利用Hopfield神经网络求解如下非线性规划问题

利用Hopfield神经网络求解如下非线性规划问题
利用Hopfield神经网络求解如下非线性规划问题

智能控制作业

姓名:

学号:

2013.

智能控制作业(二)

无监督学习神经元网络

2. 利用Hopfield 神经网络求解如下非线性规划问题。

2222

1212121212min[(1)]

25.. 1.0060

x x x x x x x x s t x x -+++-=??

+-≤?

1.引入松弛变量:212 1.0060x x z +-+=

2.记2222

21212121212(1)(25)( 1.006)L x x x x x x x x x x z λη=-++++--++-+

原问题化为如下无约束问题:12,,min x x z

L

3.Hopfield 网络构造

12111

122111x x z

dx L c dt x dx L c dt x dz L c dt

z d L c dt

d L c dt λ

ηλληη-----??=-?????=-??????=-????=?????=???

则有:121112212222111112121212[2(1)2(21)][22(21)](2)(25)( 1.006)x x z dx c x x x x dt dx c x x x x dt dz c z dt d c x x x x dt d c x x z dt ληληληηλη-----?=--++++??

?=-++-+??

?=-???=+--???=+-+?? 假定,,,x z c c c c λη分别赋予以下实值,观察图形并比较最终结果的差异。 4 3 3 3

y1 =-0.6872 y2 =-2.3953

10203040

5060708090

t

y

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

MAAB非线性规划及非线性约束条件求解

M A T L A B 非线性规划及非线性约束条件求解 【题1】求非线性规划问题:221212121min 262 f x x x x x x = +--- clear all clc f=@(x)((1/2)*x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-6*x(2)); A=[11;-12;21]; b=[2;2;3]; Aeq=[];beq=[]; lb=[0;0]; ub=[100;100]; x0=[11]'; intlist=[0;0]; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题2】求非线性规划问题:123min f x x x =- clear all clc f=@(x)(-x(1)*x(2)*x(3)); A=[-1-2-2;122]; b=[0;72]; Aeq=[];beq=[]; lb=[];ub=[]; x0=[1;1;1]; intlist=[000]'; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题3】求非线性规划问题:()12212122min 42421x f e x x x x x =++++ function [c,ceq]=nolic2(x) c(1)=x(1)*x(2)-x(1)-x(2)+3/2; ceq=[]; end clear all clc f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2) +1); A=[];b=[];Aeq=[];beq=[]; lb=[-10-10]'; ub=[]; x0=[11]'; intlist=[00]';

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

离散Hopfield神经网络的分类--高校科研能力评价

代码: 离散Hopfield的分类——高校科研能力评价 clear all clc %% 导入数据 load class.mat %% 目标向量 T=[class_1 class_2 class_3 class_4 class_5]; %% 创建网络 net=newhop(T); %% 导入待分类样本 load sim.mat A={[sim_1 sim_2 sim_3 sim_4 sim_5]}; %% 网络仿真 Y=sim(net,{25 20},{},A); %% 结果显示 Y1=Y{20}(:,1:5) Y2=Y{20}(:,6:10) Y3=Y{20}(:,11:15) Y4=Y{20}(:,16:20) Y5=Y{20}(:,21:25) %% 绘图 result={T;A{1};Y{20}}; figure for p=1:3 for k=1:5 subplot(3,5,(p-1)*5+k) temp=result{p}(:,(k-1)*5+1:k*5); [m,n]=size(temp); for i=1:m for j=1:n if temp(i,j)>0 plot(j,m-i,'ko','MarkerFaceColor','k'); else plot(j,m-i,'ko'); end hold on end end

axis([0 6 0 12]) axis off if p==1 title(['class' num2str(k)]) elseif p==2 title(['pre-sim' num2str(k)]) else title(['sim' num2str(k)]) end end end % noisy=[1 -1 -1 -1 -1;-1 -1 -1 1 -1; -1 1 -1 -1 -1;-1 1 -1 -1 -1; 1 -1 -1 -1 -1;-1 -1 1 -1 -1; -1 -1 -1 1 -1;-1 -1 -1 -1 1; -1 1 -1 -1 -1;-1 -1 -1 1 -1; -1 -1 1 -1 -1]; y=sim(net,{5 100},{},{noisy}); a=y{100} %% %% 清空环境变量 clear all clc %% 导入记忆模式 T = [-1 -1 1; 1 -1 1]'; %% 权值和阈值学习 [S,Q] = size(T); Y = T(:,1:Q-1)-T(:,Q)*ones(1,Q-1); [U,SS,V] = svd(Y); K = rank(SS); TP = zeros(S,S); for k=1:K TP = TP + U(:,k)*U(:,k)'; end TM = zeros(S,S);

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

利用Hopfield神经网络求解如下非线性规划问题

智能控制作业 姓名: 学号: 2013.

智能控制作业(二) 无监督学习神经元网络 2. 利用Hopfield 神经网络求解如下非线性规划问题。 2222 1212121212min[(1)] 25.. 1.0060 x x x x x x x x s t x x -+++-=?? +-≤? 1.引入松弛变量:212 1.0060x x z +-+= 2.记2222 21212121212(1)(25)( 1.006)L x x x x x x x x x x z λη=-++++--++-+ 原问题化为如下无约束问题:12,,min x x z L 3.Hopfield 网络构造 12111 122111x x z dx L c dt x dx L c dt x dz L c dt z d L c dt d L c dt λ ηλληη-----??=-?????=-??????=-????=?????=??? 则有:121112212222111112121212[2(1)2(21)][22(21)](2)(25)( 1.006)x x z dx c x x x x dt dx c x x x x dt dz c z dt d c x x x x dt d c x x z dt ληληληηλη-----?=--++++?? ?=-++-+?? ?=-???=+--???=+-+?? 假定,,,x z c c c c λη分别赋予以下实值,观察图形并比较最终结果的差异。 4 3 3 3

y1 =-0.6872 y2 =-2.3953 10203040 5060708090 t y

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

R语言求解线性规划和非线性规划

第七章线性规划与非线性规划 例1m a x z=10x 1+5x2 s.t.5x1+2x2<=8 3x1+4x2=9 x1+x2>=1 x1,x2>=0 首先可化为标准形式:min - z = -10x1 -5x2 s.t. 5x1+2x1<=8 -x1-x2<=-1 3x1+4x2=9 x1,x2>=0 library(Rglpk) obj<-c(-10,-5) mat<-matrix(c(5,2,-1,-1,3,4),3,2,T) dir<-c("<=","<=","==") rhs<-c(8,-1,9) Rglpk_solve_LP(obj,mat,dir,rhs) #直接求解 library(Rglpk) obj<-c(10,5) mat<-matrix(c(5,2,1,1,3,4),3,2,T) dir<-c("<=",">=","==") rhs<-c(8,1,9) Rglpk_solve_LP(obj,mat,dir,rhs,max=T) 非线性规划求解(Rdonlp2) 例2 有如下的条件约束最优化问题:

22min(sin cos ) 1001001001002133 2sin cos 3z x y y x x y x y x y xy x y =+-<

求解非线性规划

求解非线性规划

————————————————————————————————作者: ————————————————————————————————日期:

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数,Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Mat la b中的命令是 X =FM INC ON(FU N,X0,A,B,Ae q,Be q,LB ,UB,NONLCON,OP TIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,B eq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq =[],Beq =[];LB 和U B是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf,如果x 无上界,则U B=inf ;NON LCO N是用M 文件定义的非线性向量函数)(),(x Ceq x C ;O PTIONS 定义了优化参数,可以使用Ma tl ab缺省的参数设置。 例2 求下列非线性规划问题

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

数学建模线性规划与非线性规划

实验7:线性规划与非线性规划 班级:2015级电科班,学号:222015333210187,姓名:吴京宣,第1组 ====================================================================== 一、实验目的: 1. 了解线性规划的基本内容。 2. 直观了解非线性规划的基本内容。 3. 掌握用数学软件求解优化问题。 二、实验内容 1. 两个引例. 2. 用数学软件包MATLAB求解线性规划与非线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 非线性规划的基本理论 6. 钢管订购及运输优化模型. 三、实验步骤 对以下问题,编写M文件: 1.某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过800箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划. 2.某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60 台、80台.每季度的生产费用为(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

线性与非线性规划问题求解

线性与非线性规划问题求解 实验目的:学会用lindo 和lingo 软件求解线性和非线性规划,并作简单分析。 实验内容: 问题1:最佳连续投资方案 某部门在今后五年内考虑下列项目投资,已知 项目1 从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目 2 第三年年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4 万元; 项目 3 第二年年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3 万元; 项目4 五年内每年年初可购买公债,于每年末归还,并加利息6%. 该部门现有资金10万元,问它应如何确定给这些项目每年的投资额,使到第五年末拥有的资金的本利总额为最大? 提示:设ij y 表示第i 年年初投资给项目j 的资金额度(单位:万元),则各年的投资限制为 第一年:;101411≤+y y 第二年:年初拥有的资金额为,06.110141114y y y --+因此有 ;06.0101411242321y y y y y +-≤++ 第三年:年初拥有的资金额为 ;06.115.106.01024232124111411y y y y y y y ---+++- 因此有 ;06.006.015.0102423211411343231y y y y y y y y +--++≤++ 依次类推有: 第四年: ;06.006.015.006.015.01034323124232114114441y y y y y y y y y y +--+-+++≤+ 第五年: ; 06.006.015.006.015.006.015.0104441343231242321141154y y y y y y y y y y y +-+-++-+++≤本问题是要制定投资方案使第五年末该部门拥有的资金额最大,即 5441322306.115.125.140.1max y y y y f +++=. 问题2:运输问题 某公司有3个仓库A1、A2、A3,库存原料量分别为:A1为21吨,A2为12吨,A3为27

遗传算法解决非线性规划问题的Matlab程序

通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优 化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令 人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考! 模型的形式和适应度函数定义如下: nun £ =迟叼匸[(1_冏)督 i-1 /-I J=K乙员-??严丿=12 M…严 ▼ 0 或1* 适应度函数为3 Fi tn叱O)=》〔?巾1口{>?(卡(£)一/;0?门))转幷亠 Z j'-i 50 4 S0 其中比=2、即士£ = £ =瓦%■,口(1-务),马;j^ = s = ■ x v' y- to.8,02)., /-I i-L i-1 E 这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其 中将多目标转化为单目标采用简单的加权处理。 fun ctio n Fit ness=FITNESS(x,FARM,e,q,w) %%适应度函数 %输入参数列表 % x 决策变量构成的 4X50的0-1矩阵 % FARM 细胞结构存储的当前种群,它包含了个体x

% e 4 X50的系数矩阵 % q 4 X50的系数矩阵 % w 1 X50的系数矩阵 %% gamma=0.98; N=length(FARM);% 种群规模 F1=zeros(1,N); F2=zeros(1,N); for i=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx)); end ppp=(1-x)+(1-q).*x; f1=sum(w.*prod(ppp)); f2=sum(sum(e.*x)); Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2- F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方 function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm) %% 求解 01 整数规划的遗传算法 %% 输入参数列表

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

第三章 非线性规划[001]

第三章 非线性规划 §1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。 例 1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A 元,投资于第),,1(n i i 个项目需花资金i a 元,并预计可收益i b 元。试选择最佳投资方案。 解 设投资决策变量为 个项目 决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1 , 则投资总额为 n i i i x a 1 ,投资总收益为 n i i i x b 1。因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 n i i i A x a 10 另外,由于),,1(n i x i 只取值0或1,所以还有 .,,1,0)1(n i x x i i 最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为: n i i i n i i i x a x b Q 11 max s.t. n i i i A x a 10 .,,1,0)1(n i x x i i 上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。可概括为一般形式 )(min x f q j x h j ,,1,0)(s.t. (NP) p i x g i ,,1,0)(

求解非线性规划

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数, Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设置。 例2 求下列非线性规划问题

线性规划和基本不等式常见题型

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222 x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将直线 向右上方平移,过点A (2,0)时,有最小值2, 过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260 302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域, △ABC 的面积即为所求, 由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数 A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得 到整点个数为13个,选 D 四,求非线性目标函数的最值 例4、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则 z=x 2 +y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

相关文档
最新文档