短路电流计算方法

短路电流计算方法
短路电流计算方法

第七章短路电流计算

Short Circuit Current Calculation

§7-1 概述General Description

一、短路的原因、类型及后果

The cause, type and sequence of short circuit

1、短路:是指一切不正常的相与相之间或相与地<对于中性点接地

的系统)发生通路的情况。

2、短路的原因:

⑴元件损坏

如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路.

⑵气象条件恶化

如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等.

⑶违规操作

如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压.

⑷其他原因

如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等.

3、三相系统中短路的类型:

⑴基本形式: )3(k—三相短路;)2(k—两相短路;

)1(

k—单相接地短路;)1,1(k—两相接地短路;

⑵对称短路:短路后,各相电流、电压仍对称,如三相短路;

不对称短路:短路后,各相电流、电压不对称。

如两相短路、单相短路和两相接地短路.

注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果

随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。

(1)电动力效应

短路点附近支路中出现比正常值大许多倍的电流,在导

体间产生很大的机械应力,可能使导体和它们的支架遭

到破坏。

(2)发热

短路电流使设备发热增加,短路持续时间较长时,设备

可能过热以致损坏。

(3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

及周围设备. (4) 电压大幅下降,对用户影响很大.

如果短路发生地点离电源不远而又持续时间较长,则可

能使并列运行的发电厂失去同步,破坏系统的稳定,造成大片停电。这是短路故障的最严重后果。(6) 不对称短路会对附近的通讯系统产生影响。 二、计算短路电流的目的及有关化简

The purpose and some simplification of short circuit Calculation 1、短路计算的目的

a 、选择电气设备的依据;

b 、继电保护的设计和整定;

c 、电气主接线方案的确定;

d 、进行电力系统暂态稳定计算,研究短路对用户工作的影响; 2、短路计算的简化假设

a 、不考虑发电机间的摇摆现象,认为所有发电机电势的相位都相同;

b 、不考虑磁路饱和,认为短路回路各元件的电抗为常数;

c 、不考虑发电机转子的不对称性,用''''q

d E X 和来代表。认为f I <<

d I ,即认为短路前发电机是空载的;

d 、不考虑线路对地电容、变压器的励磁支路和高压电网中的电

阻,认为等值电路中只有各元件的电抗。

§7-2 标么值计算方法与短路电流计算步骤

Per-unit system and the process of short-circuit current calculation 一、 标么制的概念 conception of per-unit system

1、标么制 per-unit system :将电压、电流、功率、阻抗等物理量不

用其有名值表示,而用标么值表示。2、标么值:per-unit value

与有名值同单位)基准值)实际有名值(任意单位标么值(=

例如:某发电机的端电压用有名值表示为kV 5.10U G =,如果用标么值表示,就必须先选定基准值.若选基准值kV 5.10U B =,则

15.105

.10U U U B G G ===

*。

若取基准值kV 10U B =,则05.1U G =*。

若取基准值kV 1U B =,则5.10U G =*.

可见:标么值是一个没有量纲的数值,对于同一个有名值,基准值选得

不同,其标么值也就不同.

因此:说明一个量的标么值时,必须同时说明它的基准值;否则,标

么值的意义不明确!

3、采用标么制的优点: the advantage of per-unit system

(1) 易于比较电力系统中各元件的特性和参数; (2) 易于判断电气设备的特征和参数的优劣; (3) 可以使计算量大大简化。

二、 基准值的选取 the selection of reference value 1、 各量的基准值之间应服从:

功率方程:UI S 3=

欧姆定律:U = 通常选定 B B U S ,

则: B B

B U S I 3=,B

B 2

B B X S U Z ==

三相对称系统中,不管是Y 接线还是?接线,任何一点的线电压<

或线电流)的标么值与该点的相电压<或相电流)的标么值相等,且三相总功率的标么值与每相的功率标么值相等。故:采用标么制时,对称三相电路完全可以用单相电路计算。3、 说明:通常取100,B B av S MVA U U ==< 1.05av N U U =) 三、不同基准值的标么值之间的换算

conversion among per-unit values based on different reference values 1、 原则:换算前后的物理量的有名值保持不变。

步骤:<1)将以原有基准值计算出的标么值还原成有名值

<2)计算新基准值下的标么值

2、 发电机、变压器 已知:N N N X U S *以及, 求:B B B X U S *下的, 则: 有名值: N N N

N N S U X X X X 2?

=?=**

标么值:

2

2B

B

N N N B B

U S S U X X X

X ??==**

3、 电抗器

有名值:

N N

N N N I U X X X X 3?=?=** 标么值:

2

3B B

N N N B

B U S I U X X X

X ??==

**

四、有变压器联系的不同电压等级电网中各元件参数标么值的计算

Per-unit value calculation in a network which has different voltage class connected by transformers.1、 先取某一电压级为基本电压级,并取基本电压级的基准电压

B U ,将其他电压级下的电抗有名值归算到基本电压级下:

X )K K ()n (X 221???????= 其中:

(待归算侧)基准侧)∏I =

U U K (

则: 归算到基本电压级的某个线段的电抗标么值应为:

2B

B 2

2

1B

2B 221B B

*U S X )K K (S U )K K (X X )n (X )n (X ????????=????????==

2、 有变压器联系的网络标么值计算的简化

条件:av B U U =,用av U 计算变比,并用av U 代替元件的N U

则: 发电机电抗''d X 的标么值

N B

N d B d S S X X ?

=**'

''' 变压器%k U 的标么值

%100K B

T T B B N U S X

X X S

*==? 线路中电抗的标么值

2B B

WL B WL U S

X X ?=* 电抗器%r X 的标么值

2

B B

N N r B r U S I 3U 100%X X ??=

*

其中对线路、电抗器的计算中,B U 为元件所在电压等级的平均额定

证明:

取短路点所在电压等级为基本电压级,并取U U B = 则:

2B

2N )N *(12

321B

*1U S

S U X )K K K (X ?????=

2av 4B

N 2

av 1)N *(12av 3av 4av 2av 3av 1av 2U S S U X )U U U U U U (?????=

N B

N S S

X ?=)*(1

N

B )N *(22

4B N 22)N *(22av 3av 4av 2av 3B *2S S X U S S U X )U U U U (X ?=????=N B

K S S 100%U ?= av 22B

32av 4B 32av 3av 4av 2av 3B

*3U S X U S X )U U U U (X ?=???=

则:归算到任一电压级下的电抗标么值相等。

五、短路电流计算步骤process of short-circuit current calculation

1.确定计算条件,画计算电路图

1)计算条件:系统运行方式,短路地点、短路类型和短路后采取的措施。

2)运行方式:系统中投入的发电、输电、变电、用电设备的多少

以及它们之间的连接情况。

根据计算目的确定系统运行方式,画相应的计算电路图。 选电气设备:选择正常运行方式画计算图;

短路点取使被选择设备通过的短路电流最大的点。

继电保护整定:比较不同运行方式,取最严重的。 2.画等值电路,计算参数;

分别画各段路点对应的等值电路。

标号与计算图中的应一致。

3.网络化简,分别求出短路点至各等值电源点之间的总电抗。 ⑴. 星—角变换公式 角—星变换公式

23131231121X X X X X X n ++?=

n n

n

n n X X X X X X 3212112?++=

23131232122X X X X X X n ++?=n

n

n

n n X X X X X X 1323223?++=

23131231323X X X X X X n ++?=n n

n n n X X

X X X X 2131331?++=

⑵.等值电源归算

(1) 同类型且至短路点的电气距离大致相等的电源可归并; (2) 至短路点距离较远的同类型或不同类型的电源可归并; (3) 直接连于短路点上的同类型发电机可归并;

§7-3 供配电系统三相短路电流计算

Three-phase short-circuit current calculation in power supply and distribution

system 一、“无限大”电力系统 concept of infinite system

1. 定义:系统的容量=S ∞,系统的内阻抗0=Z <0,0==x R ).

2.“无限大”电力系统的特点:外电路电流变动时,其端口电压不变。

3.若系统阻抗不超过短路回路总阻抗的15%,则系统看作“无限大系统”

实用计算中,将配电网中的系统母线看作无限大容量系统。 等值电源内阻抗123////G G G G Z Z Z Z = 二、供配电系统三相短路电流计算

three-phase short-circuit current calculation in power supply and distribution system 1.三相短路电流 1)

)sin(ou m k

k wt U dt di L i R ?+=?

+?

则:t L

R ou m

ou m k e Z U wt Z U i ----+=)sin()sin(???? =

np

kp i i +

其中:ou ?—短路时电源电压相位角(合闸相位角>

R

x artg

=?

kp

i —稳态分量,周期分量

np

i —暂态分量,非周期分量

2)kp i 的有效值

KP K

I I =

=

2.冲击短路电流sh i impulse current

--------短路电流最大瞬时值

??-

=ou 时,短路瞬间np i 最大,则k i 也最大 又当0,=>>R x artg R X 时,即

,

?= t

L R

m m k e

Z U wt Z U i ?-+-=)2sin(π

当s T

t 01.02==

时,k i 最大。即:

)

1(201.001.0L R

L

R m sh e Z U e Z U Z U i -?-+?=+==sh KP K I ??2

sh K 冲击系数,a

T sh e

K 01.01-

+= , 21<

一般:高压网中,a T =0.05S 时,则sh K =1.8

大容量系统或发电机附近短路时,9.1,1.0==sh a K T 发电厂高压母线;sh K =1.85

低压网中,,008.0s T a =则:sh K =1-1.3 3、短路电流全电流的有效值 近似认为:

2

2np

kp kt I I I +=

则:2)(21a

T t

KP kt e

I I -

+?=

冲击电流全电流有效值:

2)1(21-+?=sh KP sh K I I

三、“无限大”电源供电的简单电力网三相短路电流计算步骤

impulse current value calculation of three-phase short-circuit supplied by infinite system 1.取基准值,B B av S U U =;

2.画出标么值表示的等值电路;

3.计算出从短路点到各电源点之间的等值阻抗∑*X

4.计算kp I 。

<

1

,kp KP KP U I I I X X *****=

==∑∑)

5.计算sh i ,<其中sh kp sh K I i ?=2)

说明:

<1)短路电流应还原成有名值; <2)公式

B B

kp KP U S I I 3?

=*中的B U 为短路点所在电压等级平均额定电压

av U 。

四、“短路容量”的概念及用途

concept and usage of shot-circuit capability

1.某一点的短路容量=该点短路时的短路电流×该点短路前的电压

av U

有名值:K av k S I =

标么值:

1K K S I X **∑*=

== 则:K S 的大小实际反映了该点短路电流K I 的大小,也就反映了该点

到恒定电压点之间总电抗的大小。

2、可近似取某点的K S =装于该点的断路器的额定开断容量NOC S

§7-4 由同步发电机供电的三相短路电流计算

Three-phase short-circuit current calculation supplied by synchronous

generator 一、同步发电机发生三相突然短路<无自动励磁调节装置)

Three-phase short-circuit happened near by synchronous generator which has no automatic excitation regulation device 1. 不能当作“无限大”系统的情况

1) 发电机端点或端点附近发生短路;

2) 短路点虽离发电机较远,但发电机容量有限。

在以上地点发生三相突然短路时,因为短路电流所造成的强烈去磁性电枢反应,使发电机端口电动势和内部电抗在短路的暂态过程中发生变化,相应的短路电流周期分量的振幅也随之变化,这是与无限大系统相区别的地方.2.短路电流的周期分量

从短路瞬间起,经历了次暂态、暂态、稳态的过程。 短路电流周期分量的幅值:

??

??????+-+-=--KP T t KP KP T t KP KP KPm

I e I I e I I I d d ''')()(2'

'''

式中:'

'KP I ----次暂态短路电流的有效值;

'

KP I ----暂态短路电流的有效值;

KP I ----稳态短路电流的有效值;

''d T ----次暂态分量电流衰减的时间常数; 'd T ----暂态分量电流衰减的时间常数。

不计励磁调节时: Ⅰ)空载短路

d KP d

KP d KP X E I X E I X E I 0

'0'''0

''=

=

=

0E 为发电机空载电动势。

Ⅱ)负载情况下端口短路

d KP d

q KP d q KP X E I X E I X E I ∞

=

=

=

''''''

'''''q E 、'

q E 、∞E 为次暂态电动势、暂态电动势、稳态电动势。

其中:

''''d

N N q X I j U E

+=,

''d

N N q X I j U E +=

N U 、N I 依次为发电机额定电压和额定电流。

一般取N q

U E ≈'',N q U E ≈'。 Ⅲ)经外电路短路

∑∞

+=

+=+=

1d KP 1'd 'q 'KP 1''d ''q ''KP X X E I X X E I X X E I ∑1X 从短路点到发电机端点的总电抗

3.短路电流非周期分量 最不利条件下<即

ψψ-

=-ou ,且

ψ=

a

T t

KP np e

I i -

='

'2 , a T 为定子回路衰减时间常数。

则最不利条件下,同步发电机三相突然短路电流瞬时值:

a

d d T t KP KP T t KP KP T t KP KP K

e I wt I e I I e I I i -

--+-????????+-+-='

'0''''2)90sin()()(2'''

4.次暂态短路电流、冲击短路电流、稳态短路电流

1)次暂态短路电流

机端短路:

''''d

N

KP X U I =

经外电阻短路:

∑+=

1''''X X U I d N

KP

次暂态短路功率:'

''

'3KP N K I U S =

注意:校验机端快速动作断路器开断电流和开断容量时,用对应于

开断时刻t 的短路电流全电流有效值。 2)冲击短路电流

t=0.01s sh KP sh K I i '

'2=

其中 K sh =1.9 ,机端短路; K sh =1.8 ,经外阻抗短路。 3)稳态短路电流

机端短路:

d N

KP X U I I =

=∞ 。 经外电路短路:

∑∞+=

1X X U I d N 二、装有自动励磁调节装置时同步发电机的三相短路电流

Three-phase short-circuit current supplied by synchronous generator which has automatic excitation regulation device 1.不考虑励磁调节时

认为整个短路过程中发电机的励磁电流不变,则感应电动势为常数。

2.考虑自动励磁时

a. 因为发电机的励磁回路有较大的电感, 励磁电流不能在短路发生后立即增大,所以自动励磁装置的调节效果要在短路后的一定时间内才显示出来.因而在短路后最初几个周波内,励磁电流不会变化.故: 次暂态短路电流和冲击短路电流的计算与无励磁时相同。

b.当自动励磁装置起作用后,周期分量电流不再减小而是逐渐增加,最后过渡到稳态值. 因此稳态短路电流以及自励装置起作用后的某一时刻的短路电流的计算变得复杂稳态值的大小主要与短路点的远近和自动励磁装置的调整程度. 励磁装置起作用后计算就较复杂,一般用“运算曲线法”。

§7-5 三相短路的实用计算

Practical method of three phase short-circuit current calculation 一、运算曲线法 method of operational curve

1. 运算曲线:事先制作好的一种计算三相短路电流周期分量有效

值的曲线。

2. 运算曲线法:利用运算曲线求短路发生后任意时刻t 所对应的

短路电流周期分量有效值的方法。

算法的适用条件:计及自动励磁调节作用的发电机组供电的三相短路电流周期分量有效值的计算。 3. )X ,t (f I ca )t (KP **=

其中:

*∑**+=1'

'x x X d ca <计算电抗标么值) *∑1x 为从短路点至发电机端点的外电路电抗标么值。

4. 曲线中,t=0s 对应于次暂态短路电流;

t=4s 对应于稳态短路电流。

注意:运算曲线法中标么值的计算必须以发电机<或等值发电

机)的额定容量为基准值,并且等值图中发电机以次暂态电抗'

'd x 代表。二、计算步骤 calculation process

1. 忽略负荷,画等值电路,发电机以次暂态电抗''d x 代表;

2.取B S ,av B U U =,计算各元件参数;

3.网络化简。依据电源的类型以及距离短路点的电气距离远近将电源划分成几组,每一组等值成一个等值电源,容量为

??????∑∑,,21N N S S ,无限大容量电源单独为一组。求出各等值电源至短

路点的)(B ca X *;4.将)(B ca X *归算成对应于各等值电源容量下的)(N ca X *

B N B ca N ca S S X X ?

=**)()(

无限大容量电源的)(B ca X *不必归算。 5.查曲线,求出*I 。若)(N ca X *〉3.45,则

)(1N ca X I **=

无限大容量电源的

)(1B ca X I **∞=

6.计算有名值,

av 1

N 11U 3S I I ??

=∑*,av 2

N 22U 3S I I ??

=∑*,av U 为短路点所在

电压等级的平均额定电压。

无限大容量电源:

av B U 3S I I ??

=*

7.短路点的短路电流:n I I I I I +???+++=321

注:各组的短路电流归算成有名值以后才能加减。 小结:

不计及自动励磁调节作用时:计算次暂态电流时,发电机用次暂态电抗代表;计算稳态短路电流时,发电机用稳态电抗代表。计及自动励磁调节作用时,发电机一律用次暂态电抗代表,并且用“运算曲线法”计算。

§7-6 电动机对冲击短路电流的影响

The Influence of a Motor on Impulse Short-circuit Current 一、下列条件下,须计及电动机对冲击短路电流的影响 1. 短路点在电动机引出线处或引出线附近;

2. 且高压电动机容量大于1000kW ,低压电动机容量大于

20kW 。

当异步电动机与短路点之间有变压器时,短路电流不计电动机的影响

二、电动机供给的冲击短路电流

MN

m sh MN M sh ''M *''M *

M

sh I K C I K X E 2i ??=???=?????

式中:'

'M *E ?——电动机次暂态电动势标么值;

'

'M *X ?——电动机次暂态电抗标么值;

C ——反馈冲击系数;

M sh K ?——电动机短路电流冲击系数

3~6kV 电动机取1.4~1.6

380V 电动机取1。

MN I ——电动机额定电流

§7-7 低压配电系统短路电流计算

Calculation of Short-circuit Current in Low-voltage Power System 一、低压配电系统短路电流计算的特点

1. 直接使用有名值计算更方便,阻抗用Ωm 表示; 2. 供电电源可以看作“无限大”容量系统;

3. 电网中电阻不可以忽略,一般可用阻抗的模2

2X R Z +=来计

算。

R

31X <

时,可将 X 忽略。

4. 非周期分量衰减较快,冲击系数取1~1.3; 5. 应计及以下元件阻抗的影响:

1) 长度为10~15m 或更长的电缆和母线阻抗; 2) 多匝电流互感器原绕组阻抗;

3) 低压自动空气开关过流线圈的阻抗; 4) 隔离开关和自动开关的触头电阻。 二、低压配电系统各元件阻抗的计算 1.系统阻抗

)

m (10S U S U S S S U S 1X X X 3B

2

av B 2av K B B 2B

K B s s Ω?=?=?=?=**

电压的单位为kV,功率的单位为MV ·A

2.变压器的阻抗

电阻:)m (S U P R 2

N

22

N K T Ω??= ; 阻抗:)m (S U 100%U Z N 2

2N K T Ω?= 电抗:)m (R Z X 2

T 2T T

Ω-= 2N U —变压器二次测额定电压

3.电流互感器的阻抗 查表7-5

4.自动开关的阻抗

电阻=自动开关过电流线圈的电阻+开关触头电阻; 电抗=自动开关过电流线圈的电抗 见162页的表7-6、7-7。 5.线路阻抗

计算方法不变,单位以欧姆计。 三、低压配电系统短路电流计算步骤 1. 画等值电路

2. 分别求出电路的总电阻∑R 和总电抗∑X ,然后计算)

m (X R Z 2

2Ω+=∑∑∑

3. 计算三相短路电流和冲击短路电流

∑=

Z 3U I av

K ; K sh sh I K 2i ??=

av U ——低压侧线路平均额定电压,400 V .

§7-8配电网的不对称短路计算

Asymmetrical short-circuit fault of power supply system 不对称短路的分析方法:对称分量法

一、对称分量法Symmetrical-component method

1. 定义:把一个不对称三相系统分解成三个对称系统<正序、负序、零序)。

原系统与新系统的关系?????++=++=++=0

210210

21C C C C B B B B A A A A I I I I I I I I I I I I 2.适用条件

①系统的参数是线性的

②适用于原来三相阻抗对称,只有故障点处的对称关系被破坏。 <一>正序分量

如上图中(a>图所示,沿顺时针方向依次为:A 相、B 相、C 相

121A B I a I =,11

A C I a I = 其中:

23210120j e a j +-==,23

212j

a --=,13=a <二>负序分量

如上图中(b>图所示,沿顺时针方向依次为:A 相、C 相、B 相

22A B I a I =,222

A C I a I =

(a>正序分量 (b>负序分量 (c>零序分量

<三>零序分量

如上图中(c>图所示, A 相、C 相、B 相大小相等、方向相同。 000C B A I I I ==

三相对称系统中,00=I

新系统与原系统的关系???

???

???++=++=++=)

(31)(31)(3102221C B A A C B A A C B A A I I I I I a I a I I I a I a I I

二、不对称故障的序网图 Sequence network of unbalanced fault

对称三相系统发生不对称短路时,只有故障点处的对称关系被破坏,而电力系统中其它部分仍是对称的。 <一> 正序网图

发电机电动势A E 、B E

、C E 是正序关系,故正序网为有源网。

∑=-111X I j U E A A A

∑1X ——从故障点到电源间的所有元件的总等值正序电抗。

<二> 负序网图

发电机不能发出负序电动势,故负序网为无源网。

∑-=222X I j U A A

<三> 零序网图

零序网为无源网。

∑-=000X I j U A A ①只有中性点接地或有公共接地零线的电力网中才有零序电流; ②三角形接法的绕组中,零序电流在内部循环,线路上无零序电流; ③零线中流的是03I ,所以零线上的阻抗应等值为每相阻抗的3倍。

三、电力系统各元件的正序、负序、和零序电抗

positive, negative and zero sequence impendence

1. 发电机

正序电抗:对称运行状态下的电抗

负序电抗:发电机定子绕组中流过一组负序电流时在转子中产生的阻抗 零序阻抗:零序电流在发电机定子绕组中流通时,转子中产生的阻抗. 2. 变压器

正序阻抗:变压器中流入正序电流时在变压器内产生的阻抗;

负序阻抗:流入负序电流时变压器内产生的阻抗,正序电抗=负序电抗; 零序电抗:流入零序电流时产生的阻抗。与变压器的结构<磁路系统的结

构)、联接组别以及形式等都有密切关系。3. 线路

正序网图

输电线路是静止的磁耦合回路,它的负序电抗和正序电抗相等,零序电抗比正序电抗大。

四、简单电力系统不对称短路故障分析

asymmetrical short-circuit fault of simple power system 单相

接地短路

①故障条件:?

????===00C B A I I U

因为???

?

?????++=++=++=)(31)

(31)(3102221C B A A C B A A C B A A I I I I I a I a I I I a I a I I 021A A A I I I ==

021A A A A U U U U ++=

0021=++A A A U U U ②边界条件:021A A A I I I

== 0021=++A A A U U U

则单相接地的复合序网图如右图所示:

)(0211∑∑∑++=

X X X j E I A A

故:

③单相接地故障电流

∑∑∑++=

=021)

1(3X X X E I I A A K 2、两相直接短路

①故障条件:?????-===C B A C B I I I U U

因为???

?

??

???++=++=++=)

(31)(31)(3102221C B A A C B A A C B A A I I I I I a I a I I I a I a I I 002

1=-=A A A I I I

0==C B I I 0=A U

C B A

I I I -==0

②边界条件

???

???

?

??++=++=++=)(31)(31)(3

102221C B A A C B A A C B A A U U U U U a U a U U U a U a U U 21A A U U =

则两相短路的复合序网图如下:

得:

)(2121∑∑+=

-=X X j E I I A A A ③两相短路的故障电流:∑∑+-=++==210

212)2(3X X E I I a I a I I A

A A A

B K

当∑∑=21X X 时,

)3()2(23k K I I =

§7-9 短路电流的效应 Effect of short-circuit current

一、短路电流的热效应 thermal effect of short-circuit current 导体和电器在运行中经常的工作状态有:

(1) 正常工作状态:电压、电流均未超过允许值,对应的发热为长期发

热;

(2) 短路工作状态:发生短路故障,对应的发热为短时发热。 <一> 长期发热

1.发热原因:a. 电流流过导体产生电阻损耗;

b. 绝缘材料中的介质损耗;

c. 导体周围的金属构件,在电磁场作用下产生涡流和磁滞损

耗。

2.发热的不良影响:a. 接触电阻增加; b. 绝缘性能降低; c. 机械强度下降。

因此规定不同材料导体正常和短路情况下的最高允许温度。 3.导体在非额定条件下允许最大载流量

N

N 0

al '0

'al '

I K I I ?=?θ-θθ-θ=

C

B U U =

al θ——规定的导体最高允许工作温度,见表7-10; 0θ——额定环境温度,我国为25℃.

'al θ——实际工作中允许导体达到的最高温度; '0θ——实际工作环境最高温度;

N I ——额定载流量。

<二>导体的短时发热

1.短时发热与温度

b K 2f A Q S 1

A +=

其中:b f A A 、——最终温度f θ、起始温度b θ对应的A 值,4

m /J ?Ω;

S ——导体截面积,m 2。 Q K ——短路的热效应,A 2·S.

由上式可见,减小短路时最高温度的方法为:①增大导体截面S ; ②减小短路电流,从而减小Q K

应用:由起始温度b θ求短路时的最高温度f θ。 方法:①由起始温度b θ查图7-42得到b A

②由公式

b K 2f A Q S 1

A +=

计算得到f A

③根据f A 查图7-42求f θ 2.短路的热效应Q K

dt

I Q k

t 02k t K ?=

等值时间法:

eq

2

t 02k t K t I dt I Q k

?==∞? ,其中

np

k p eq t t t +=

eq

t 由短路持续时间K t 和'

'β确定,其中

断路器全开断时间后备保护动作时间+=K t

∞=

βI I '

'k p

''

kp

t 由K t 和''β查附表

2

得出,当s 5t K >时,

)

5t ()5(t t k k p k p -+=

??

?β=005.0t 2

''np

,s 1t s 1.0t >>

3.短时发热应用

①导体热稳定校验:S

C

k Q A A K Q S s K b

F s K min <=

-=

其中:Q K ——短路的热效应,A 2·S ; K s ——集肤系数,抄表得出; S ——所选导体截面积,mm 2;

F A ——短路时的最高允许温度al θ对应的值;

C ——由实际最高工作温度<2al 2max

w

'0

al '0

'

I I )(θ?θ-θ+θ=θ)查表7-11得

出。

②电器设备的热稳定校验

t I t I 2h eq 2?≤?∞ 二、短路电流的电动力效应 electro-dynamic force effect of short-circuit current 1.两平行导体分别通过电流i 1、i 2时,它们之间的相互作用力为:

7

2110a l

i i k 2F -?????=

其中:k ——形状系数,与载流导体的形状和导体间的相对位置有关

圆形、管形导体k=1

矩形导体查表7-44,当2b h b

a >+-时,k 取1;

l ——为导体长度,m ;

a ——导体中心轴线间的距离,m ; i 1、i 2——单位,A 。

2.三相导线水平布置,三相短路时,在冲击短路电流的作用下,中间相收到的

作用力最大:

7

2)3(sh 7)3(sh )

3(sh max 10a l )i (k 732.110a l )i 23(

i k 2F --???=?????=

其中

'

'k p sh sh I K 2i ??=

3.动稳定校验:校验导体和电器承受短路电流电动力的能力。 导体:允许应力max F ≥ 电器:sh sh F i i ≥?

§7-10 限制短路电流的措施

Measure of limiting short-circuit current

限流原理:增大短路点到电源点之间的等效电抗。

注意: 正常工作时的电压损耗有可能因采取限流措施而增大. 一、合理选择电气主接线形式和运行方式

rational selection of electrical connection and operation manner 接线中减少并联支路或增加串联支路;如双回线分开运行或两台变压器并列运行。

二、采用分裂低压绕组变压器 using split-winding transformer

分裂变压器:高压绕组由两部分并联的不分裂的绕组组成;低压绕组由分裂

成两个支路的容量相等的分裂绕组组成,分裂绕组的各个支路间没有电的联系.穿越阻抗:

2x x x 2

1c +

= 。 半穿越阻抗: 21b x x x +=

分裂阻抗: 2f x 2x = 。 分裂系数: c f f x x K =

一般分裂变压器的分裂系数为3.5.

若分裂变压器的穿越阻抗等于普通变压器的阻抗,即d c x x =,则:

d f f d 22c 21b d

f x )k 41

1(x 2121x x 2x x x x x x 5.3x +=??+=+-

=+==

由此可见,分裂变压器具有短路阻抗大,正常电抗小的优点. 三、加装限流电抗器 using current-limiting reactor 1.普通电抗器 normal reactor

线路电抗器:装在引出线断路器的后面<负荷侧),则电抗器以前的断路器和隔

离开关可以选择轻型的电器,并且可以提高母线残余电压,但正常工作时的电压损耗增大。一般电抗百分值取3%~6%。

母线电抗器:可以限制从本段母线流向短路母线的电流,从而提高本段母线的

残余电压。电抗百分值一般不大于8%~10%。2.分裂电抗器 split reactor

为了充分限制短路电路和维持母线有较高的残余电压,采用分裂电抗器。 正常工作时,总感抗L m L z x )m 1(x x x -=-=

当分裂电抗器的单臂自感电抗与普通电抗器的电抗值相等时

优点:①两者短路时的限流作用一样,但正常运行时分裂电抗器的电压损失只

有普通电抗器的一半;

②分裂电抗器可比普通电抗器多供一倍的出线。

注意:分裂电抗器的两个分支负荷应尽量接近,否则可能出现过电压。 尽量避免安装出线电抗器,因其投资大、配电复杂、运行费用高。

短路电流计算方法

一种实用的短路电流计算方法 尚德彬中原油田设计院 [摘要]本文针对短路电流计算复杂,易出差错等原因,根据自己实际工作中对短路电流的计算,总结出了一种简单、实用、易于掌握的计算方法。 [关键词]短路电流实用计算方法 一、概述 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常的运行情况,因为它们会破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。按照传统的计算方法有标么值法和有名值法等。采用标么值法计算时,需要把不同电压等级中元件的阻抗,根据同一基准值进行换算,继而得出短路回路总的等值阻抗,再计算短路电流等。这种计算方法虽结果比较精确,但计算过程十分复杂且公式多、难记忆、易出差错。下面根据本人在实际工作中对短路电流的计算,介绍一种比较简便实用的计算方法。 二、供电系统各种元件电抗的计算 通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统简图,并假设有关的短路点。供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。目前,一般用户都不直接由发电机供电,而是接自电力系统,因此也常把电力系统当作一个“元件”来看待。 假定的短路点往往取在母线上或相当于母线的地方。图1便是一个供电系统简图,其中短路点d1前的元件有容量为无穷大的电力系统,70km的110kV架空线路及3台15MVA的变压器,短路点d2前则除上述各元件外,还有6kV,0.3kA,相对额定电抗(XDK%)为4的电抗器一台。 下面以图1为例,说明各供电元件相对电抗(以下“相对”二字均略)的计算方法。 1、系统电抗的计算 系统电抗,百兆为1,容量增减,电抗反比。本句话的意思是当系统短路容量为100MVA时,系统电抗数值为1; 当系统短路容量不为100MVA,而是更大或更小时,电抗数值应反比而变。例如当系统短路容量为200MVA时,电抗便是0.5(100/200=0.5); 当系统短路容量为50MVA时,电抗便是2(100/50=2),图1中的系统容量为“∞”,则100/∞=0,所以其电抗为0。

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

3短路电流和计算课后习题解析

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

习题参考答案

习题与思考题 3-1 无限大与有限电源容量系统有何区别?对于短路暂态过程有何不同? 答:所谓无限大容量电源系统是指电源的内阻抗为零,在短路过程中电源的端电压恒定不变,短路电流周期分量恒定不变。事实上,真正无限大容量电源系统是不存在的,通常将电源内阻抗小于短路回路总阻抗10%的电源看作无限大容量系统。一般工矿企业供电系统的短路点离电源的电气距离足够远,满足以上条件,可作为无限大容量电源供电系统进行短路电流计算和分析。 所谓有限容量电源系统是指电源的内阻抗不能忽略,且是变化的,在短路过程中电源的端电压是衰减的,短路电流的周期分量幅值是衰减的。通常将电源内阻抗大于短路回路总阻抗10% 的供电系统称为有限大电源容量系统。 有限大容量电源系统短路电流的周期分量幅值衰减的根本原因是:由于短路回路阻抗突然减小和同步发电机定子电流激增,使发电机内部产生电磁暂态过程,即发电机的端电压幅值和同步电抗大小出现变化过程,由其产生的短路电流周期分量是变化的。所以,有限容量电源系统的短路电流周期分量的幅值是变化的,历经从次暂态短路电流(I)暂态短路电流(I)稳态短路电流(I∞)的衰减变化过程。 3-2 有人说三相电路中三相的短路电流非周期分量之和等于零,并且三相短路全电流之和也为零,这个结论是否正确?为什么? 答:两种说法都是对的。为了简化分析,考虑在由无限大电源容量供电的空载线路中发生三相短路时A相电压瞬时值为零,分别对各相短路回路微分方程求解可得各相的短路电流为 (3-1) 式中--各相短路电流瞬时值; --短路电流周期分量幅值; --短路回路蛆抗角,; --短路回路时间常数,。 当系统参数变化时,有不同的数值,但在实际电力系统巾,系统电抗远较电阻为大,即短路回路中有,故≈,则上式可简化为 (3-2) 可见,各相短路电流都是由一个周期分量和一个幅值按指数规律衰减的非周期分量叠加而成。由式(3-2)可知,各项周期分量由于幅值相等、相位互差,是一组对称量,故其相量和必为零,故各相非周期分量除系数外均为三个完全相等的、时问常数相同的衰减量,而它们的系数和又为零,故各相非周期分量之和也为零;同样道理,各相短路电流之和也为零。 3-3 在什么条件下,发生三相短路冲击电流值最大?若A相出现最大冲击短路电流,

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

短路电流的实用计算题库

第五章短路电流的实用计算题库 本文来自: 专业工控技术学习交流平台---99工控论坛作者: 小电工日期: 2009-11-9 20:22 阅读: 376人打印收藏大中小 一、填空题 1.短路种类有()、()、()和()。 2.无限大容量系统是指()。 3.在暂态过程中短路电流包含两个分量:一是()。另一是()。 4.短路功率与短路电流标么值的关系是()。 5.单相接地短路的附加电抗是(),两相接地短路的附加电抗是()。 6.已知变压器的短路电压百分比,以额定值为基准值的电抗标么值为()。 二、选择题 1.短路电流计算中,电路元件的参数采用()。 A.基准值 B.标么值 C.额定值 D.有名值 2.短路电流计算中,下列假设条件错误的是()。 A.三向系统对称运行B各电源的电动势相位相同C各元件的磁路不饱和D.同步电机不设自动励磁装置 3.220KV系统的基准电压为()。 A.220KV B.242KV C.230KV D.200KV 4.短路电流的计算按系统内()。 A.正常运行方式 B. 最小运行方式 C. 最大运行方式 D. 满足负荷运行方式

5.只有发生()故障,零序电流才会出现。 A.相间故障 B.振荡时 C.不对称接地故障或非全相运行时 D.短路 6.在负序网络中,负序阻抗与正序阻抗不相同的是()。 A.变压器 B.发电机 C.电抗器 D.架空线路 7.发生三相对称短路时,短路电流为()。 A.正序分量 B.负序分量 C.零序分量 D.正序和负序分量 8.零序电流的分布主要取决于()。 A.发电机是否接地 B.运行中变压器中性点、接地点的分布 C.用电设备的外壳是否接地 D.故障电流 9.电路元件的标么值为()。 A.有名值与基准值之比 B. 有名值与额定值之比 C. 基准值与有名值之比 D.额定值与有名值之比 三、简答题 1.什么是电力系统的短路?短路故障有哪几种类型?哪些是对称短路?哪些是不对称短路? 2.什么是标幺值?标么值有何特点? 3.是无穷大容量电力系统? 4.无穷大容量电力系统中发生短路时,短路电流如何变化? 5.什么是短路电流的周期分量、非周期分量、冲击短路电流、母线残压?

历年注电考试短路电流计算题目解析

2005年发输变电 解:取基准容量60B S =MV A,则1*2*0.1G G X X == 11 %(201010)102 K U =+-=,因此1*0.1T X =,同理可得2*0.1T X =,3*0T X = *(0.10.1)||(0.10.1)0.1X j j j ∑=++= ,32.99f I = =,选A 。 解:1*1000.11000G X = =,1*0.1T X =,*0.03l X =,2*0.1T X =,1*100 0.12833 G X == 当f3点短路时,*1 (0.10.1)||(0.030.10.12)9 X j j j ∑=+++= *31001 9 f X M ∑= =,因此f3点短路容量为900,选C 。

解:12=0.10.10.2X X ∑∑=+=,1121 2.5 2.5270() o a I j j X X ∑∑= =-=∠+,21 2.5 2.590o a a I I j =-==∠ 对于YN,d11接线,存在下列关系:1130 2.5300o o A a I I =∠=∠,2230 2.560o o A a I I =∠-=∠ 12 2.5A a a I I I =+=。 解:12=0.10.20.3X X ∑∑=+=,00.20.2X ∑=+,13 33f a I I X ∑ ===,选D 。 2008 供配电 解:12=0.10.10.150.35X X ∑∑=++= 0(0.1 0.45)//0.170.13 X ∑=+=

11201 1.205a I X X X ∑ ∑∑= =++ ,所以30.907f a I I ==,选D 。 2007 发输变 解:此题缺少条件,右边变压器参数应该和2008供配电52题一样,因此经过类似计算可得: 11201 1.1236a I X X X ∑∑∑==+ +30.846f a I I == 1120*()*230131.79a a U I X X ∑∑=+=,选A 。 解:1250=1.2 =0.31000G X 12250=50*0.4=0.378115l X 2 22503 =50*0.4*=0.2275115l X 322502 =50*0.4 *=0.1515 115l X =0.105T X 2=0.12G X (0.30.378)//0.151+0.105+0.12+0.2270.469X ∑=+=( ) 2.677f I KA = = 冲击电流为2.55=6.82f I ,选A 。

短路电流计算公式修订稿

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数

Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)因为S=*U*I 所以 IJZ (KA)(2)标么值计算 容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量 S* = 200/100=2.

两相短路电流计算

根据两相短路电流计算公式:I d=U e/2√(∑R)2+(∑X)2 其中∑R=R1/K b2+R b+R2;∑X=X X+X1/ K b2+X b+X2 式中I d--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; X X—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; K b—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5R b、X b—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 U e—变压器二次侧的额定电压,对于660V网络,U e以690V 计算;对于1140V网络,U e以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器R b=0.0167,X b=0.1246; 660V变压器R b=0.0056,X b=0.0415; 1140V系统下X X=0.0144; 660V系统下X X=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km;

352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km;252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km;162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.539948 ∑X=X X+X1/ K b2+X b+X2=0.118166 I d=U e/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.27092 ∑X=X X+X1/ K b2+X b+X2=0.20162 I d=U e/2√(∑R)2+(∑X)2=1776.73A 3、副井井下风机专用线最远端两相短路电流∑R=R1/K b2+R b+R2=0.2 ∑X=X X+X1/ K b2+X b+X2=0.086 I d=U e/2√(∑R)2+(∑X)2=1568A 4、主井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.09 ∑X=X X+X1/ K b2+X b+X2=0.06 I d=U e/2√(∑R)2+(∑X)2=3136A 5、主井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.277 ∑X=X X+X1/ K b2+X b+X2=0.2

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

短路电流计算计算方法.docx

短路电流计算 > 计算方法 短路电流计算 > 计算方法短路电流计算方法一、高压短 路电流计算(标幺值法) 1、基准值 选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为: 为了便于计算通常选为线路各级平均电压;基准容量 通常选为 100MVA 。由基准值确定的标幺值分别如下: 式中各量右上标的“ * “用来表示标幺值右,下标的“ d”表示在基准值下的标幺值。 2、元件的标幺值计算 (1)电源系统电抗标幺值 —电源母线的短路容量 (2)变压器的电抗标幺值 由于变压器绕组电阻比电抗小得多,高压短路计算时 忽略变压器的绕组电阻,以变压器的阻抗电压百分数(% )

作为变压器的额定电抗,故变压器的电抗标幺值为: —变压器的额定容量,MVA (3)限流电抗器的电抗标幺值 % —电抗器的额定百分电抗—电抗器额定电压, kV —电抗器的额定电流, A (4)输电线路的电抗标幺值 已知线路电抗,当=时 —输电线路单位长度电抗值,Ω/km 3、短路电流计算 计算短路电流周期分量标幺值为 —计算回路的总标幺电抗值 —电源电压标幺值,在=时, =1 = 短路电流周期分量实际值为 = 对于电阻较小,电抗较大(<1/3 )的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值

=1.52 常用基准值 (=100MVA) 电网额定电压(kV ) 3.0 6.0 10.0 35.0 60.0 110 基准电压( kV ) 3.15 6.3 10.5 37 63 115 基准电流( kA ) 18.3 9.16

5.5 1.56 0.92 0.502 二、低压短路电流计算(有名值法) 1. 三相短路电流 2.两相短路电流 3.三相短路电流和两相短路电流之间的换算关系 4.总电阻和总电抗 5.系统电抗 6.高压电缆的阻抗 7.变压器的阻抗

短路电流计算的方法

短路电流计算的方法 一、 网络的等值变换与化简 为计算不同短路点的短路电流值,需将等值网络分别化简为以短路点为衷心的辐射性等值网络,并求出个电源与短路点之间的转移电抗md X 。 1、 网络等值变换 在工程计算中,常用等值变换法进行化简,其原则是网络变换前后,应使未变换部分的电话和电流分布保持不变,常用的如星三角变换(查相关手册)。 2、 并联电源支路的合并(图) 112212121n n z n n n E y E y E y E y y y X y y y +++?=?+++???=?+++? 二、 三相短路电流周期分量的计算 1、 求计算电抗js X 计算电抗js X 是将各电源与短路点之间的转移阻抗md X 归算到以各供电电源(等值发电机)容量为基准值的电抗标幺值。 ..e m js m md j S X X S = 2、 无限大容量电源的短路电流计算 由无限大容量电源供给的短路电流,或者计算电抗3js X ≥时的短路电流,可以认为周期分量不衰减。短路电流标幺值: ** ''*1z X I X ∑= 或 *1z js X X = 其有名值:*''0.2z z j I I I I I I ∞====(kA ) ;j S I =式中:

*X ∑:无穷大容量电源到短路点之间的总阻抗(标幺值) ; ''I :0秒的短路电流(kA ) ; I ∞:稳态的短路电流(kA ) ; 3、 有限容量电源的电路电流计算 通常采用使用运算曲线法,查表,注意折算电抗。 4、 短路点短路电流周期分量 将2、3中所求得的所有短路电流相加。 三、 三相短路电流非周期分量的计算 1、 单支路的短路电流费周期分量计算 按下述公式计算: 起始值:''0fz i = t 秒值:''0a a t T T fzt fz i i e e ω--== 其中:a X T R ∑ ∑= (衰减时间常数) 2、 多支路的短路电流非周期分量计算 复杂网络中个独立支路的衰减时间常数相差较大时,可采用多支路叠加法。衰减时间常数相近的分支可以归并简化,复杂的常仅近似化简为3~4个独立分支的等值网络,多数情况下化简为两个等值网络:系统支路(15a T ≤)和发电机支路(1580a T ≤≤)。对n 支路的系统: 起始值:''''''012)fz n i I I I =+++ t 秒值:12''''''12)a a an t t t T T T fzt n i I e I e I e ωωω---=+++ 3、 等效衰减时间常数 查表 四、 冲击电流和全电流计算 1、冲击电流 三相短路发生后的半个周期(0.01s ),短路电流瞬时值达到最大,称

第6章 电力系统三相短路电流的实用计算

《电力系统分析》(I ) Huazhong University of Science and Technology 主讲教师:孙海顺 E -mail :haishunsun@https://www.360docs.net/doc/2e8940902.html, 2009-2010学年度第一学期 2009.11.08—2010.01.30

电力系统三相短路计算主要是短路电流周期(基频)分量的计算。本章主要内容 计算内容包括: (1)起始次暂态电流(短路电流周期分量的起始值)的实用计算;(2)短路冲击电流的计算(系统电势源和负荷提供的冲击电流);(3)短路发生后不同时刻短路电流周期分量的计算; (1)利用节点阻抗矩阵;(2)利用转移阻抗的概念;(3)近似计算方法 第六章电力系统三相短路电流的实用计算 基本原理和方法:

第六章电力系统三相短路电流的实用计算 6-1 短路电流计算的基本原理和方法 6-2 起始次暂态电流和冲击电流的实用计算6-3 短路电流计算曲线及其应用 6-4 短路电流周期分量的近似计算

发电机:电势源支路→电流源支路(含同步调相机) 输电线路:PI 型等值电路,R ,X ,B 变压 器:G T -jB T ,R T + jX T ,k T 一般负荷:恒定阻抗, Z LD.k 电动机负荷:电势源支路→电流源支路(同步电动机、感应电动机、以电动机为主的综合负荷,起始次暂态电流计算) 1.电力系统节点方程的建立—等值电路的制定 .LD k z 1 i i E i z 1 i ′i i I i z 1 k .LD k E k ′ Y N k =I YV .,N i LD k z z +?Y Y

短路电流计算方法及习题

三相短路的有关物理量 1)短路电流周期分量有效值: 短路点的短路计算电压(或称平均额定电压),由于线路首端短路时 其短路最为严重,因此按线路首端电压考虑,即短路计算电压取为比 线路额定电压高5%,按我国标准有,, ,,,37,69,…… 短路电流非周期分量最大值: 2)次暂态短路电流: 短路电流周期分量在短路后第一个周期的有效值。 3)短路全电流有效值: 指以时间t 为中心的一个周期内,短路全电流瞬时值的均方根值。 4)短路冲击电流和冲击电流有效值: 短路冲击电流:短路全电流的最大瞬时值. 出现在短路后半个周期,t= ksh 为短路电流冲击系数;对于纯电阻电路,取1; 对于纯电感性电路,取2;因此,介于1和2之间。 冲击电流有效值:短路后第一个周期的短路全电流有效值。 5)稳态短路电流有效值: 短路电流非周期分量衰减后的短路电流有效值 p pm I I =p I == 0np pm p i I ≈ = ''p I I I == 0.01 (0.01)(0.01)(1)sh p np p sh p i i i e I τ - =+=+=sh sh p I I ==或 p I I ∞=''p k I I I I ∞====

6)三相短路容量: 短路电流计算步骤 短路等效电路图 短路电流计算方法 相对单位制法——标幺值法 概念:用相对值表示元件的物理量 步骤: 选定基准值 基准容量、基准电压、基准电流、基准阻抗 且有 通常选定Ud 、=100MVA,Ud=Uav= 3 K av K S U I =(,,,) (,,,)MVA kV kA MVA kV kA Ω=Ω物理量的有名值标幺值物理量的基准值d S d I d Z d U 33d d d d d d S U I U I Z ==2/(3)/d d d d d d I S U Z U S ?==

短路电流实用计算的基本假设条件

短路电流实用计算的基本假设条件 1.系统在正常工作时三相是对称的; 2.电力系电力系统中各元件的磁路不饱和,即各元件的电抗值与电流大小无关; 3.统各元件电阻,一般在高压电路中都略去不计,但在计算短路电流的衰减时间常数应计及元件电阻。此外,在计算低压网络的短路电流时,应计及元件电阻,但可以不计算复阻抗,而是用阻抗的绝对值进行计算; (1) 输电线路的电容忽略不计; (2) 变压器的励磁电流忽略不计,相当于励磁阻抗回路开路,这样可以简化变压器的等值电路; 4.3 短路电流计算结果 表4-1 最大运行方式 表 4-1 最小运行方式 一. 当d1点发生短路时,三相短路电流计算 1. 系统最大运行方式时,总电抗标幺值: X *Σ(K -1)=X 1*+X 2*=0.32Ω (1)三相短路电流周期分量有效值 I (K-1)(3)=I d1/X *Σ(K -1)=1.56/0.32=4.875A (2)其他三相短路电流 I"(3)=I∞(3)=I (K-1)(3)=4.875A i sh (3)(K-1)=2.55×I (K-1)(3)=2.55×4.875=12.43A (3)三相短路容量 S (K-1)(3)=S d /X *Σ(k -1)=100MVA/0.32=312.5MVA 2. 系统最小运行方式时,总电抗标幺值 X *′Σ(K -1)=X 1*+X 2*=0.36+0.15=0.51Ω (1)三相短路电流周期分量有效值 I′(K-1)(3)=I d1/X *′Σ(K -1)=1.56/0.51=3.06A (2)其他三相短路电流 I (3)′=I (3)′∞=I (3)′(K-1)=3.06A i sh (3)′(K-1)=2.55×I (3)′(K-1)=2.55×3.06=7.80A

相关文档
最新文档