试压、试漏合格。空气烟气管道(即由烧嘴手动阀门到引风机之间的管网)试漏合格。 1.9.在工作压力下对蓄热式烧嘴与炉子管网的连接处进行气密性检查和烧嘴气 流通畅性检查合格。 1.10.炉子热工控制仪表调试合格。 1.11.通知电工给加热炉调节系统、报警系统、气动系统、鼓风机、引风机送电。 1.1 2.启动换向系统,观察检查是否正常换向,有问题立即报告处理(此项内容 可在烘炉150℃前完成)。 1.13.打开压缩空气供气阀,压力表显示在0.5MPa以上,否则要调整稳压阀,满 足压力要求。检查各气动元件有无漏气部位,发现漏气部位立即处理。1.14.检查炉顶无异物,对吊钩检查,脱落的重新就位,确保挂钩牢靠。 1.15.检查确认总管煤气阀门,引风机入口电调阀门均已关闭。放散阀为打开状 态。 1.16.确认汽化冷却供水系统完好。 1.17.将控制系统设置为手动待投入状态。 1.18.加热炉炉膛温度在升到150℃前,应向炉内装入钢坯,钢坯推至据炉头内 壁1~1.5m的地方,留出下加热烟气上浮空隙。 1.19.其他方面的检查须具备常规加热炉的点火条件。 2.加热炉烘炉 注:加热炉有烟道的烘炉前先对烟道进行烘烤。 2.1.炉温在400℃以下时,用木柴进行烘炉,煤气供应正常时直接进入下一步。

简述蓄热式加热炉控制方法

简述蓄热式加热炉控制方法 【摘要】随着经济的发展和社会生产、生活水平的提升,燃烧系统在很多方面都必须获得较大的进步,不能总是停留在基础的层面上。加热炉是热轧系统的重要组成部分,主要是用来加热钢坯或者提高热送钢坯温度,由此来达到其需要的工艺温度,最终将温度控制、废气排放、有效节约能源等工艺进行有效的落实。所以,在燃气加热炉的运转过程中,必须针对燃烧控制方法进行研究,既要在整体上予以良好的控制,又要在经济性方面达到标准。 【关键词】加热炉;蓄热式加热炉;加热炉控制;控制方法 1.概述 常规燃烧加热炉耗能高,蓄热式加热炉采用蓄热式预热,将高温烟(废)气热量存储到蓄热体中加热助燃空气,具有降低燃料消耗,减少NOX及CO2的排放,减少环境污染等??点。为了响应国家节能环保要求,现大部分加热炉均采用蓄热式加热炉。本文将简单叙述某空气单蓄热式加热炉的控制方法。 2.系统构成 该加热炉分为不供热的预热段、加热一段、加热二段和

均热段。共有32个烧嘴,加热一段8个烧嘴、加热二段和均热段各12个烧嘴,采用空气单蓄热技术,炉侧上下供热。空/烟气换向采用快切阀,煤气换向单独采用气动切断阀,上下一对烧嘴共用,全炉共计使用32套空气/烟气快切阀和16套煤气气动快切阀。加热炉每段上下均有热电偶测量炉内温度,烟气温度用安装在快切阀后排烟管道和各段烟气管道上的热电阻测量;在每路段管上设有流量孔板和单独的空气、煤气、烟气流量调节阀;煤气、空气及压缩空气均有压力检测。主要由如下几个系统构成: 1)空气供给系统:助燃风机、空气管道、各种空气阀门等组成。助燃风机供给的冷空气经冷风总管分成3路后分别进入空气换向系统。经蓄热式烧嘴完成热交换后喷入炉内助燃。助燃风机出风口设置蜗杆蝶阀,在冷空气总管上设有压力检测装置,并设有低压报警和自动停风机控制系统。 2)煤气系统:煤气由炉前煤气总管分成3段分别进入加热炉顶段管,再由段管进入烧嘴前的支管。在煤气总管上设有电动金属硬密封蝶阀和电动盲板阀、煤气快速切断阀、气动调节阀(调压),在煤气总管接口前还设置一套水封阀。 3)排烟系统:排烟系统分成独立的二路,一路是蓄热烟气强制排烟系统,另一路是炉尾自然排烟系统,每段排烟管道上均设测温点,每个蓄热烧嘴的排烟管路上均设测温点。

加热炉操作说明

CNY 圆筒型立式加热炉 防爆自动点火控制系统 操 作 说 明 书 南京畅能源测控设备有限公司 2013年7月

目录 第一章设计说明 (2) 第二章控制原理 (4) 第三章安全与服务 (5) 附图一 (6) 附图二 (7) 附图三 (8)

第一章 设计说明 根据系统改造工程技术要求,双方技术人员商定并制定技术方案。系统功能模块图如下: 就地控制柜采用前排布置,共1台控制柜、1套控制系统。每套控制系统、可控制单个点火口的:点火器、推进器、控制柜。系统控制采用自动/手动方式。就地控制时,可以实现就地手动控制、所有电气元件实现单步分别操作,以满足调试和就地手动操作。自动控制只须按自动点火按钮就可实现自动完成所有程序。 就地控制柜采用浙江华荣BXK 系列防爆控制箱。 产品特色: 1、防爆控制箱一般有复合型和隔爆型两种结构。复合型入壳采用增安型结构,内装元件采用隔爆型元件或增安型的元件;外壳采用ZL102铝合金压铸成型,表面高压静电喷塑,内装的元件有按钮,控制开关,均为防爆元件。 2、隔爆型结构外壳采用ZL102铝合金铸造成型,表面高压静电喷塑,内部元件可安装防爆无件或普通低压元件如继电器、温控仪或各种功能模块。 3、控制箱内部元件可根据用户的要求进行排列,可实现多种功能,控制开关有多种功能可供选择。指示灯也有多种颜色可供选择。由于该产品变化多端订货时请提供线路图。 就地 控制柜 推进器 点火器 火 检

4、复合型和隔爆型产品外壳均可采用不锈钢制作,用户如有要求可以一一注明。 适用范围: 1、1区、2区危险场所。 2、ⅡA、ⅡB、ⅡC类爆炸性气体环境。 *要求ⅡC类请注明。 3、适用于可燃性粉尘场所。 执行标准: 1、GB3836.1-2000、GB3836.2-2000 GB3836.3-2000、GB12476.1等 效于IE60079-0,IEC60079-1、IEC60079-7 IEC61241-1-1、EN50014、EN50018、EN50019。 2、防爆合格试号:CE041469 外型设计: 在用户的要求下,控制柜的外型采用普通的加套式保护罩,即在原有的防爆箱外部加装一带有透明面板的保护柜。 这样在操作控制时起着很好的保护作用。有较地起到在不操作时能够清楚反应出系统的工作状态,以及有较的保护误操作。 第二章控制原理 点火系统有如下控制功能: 一、推进器、点火器等皆可分别单独操作。 二、就地控制时,按点火按钮,完成点火过程。 三、以上操作也可通过自动点火来操作。 四、点火不成功即关闭该回路,准备下次点火。

蓄热式加热炉燃烧氛围及其优缺点

蓄热式加热炉燃烧氛围及其优缺点 第34卷第1期河北联合大学学报(自然科学版) 2012年1月JournalofI-IebeiUnitedUniversity(NaturalScienceEdition) V o1.34No.1 Jan.2012 文章编号:2095-2716(2012)01-0014-04 ■ 蓄热式加热炉燃烧氛围及其优缺点 王涛,高源,陈连生,王永强,宋进英 (河北联合大学河北省现代冶金技术重点实验室,河北唐山063009) 关键词:蓄热式加热炉;晓氛围;优缺点 摘要:介绍了蓄热式加热炉及其燃烧技术,较全面的分析了蓄热式轧钢加热炉的优缺点及其燃烧氛围,工作原理等方面. 中图分类号:TG155.1文献标志码:A 蓄热式燃烧技术被誉为21世纪的关键技术之一,此技术应用在轧钢加热炉上称为蓄热式轧钢加热炉, 通称蓄热式加热炉.蓄热式燃烧技术经历了两个重要的发展阶段而趋向成熟….早期开发的蓄热式高温 空气燃烧技术存在预热能力不足,不能实现所谓的”极限余热回收”,NO排放量较大等缺陷.经过十多年的 发展,直到2O世纪90年代此技术形成了真正意义上的”蓄热式高温空气燃烧技术”.蓄热式高温空气燃烧 技术(HighTemperatureAirCombustion,HTAC),亦称无焰燃烧技术(FlamelessOxidationCombustion,FLOX) 或贫氧稀释燃烧技术(LowOxygenDilutionCombustion,LOD)或低氮氧化物燃烧技术(LowNOInjectionCom— bustion,LNIC),它把回收烟气余热和高效燃烧及降低NO排放等技术有机地结合起来,从而实现了极限节能 和极限降低NO排放量的双重目的.而且,这种技术开创了针对燃用清洁或较清洁的气体和液体燃料的工 业炉开发应用蓄热式高温空气燃烧技术的新时代. l蓄热式加热炉的燃烧氛围 蓄热式加热炉的工作原理和传统的轧钢加热炉不同,由于采用了全新的燃烧技术,这种加热炉的工作原 理有其特殊之处.这种特殊的工作原理决定了蓄热式加热炉中的加热氛围不再是传统加热炉中的氧化状态 而是氧化一还原的交替状态. 1.1蓄热式加热炉工作原理 蓄热式加热炉可用高炉煤气作为燃料,它的工作原理不同于传统加热炉.空气一煤气双预热蓄热式加

加热炉操作说明

1概述 1.1前言 本操作手册为整个系统的操作说明,上岗操作人员上岗前请详细阅读本手册及有关仪表说明书。 1.2系统简介 加热炉系统包括加热炉炉体、燃烧器等设备和燃烧系统、自动控制系统等部分。 加热炉本体由多根立柱支撑,炉本体自挪娥、塑垂段及逛堕度城。下部辐射段为圆筒形,炉管采用多头并联立管;中部对流段采用横向列管结构,靠近 辐射段的换热管采用光管,其余选用翅片管结构;对流段上方设计带翻板的烟囱,通过控制翻板可调节炉膛压力。辐射段底部炉底安装三台燃烧器。 燃烧系统由燃烧器、燃料管线、燃气放空管线、灭火管线、氮气置换吹扫管线组成。燃烧器为自然通风型燃气燃烧器;燃料管线分为主燃料输送管线和长明灯燃料输送管线;烟风系统采用自然通风给燃烧器供风。 加热炉自动控制系统包括点火控制、负荷调节控制、炉膛负压控制及安保联锁控制等。通过控制点火步骤保证加热炉安全点炉,通过物料出口温度控制 燃料流量实现加热炉负荷自动调节,通过炉膛负压测点和烟囱翻板阀实现炉膛 负压调节,在点炉及运行中可以通过操作画面实现直观显示相关参数,通过对 敏感测点监控实现安保联锁控制保证加热炉设备安全。 2功能及技术特征 2.1工艺系统 2.1.1工艺系统简介 加热炉燃烧工艺系统流程详见随机资料之“系统流程图P&ID'。燃烧系统 主要包括主燃气管线、点火燃气管线、氮气置换吹扫管线和灭火管线。主燃料气管线的燃料供应及调节阀组内设置有带温压补偿的流量计、流量调节阀、双切断加放空阀组,在燃烧器前设置手阀、阻火器和金属软管,在燃气进入界区处设置氮气置换管线,主燃气切断阀后设氮气吹扫管线。系统可实现对燃料气的流量控制和切断,阻火器可保证燃料气管道的安全,当燃气系统停止工作时可以通过氮气管线对燃气管线进行安全置换。长明灯燃料气管线为燃烧器的长明灯提供燃气,气源来自主燃气管线,长明灯火焰稳定燃烧,从而保证主火焰被可靠引燃,长明灯管线设置双切断加放空阀组可通过程序控制燃料气的供应,并在长明灯火焰熄灭时及时切断燃气,保证系统安全。 燃料气燃烧需要的助燃风靠炉膛负压形成的自然通风提供,通过烟囱的烟道挡板阀

相关文档
最新文档