外文资料翻译---多轴数控加工仿真的自适应固体

外文资料翻译---多轴数控加工仿真的自适应固体
外文资料翻译---多轴数控加工仿真的自适应固体

毕业设计(论文)外文资料翻译

系(院):机械工程学院

专业:机械设计制造及其自动化

姓名:

学号:1091101630

外文出处:Computer-Aided Design & Applications,

V ol. 2, Nos. 1-4, 2005, pp95-104

附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文

多轴数控加工仿真的自适应固体

香港T. Yau1, Lee S. Tsou2 and Y u C. Tong3

1中正大学,imehty@https://www.360docs.net/doc/2f18965511.html,.tw

2中正大学,lstsou@https://www.360docs.net/doc/2f18965511.html,.tw

3 中正大学,pu@https://www.360docs.net/doc/2f18965511.html,.tw

摘要:

如果在一个复杂的表面的加工中,通常会产生大量的线性NC段来近似精确的表面。如果没有发现,直到切割不准确的NC代码,则会浪费时间和昂贵的材料。然而,准确和视图独立验证的多坐标数控加工仍然是一个挑战。本文着重介绍了利用自适应八叉树建立一个可靠的多轴模拟程序验证模拟切割期间和之后的路线和工件的外观。体素模型的自适应八叉树数据结构是用来加工工件与指定的分辨率。隐函数的使用刀具接触点的速度和准确性的检验,以代表各种刀具的几何形状。它允许用户做切割模型和原始的CAD模型的误差分析和比较。在加工前运行数控机床,以避免浪费材料,提高加工精度,它也可以验证NC代码的正确性。

关键词:数控仿真加工,固体素模型,自适应

1.介绍

NC加工是一个基本的和重要的用于生产的机械零件的制造过程。在理想的情况下,数控机床将运行在无人值守模式。使用NC仿真和验证是必不可少的,如果要运行的程序有信心在无人操作。因此,它是非常重要的,在执行之前,以保证NC路径的正确性。从文学来说,数控仿真主要分为三种主要方法,如下所述。

第一种方法使用直接布尔十字路口实体模型来计算材料去除量在加工过程。这种方法在理论上能够提供精确的数控加工仿真,但使用实体建模方法的问题是,它是计算昂贵。使用构造实体几何仿真的成本刀具运动的O(N 4)的数量的四次幂成正比。第二种方法使用空间分割表示,代表刀具和工件。在这种方法中,一个坚实的对象被分解成一个集合的基本几何元素,其中包括体素并,dexels,G-缓冲器,依此类推,从而简化了过程的正规化布尔操作。第三种方法使用离散矢量路口。这

种方法是基于对一个表面成的一组点的离散化。切割是模拟计算通过与刀具路径信封的表面点的矢量的交点。

在多轴数控加工,切削刀具频繁地旋转,以便计算出工件的模型,该模型是依赖于视图,这是很困难的。因此在本文中,我们使用的体素的数据结构来表示的工件模型。不过,根据过去的文献,如果精度是必要的,大量的像素,必须设立执行布尔操作。这会消耗内存和时间。因此,我们的方法是使用八叉树的数据结构来表示的工件模型。八叉树可以适于创建与所需决议所需要的体素。我们利用八叉树的快速搜索与刀具接触的体素。然而,我们的方法使用了一个隐式的函数来表示的切削工具,因为切割器可以容易且准确地表示的隐式代数方程,并判断切割器保持在与工件接触也很容易。因此,我们的方法是可靠和准确的。

论文内容安排如下。第2节讨论的工件表示,使用八叉树体素模式。第3节给出用于表示各种刀具的几何形状的隐函数。第4节概述了该算法的3轴数控加工仿真程序。第5节说明了所提出的方法可以很容易地适应五轴联动数控仿真通过扩展的隐函数来容纳五轴旋转。实例证明所提出的方法的有效性和简单的。第6节说明了NC仿真所需的存储器空间和计算时间的实验结果。最后,结论在第7节。

2.立体几何体素表示

在本文中,我们使用一个像素的数据结构来表示研磨工件的自由形式的几何体素的新型固体,因为模型的轴对准和视图独立的性质。同时利用八叉树来避免创建大量的体素。该方法判断刀具保持与工件接触,发现接触的所有体素,然后将这些体素空间分辨率达到八像素递归直到达到所需的精度水平。因此,如果有与刀具接触体素,也没有必要细分模型。图1显示了八叉树数据结构和它所代表的体素模型。

图1. 八叉树数据结构和相关的体素模型

传统上,由于加工仿真采用均匀的体素数据结构来表示一个研磨工件,精度提高了体素数据时,将产生大量的工件。这将使加工仿真变慢,这是因为大量计算机内存的需要。因此,我们使用八叉树数据结构的自适应创造体素,需要仿真。

3. 刀具几何使用隐式函数表示

空间均匀的体素分割方法未能解决多维数控验证相当复杂与准确的工件。如果需要高精度,大量的体素必须成立进行布尔集合运算。这将消耗大量的内存和时间。但我们三轴仿真的新方法采用自适应的体素模型来表示一个研磨的工件,并使用隐式函数来表示的刀具实体模型。由于刀具不分解成一个集合的基本几何元素,因此可以实现高的精度。同时工件模型利用八叉树模型来减少不必要的体素。下面,我们描述了使用隐函数表示的各种刀具。

平立铣刀可以由一个圆柱体代表。图2显示平立铣刀切削方向一致。如果工具是平行于Z轴,且坐标系统转换,中心点位于原点。因此,一个平面铣刀的隐函数:

F ( X , Y , Z ) = max{abs ( Z ?L/2 ) ? L/2, X 2 + Y 2? R 2 } if Z≥ 0

该隐函数被用于确定体素在里面,外面,或交叉的刀不损失任何精度。裁判可以通过插入一个像素顶点坐标为隐函数。方程式(2)描述了一个顶点与刀具间的关系,如图3所示。

< 0 在内部表面

F ( X , Y , Z) = 0 在表面(2)

> 0 在外部表面

表示

R:刀具半径

L:从沿刀轴的中心点开始测量距离

图2:平面铣刀和相关的坐标系统

图3:隐函数用于确定刀具的内部或外部

球立铣刀是由一个圆柱和一个球体组成,如图4所示。如果工具是平行于Z轴,且坐标系统的原点平移到球体的中心,则一个球立铣刀的隐函数可以被描述为:

max{ abs ( Z ) ? L , X 2 + Y 2? R 2 } 若Z ≥ 0

F ( X , Y , Z )= (3)

X 2 + Y 2 + Z 2 ? R 2其他

表示

R:刀轴刀角中心径向距离

r:刀角半径

L:从沿刀轴的中心点开始测量距离

图4:球立铣刀和相关的坐标系统

圆角立铣刀可以由两个气缸和一个圆环表示。如果工具是平行于Z轴,且坐标系统转换到中心点,如图5所示,圆角端铣刀隐函数可推导为:

max{ abs ( Z ) ? L , X 2 + Y 2?(R+r)2 } 若Z ≥ 0

F ( X , Y , Z )= max{ abs ( Z ) ? L , X 2 + Y 2? R 2 } 否则abs(X)≤R

(X 2 + Y 2 + Z 2 +R 2)?4R2(X 2+ Z 2) 其他

表示

R:刀轴刀角中心径向距离

r:刀角半径

L:从沿刀轴的中心点开始测量距离

图5:圆角铣刀和相关的坐标系统

作为一个简单的平面铣刀,或复杂的圆角立铣刀,隐函数可以用来确定一点是

否是内部或外部的刀具直接应用的方程式。隐函数表示刀具的使用不仅是精确的几何形状,简单的概念,而且隐函数编程也很容易和简单。因此,我们可以很容易地知道隐式函数F(x,y,z)的存量和刀具之间的几何关系。

4. 三轴数控加工仿真

配制后的切削刀具的隐函数,需要被执行的一项重要任务是确定哪些需要在球磨过程中细分或删除的体素。图6则表示一个三轴NC路径模拟流程图:

图6:三轴加工仿真流程图

三轴NC路径模拟过程描述如下:

(1)第一步是读NC代码。然后我们可以得到每个数控段的开始和结束的刀具位置(CL)的刀具运动点。因此,三轴运动模型是任何两个工具的配置点位置的联合结构的CL插值。

(2)刀具的边界框是用来初步判断刀具接触体素模型的哪部分。其目的是摆脱不与刀具的体素接触。如果确定体素是与刀具接触,体素的顶点将被取代刀隐函数来决定是否像素顶点位于刀具的内部或外部。

(3)如果所有的体素点符合条件的F(x,y,z)<0时,则确认它的体素已被完全切断刀;也就是说,体素在落刀应该被消除。如果顶点部分落在里面和其他人以外,这意味着需要进一步划分体素。为了细分每一个体素,步骤(2)和步骤(3)将进行递归,直至达到预定的精度水平。

在NC路径当前段完成之后,步骤1再次上演,读取下一段数控代码。该程序是

遵循直到所有NC代码已读才结束。

在上述三轴加工仿真程序中,它是明确的,像素被细分需要根据刀具与工件之间的几何关系;大量的体素不一次全部在开始创建。图7则表明体素通过八叉树只与一个球立铣刀接触将细分。体素不与刀具接触则不会细分。因此,这种方法大大降低了体素的数量,节省了空间。

图7:三轴数控加工仿真

在Z-map模型的比较,使用体素模型仿真的结果是可以显示多轴加工。DEXEL 模型的视图有相关的限制,但体素模型没有这个限制。因此,三轴、五边加工可以利用本文的三轴仿真方法,如图8所示。

图8:三轴和五边的仿真实例

5. 五轴联动数控加工仿真

在五轴加工中,除了三个平移运动,刀具轴也会旋转。因此,我们对五轴仿真方法只修改刀隐函数。所有其他的步骤与三轴仿真是相同的。因此,刀具的三种可以表示如下:

平立铣刀可以由一个圆柱体代表。图9结果表明刀具轴沿着{n},中心点位于{ p}。因此,一个平面铣刀的隐函数:

F ( X , Y , Z ) = ? ({ x } ? { p }) T [ n ] 2({ x }?{ p }) ? R 2

若0 ≤ { n } T({ x } ? { p })≤L(5) 表示

R:刀具半径

{ x } ={ X Y Z}T:一个像素点的位置

{ n } ={ n x n y n z}T :刀具轴的单位矢量

{ p } ={ p x p y p z }T:中心点

0 -n z n y n x2-1 n x n y n x n z

[n]= n z 0 -n x [n]2= n x n y n y2-1 n y n z

-n y n x 0 n x n z n y n z n z2-1

图9:五轴旋转的平面铣刀模式

球立铣刀可以由一个圆柱和一个球体,工会代表。图10则结果表明刀具轴沿{ N}和中心点位于{P }。因此,一个球立铣刀的隐函数:

?({ x } ? { p }) T [ n ]2 ({ x } ? { p }) ? R 2

F ( X , Y , Z ) = 如果0 ≤ { n } T ({ x } ? { p }) ≤ L

({ x } ? { p }) T({ x } ? { p })? R2 其他

表示

R:刀具半径

{n}:刀具轴的单位矢量

图10:五轴模式旋转球立铣刀

圆角立铣刀可以由两个气缸和一个圆环工会代表。图11则结果表明刀具轴沿{n},中心点位于{P}。因此,一个圆形立铣刀的隐函数:

( ? { v } T [ n ] 2{ v }) ? ( R + r ) 2若0 ≤ { n } T{ v } ≤ L

F ( X , Y , Z ) = ( ? { v } T [ n ] 2{ v }) ? R 2否则0 ≤ { n } ({ v } ? r { n }) < r and

( ? { v }T [ n ]2{ v }) ≤ R 2

(( ? { v } T [ n ] 2 { v })+({n}T{v})2+R2-r2 )+4R2({ v } T [ n ] 2 { v })

表示

R:从刀轴刀角中心径向距离

r:刀角半径

{n}:刀具轴的单位矢量

{ v } = { x } ? { p}

图11:五轴式旋转圆角立铣刀

图12显示了一个简单的例子,从70度到50度左右的X轴和沿X轴移动的刀具轴的旋转。图13显示用于五轴加工叶轮的刀具路径和仿真过程。图14显示叶片五轴数控加工仿真的另外一个例子。

图12:五轴数控加工仿真。

(a)(b)

(c) (d)

图13:五轴模拟叶轮的例子。(a)刀具路径,(b)(C)与刀具加工工件,(d)完成的部分

(a) (b)

(c)(d)

图14:五轴模拟叶片的例子。(a)刀具路径,(b)(C)与刀具加工工件,(d)完成的部分

6. 实验结果

该方法已运行在2.4 GHz的奔腾4电脑,实现了在C + +和一些测试用例。标签1给出了自适应数控仿真所需要的内存空间和计算时间的比较。第一行显示的图片的数控轨迹的四个不同的模型。第二和第三行显示NC代码的信息。第四行是工件模型的分辨率。刀具模型由隐式函数正确表达,所以没有精度问题,第五行显示刀具使用的类型,最后三行是所需要的内存空间,计算时间和所提供的仿真结果。

推动

标签1:需要的内存空间和计算时间的自适应数控仿真。

标签2给出了所需要的内存空间,使用均匀的体素模型的数控加工仿真的计算时间的比较。为适应数控加工仿真的参数保持不变。在这种情况下,我们不能够模拟案例1(叶轮)和成功案例3(鞋),因为这样的案例超过内存限制。可以观察到的结果是壳体2(刀片)和壳体4(瓶)。相比较而言,该自适应数控仿真的优势是显而易见的,通过实现使用自适应数控仿真,时间和空间可以大大减少

标签2:所需的存储空间和均匀的体素模型的数控仿真计算时间。

7.结论

在本文中,我们提出了一个新的多轴模拟方法。本文的目的是使用自适应的体素模型来建立一个可靠的多轴模拟程序,可以模拟的切割路线和模拟之后的工件的外观。它允许用户进行切削模型与原始CAD模型比较及误差分析。它可以在加工数控机床之前验证其NC代码的准确性,以避免浪费材料和提高加工精度。

总之,对多轴模拟方法的优点如下所述。(1)模拟的方法比其他基于体素模拟的方法使用更少的内存。(2)仿真是独立的。DEXEL模型的视图有相关的限制,

而体素模型没有这个限制。(3)模拟是可靠和准确的。无论刀具的五轴还是三轴仿真都是采用隐函数来表示,整个方法简单可靠。

8.参考文献

[1].Choi, B. K., Jerard, R. B., Sculptured Surface Machining: Theory and Applications,

Kluwer Academic Publishers, 1998.

[2]. Wang, W. P., Wang, K. K., Geometric Modeling for Swept V olume of Moving Solids,

IEEE Computer Graphics & Applications, V ol. 6, No.12, 1986, pp 8-17

[3]. Atherton, P. R., A Scan-Line Hidden Surface Removal Procedure for Constructive

Solid Geometry, Computer Graphics, V ol. 17, No. 3, 1983, pp 73-82.

[4]. Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., Ejiri, K., A Flexible Quantitative

Method for NC Machining Verification Using a Space-Division Based Solid Model, The Visual Computer, V ol. 7, 1991, pp 149-157.

[5]. Jang, D., Kim, K., Jung, J., V oxel-Based Virtual Multi-Axis Machining, Advanced

Manufacturing Technology, V ol. 16, No. 10, 2000, pp 709-713.

[6]. Van Hook, T., Real Time Shaded NC Milling Display, Computer Graphics, V ol. 20,

No. 4, 1986, pp 15-20.

[7]. Huang, Y., Oliver, J. H., Integrated Simulation, Error Assessment, and Tool Path

Correction for Five-Axis NC Milling, Journal of Manufacturing Systems, V ol. 14, No. 5, 1995, pp 331-334.

[8]. Saito, T., Takahashi, T., NC Machining with G-buffer Method, Computer Graphics,

V ol. 25, 1991, pp 207-216

[9]. Chang, K. Y., Goodman, E. D., A Method for NC Tool Path Interference Detection

for A Multi-Axis Milling System, ASME Control of Manufacturing Process, DSC-V ol.28/PED-V ol.52, 1991, pp 23-30.

附件2:外文原文

Adaptive NC Simulation for Multi-axis Solid Machining

Hong T. Yau 1 , Lee S. Tsou 2 and Yu C. Tong 3

1National Chung Cheng University,imehty@https://www.360docs.net/doc/2f18965511.html,.tw

2National Chung Cheng University,lstsou@https://www.360docs.net/doc/2f18965511.html,.tw

3National Chung Cheng University,pu@https://www.360docs.net/doc/2f18965511.html,.tw

ABSTRACT

For the machining of a complicated surface, a large amount of linear NC segments are usually generated to approximate the surface with precision. If inaccurate NC codes are not discovered until the end of cutting, time and expensive material would be wasted. However, accurate and view-independent verification of multi-axis NC machining is still a challenge. This paper emphasizes the use of adaptive octree to develop a reliable multi-axis simulation procedure which verifies the cutting route and the workpiece appearance during and after simulation. V oxel models with adaptive octree data structure are used to approximate the machined workpiece with specified resolution. Implicit functions are used to represent various cutter geometries for the examination of cutter contact points with speed and accuracy. It allows a user to do error analysis and comparison between the cutting model and the original CAD model. It can also verify the exactness of NC codes before machining is carried out by a CNC machine in order to avoid wasting material and to improve machining accuracy.

Keywords: NC Simulation, Solid Machining, Adaptive V oxel Model

1.INTRODUCTION

NC machining is a fundamental and important manufacturing process for the production of mechanical parts. Ideally, an NC machine would be running in unmanned mode. The use of NC simulation and verification is essential if programs are to be run with confidence during an unmanned operation . Therefore, it is of vital importance to guarantee the exactness of NC paths before execution. From literature, NC simulation can mainly be divided into three major approaches , described as follows.

The first kind of approach uses direct Boolean intersections of solid models to calculate the material removal volumes during machining . This approach is theoretically capable of providing accurate NC simulation, but the problem with using the solid modeling approach is that it is computationally expensive. The cost of simulation using constructive solid geometry is proportional to the fourth power of the number of tool movements O(N 4 ) . The second kind of approach uses spatial partitioning representation to represent the cutter and the workpiece. In this approach, a solid object is decomposed into a collection of basic geometric elements, which include voxels , dexels,G-buffers , and so on, thus simplifying the processes of regularized Boolean set operations. The third

kind of approach uses discrete vector intersection . This method is based on a discretization of a surface into a set of points. Cutting is simulated by calculating the intersection of vectors which pass through the surface points with tool path envelopes. During multi-axis NC machining, the cutting tool frequently rotates so that it is very difficult to calculate a workpiece model that is view-dependent. Thus, in this paper, we use the voxel data structure to represent the workpiece model. But according to past literature, if precision is needed, a large number of voxels must be set up to carry out Boolean set operations. This consumes memory and time. Thus, our approach uses the octree data structure to represent the workpiece model. The octree can be adapted to create voxels with the desired resolutions that are needed. We utilize the octree to quickly search for voxels which have contact with the cutter. However, our approach uses an implicit function to represent the cutting tool because a cutter can be easily and exactly represented by implicit algebraic equations, and judging whether the cutter keeps in contact with the workpiece is also easy. Thus, our approach is reliable and precise.

The content of the paper is organized as follows. Section 2 discusses the workpiece representation using octree based voxel modes. Section 3 presents the formulation of implicit functions used to represent the geometry of various cutters.Section 4 outlines the procedure of the proposed algorithm for 3-axis NC simulation. Section 5 shows how the proposed approach can be easily adapted to 5-axis simulation by extending the implicit functions to accommodate for the 5-axis rotation. Examples are given to demonstrate the effectiveness and simplicity of the proposed approach. Section 6 shows the experimental results of the required memory space and computation time for NC simulation. At the end, conclusions are made in Section 7.

2.VOXEL REPRESENTATION OF SOLID GEOMETRY

In this paper, we use a voxel data structure to represent the free form solid geometry of a milled workpiece because a voxel model has axis alignment and view-independent properties. At the same time we use the octree to avoid creating a large number of voxels. The method judges whether the cutter keeps in contact with the workpiece, finds all voxels which have such contact, and then subdivides these voxels into eight voxels in space recursively until the resolution reaches the desired precision level. Thus, if there is no voxel in contact with the cutter, there is no need to subdivide the voxel. Fig. 1. shows the Octree data structure and the voxel model it represents.

Fig. 1. Octree data structure and the associated voxel model

Traditionally, since machining simulation uses the uniform voxel data structure to represent a milled workpiece, when precision increases, great quantity of voxel data will be produced to represent the workpiece. This will make the machining simulation slow because a lot of computer memory is needed. Thus, we use the octree data structure to adaptively create voxels as needed during simulation

3.REPRESENTATION OF CUTTER GEOMETRY USING IMPLICIT FUNCTIONS The spatial partitioning approach with uniform voxels has failed to address multi-dimensional NC verification for workpieces of comparable complexity and accuracy. If high precision is needed, a large number of voxels must be set up to carry out Boolean set operations. This will consume considerable amount of memory and time. But our new approach for three-axis simulation uses the adaptive voxel model to represent a milled workpiece, and uses implicit functions to represent a solid model of the cutter. Since the cutter is not decomposed into a collection of basic geometric elements, high accuracy can be achieved. At the same time the workpiece model makes use of the octreemodel to reduce the number of unnecessary voxels. In the following, we describe the representation of various cutters using implicit functions.

Flat endmills can be represented by a cylinder. Fig. 2. shows the flat endmill aligned with the direction of cutting. Assuming the tool is parallel to the z-axis, and the coordinate system is translated such that the center point is located at the origin. Thus, the implicit function of a flat endmill is:

F ( X , Y , Z ) = max{abs ( Z ?L/2 ) ? L/2, X 2 + Y 2? R 2 } if Z≥ 0

This implicit function is used to determine whether a voxel is inside, outside, or intersected with the cutter without losing any accuracy. The judgment can be made by inserting the coordinates of the vertices of a voxel into the implicit function. Eqn. (2) describes the relationship between a vertex and the cutter, which is also illustrated in Fig.

3.

< 0 lie inside the surface

F ( X , Y , Z) = 0 lie on the surface (2) > 0 lie outsid the surface

where

R : the cutter radius

L : the distance measured from the center point along the cutter axis

Fig. 2. Flat endmill and the associated coordinate system

Fig. 3. Implicit function used to determine the interior or exterior of a cutter

Ball endmills can be represented by the union of a cylinder and a sphere, as shown in Fig.

4. Assuming the tool is parallel to the z-axis, and the origin of the coordinate system is translated to the center of the sphere, the implicit function of a ball endmill can be described as:

max{ abs ( Z ) ? L , X 2 + Y 2? R 2 } if Z ≥ 0

F ( X , Y , Z )= (3)

X 2 + Y 2 + Z 2 ? R 2otherwise

where

R : the cutter radius

L : the distance measured from the center point along the cutter axis

Fig. 4. Ball endmill and the associated coordinate system

Fillet endmills can be represented by the union of two cylinders and a torus. Assuming the tool is parallel to the z-axis, and the coordinate system is translated to the center point as shown in Fig. 5., the implicit function of a fillet endmill can be derived as:

max{ abs ( Z ) ? L , X 2 + Y 2?(R+r)2 } if Z ≥ 0

F ( X , Y , Z )= max{ abs ( Z ) ? L , X 2 + Y 2? R 2 } else if abs(X)≤R

(X 2 + Y 2 + Z 2 +R 2)?4R2(X 2+ Z 2) otherwise

Where

R : the radial distance from the cutter axis to the cutter corner center

r : the cutter corner radius

L : the distance measured from the center point along the cutter axis

Fig. 5. Fillet endmill and the associated coordinate system

As simple as a flat endmill, or as complex as a fillet endmill, the implicit functions can be used to decide whether a point is inside or outside a cutter by a direct application of Eqn.

(2). The use of implicit functions to represent a cutter is not only precise in geometry, simple in concept, and the programming of implicit functions is also very easy and straightforward. Thus, we can easily know the geometric relationship between the stock and the cutter by using the implicit functionF ( X , Y , Z).

4.SIMULATION OF THREE-AXIS NC MACHINING

After the implicit function of the cutting tool is formulated, an important task that needs to be performed is to determine which voxels need to subdivided or deleted during the milling process. Fig. 6. shows the flow chart of a three-axis NC path simulation.

Fig. 6. Flow chart of three-axis machining simulation

The process of a three-axis NC path simulation is described as follows.

(1)The first step is to read the NC codes. Then for each NC segment, we can get the start

and end cutter location (CL) points of a tool motion. Thus, the three-axis motion is modeled by a joint interpolation of CL points of the configuration of any two tool positions.

(2)The bounding box of the cutter is used preliminarily to judge which part of a voxel

model the cutter is in contact with. The purpose is to get rid of voxels not in contact with the cutter. If it is determined that a voxel is in contact with the cutter, the voxel vertices will be substituted into the implicit function of the cutter to decide if the voxel vertices lie inside or outside the cutter.

(3)If all of the voxel vertices meet the conditions F ( X , Y , Z) <0, it is confirmed the

voxels have been totally cut by the cutter; that is to say that the voxel falling in the cutter should be eliminated. If part of the vertices fall inside and the others outside, it means the voxel needs to be further divided. For each subdivided voxel, step (2) and step (3) will be carried out recursively until a predetermined precision level is reached.

After the current segment of the NC path is finished, step 1 is performed again, and the next segment of the NC code is read. The procedure is followed to the end until all NC codes have been read.

In the procedure for three-axis machining simulation mentioned above, it is clear that

voxels are subdivided as needed according to the geometric relationship between the cutter and the workpiece; a large number of voxels are not created all at once in the beginning. Fig. 7. shows that voxels in contact only with a ball endmill will be subdivided by the octree. V oxels not in contact with the cutter will not be subdivided. Thus, this approach greatly reduces the number of voxels and saves memory during simulation.

Fig. 7. Three-axis NC machining simulation.

In comparison with z-map model, NC simulation using voxel model can display multi-axis machining result. The dexel model has the restriction of being view-dependent, but the voxel model does not have this restriction. Thus, three-axis, five-side machining can utilize the three-axis simulation method of this paper, as Fig. 8. shows.

Fig. 8. Example of three-axis and five-side simulation

5.SIMULATION OF FIVE-AXIS NC MACHINING

In five-axis NC machining, in addition to the three translation movements, the tool axis can also be rotated. Therefore, our approach to five-axis simulation only revises the implicit function of the cutter. All other procedures are the same as the three-axis simulation. Thus, the three kinds of cutters can be expressed as follows:

Flat endmills can be represented by a cylinder. Fig. 9. shows that the tool axis is along{n?} and the center point islocated at{p} . Thus, the implicit function of a flat endmill is:

F ( X , Y , Z ) = ? ({ x } ? { p }) T [ n ] 2({ x }?{ p }) ? R 2

If 0 ≤ { n } T({ x } ? { p })≤L(5) Where

R: the cutter radius

{ x } ={ X Y Z}T:the position of a voxel vertex

{ n } ={ n x n y n z}T :the unit vector of the tool axis

{ p } ={ p x p y p z }T:the center point

0 -n z n y n x2-1 n x n y n x n z

[n]= n z 0 -n x [n]2= n x n y n y2-1 n y n z

-n y n x 0 n x n z n y n z n z2-1

Fig. 9:Flat endmill rotated in five-axis mode

Ball endmills can be represented by the union of a cylinder and a sphere. Fig. 10. shows that the tool axis is along{n and the center point is located at{p} . Thus, the implicit function of a ball endmill is:

?({ x } ? { p }) T [ n ]2 ({ x } ? { p }) ? R 2

F ( X , Y , Z ) = if 0 ≤ { n } T ({ x } ? { p }) ≤ L

({ x } ? { p }) T({ x } ? { p })? R2 otherwise

Where

R : the cutter radius

{ n }: the unit vector of the tool axis

Fig. 10. Ball endmill rotated in five-axis mode

Fillet endmills can be represented by the union of two cylinders and a torus. Fig. 11. shows that the tool axis is along{n}and that the center point is located at{p} . Thus, the implicit function of a round endmill is:

( ? { v } T [ n ] 2{ v }) ? ( R + r ) 2若0 ≤ { n } T{ v } ≤ L

F ( X , Y , Z ) = ( ? { v } T [ n ] 2{ v }) ? R 2否则0 ≤ { n } ({ v } ? r { n }) < r and

( ? { v }T [ n ]2{ v }) ≤ R 2

(( ? { v } T [ n ] 2 { v })+({n}T{v})2+R2-r2 )+4R2({ v } T [ n ] 2 { v }) Where

R : the radial distance from the cutter axis to the cutter corner center

r : the cutter corner radius

{ n } : the unit vector of the tool axis

{ v } = { x } ? { p}

Fig. 11. Fillet endmill rotated in five-axis mode

Fig. 12. shows a simple example of a cutter axis rotated from 70 degrees to 50 degrees about the x-axis and moved along the x-axis. Fig. 13. shows the tool paths and simulation process used for five-axis machining of an impeller. Fig. 14. shows another example of five-axis machining simulation of a blade.

.

Fig. 12. Five-axis machining simulation

(a) (b)

(c) (d)

Fig. 13. Example of impeller in five-axis simulation. (a) Tool paths. (b)(c) In-process workpiece with a cutter. (d)

Finished part.

(a) (b)

(c) (d)

Fig. 14. Example of blade in five-axis simulation. (a) Tool paths. (b)(c) In-process workpiece with a cutter. (d) Finished

part.

6.EXPERIMENTAL RESULTS

The proposed method has been implemented in C++ and some test cases were run on a 2.4 GHZ Pentium 4 computer. Tab. 1. gives a comparison of the required memory space and computation time for adaptive NC simulation. The first row shows the pictures of NC path for four different models. The second and third rows show the information of NC code. The fourth row is the resolution of the workpiece model. The cutter models are presented by implicit functions exactly, so there is no accuracy issue here. The fifth row shows the types of cutter being used. The last three rows are the required memory space,

Impeller

Tab. 1. Required memory space and computation time for adaptive NC simulation.

Tab. 2. gives a comparison of the required memory space and computation time for NC simulation using uniform voxel models. The parameters remain the same as adaptive NC simulation. Under this condition, we are not able to simulate case1 (Impeller) and case3 (shoe) because such cases exceed our memory limitation. The results that can be observed are case 2 (blade) and case 4 (bottle). By comparison, the advantage of the adaptive NC simulation is clear. A great reduction of time and space can be achieved by using the adaptive NC simulation.

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.360docs.net/doc/2f18965511.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

外文翻译

Load and Ultimate Moment of Prestressed Concrete Action Under Overload-Cracking Load It has been shown that a variation in the external load acting on a prestressed beam results in a change in the location of the pressure line for beams in the elastic range.This is a fundamental principle of prestressed construction.In a normal prestressed beam,this shift in the location of the pressure line continues at a relatively uniform rate,as the external load is increased,to the point where cracks develop in the tension fiber.After the cracking load has been exceeded,the rate of movement in the pressure line decreases as additional load is applied,and a significant increase in the stress in the prestressing tendon and the resultant concrete force begins to take place.This change in the action of the internal moment continues until all movement of the pressure line ceases.The moment caused by loads that are applied thereafter is offset entirely by a corresponding and proportional change in the internal forces,just as in reinforced-concrete construction.This fact,that the load in the elastic range and the plastic range is carried by actions that are fundamentally different,is very significant and renders strength computations essential for all designs in order to ensure that adequate safety factors exist.This is true even though the stresses in the elastic range may conform to a recognized elastic design criterion. It should be noted that the load deflection curve is close to a straight line up to the cracking load and that the curve becomes progressively more curved as the load is increased above the cracking load.The curvature of the load-deflection curve for loads over the cracking load is due to the change in the basic internal resisting moment action that counteracts the applied loads,as described above,as well as to plastic strains that begin to take place in the steel and the concrete when stressed to high levels. In some structures it may be essential that the flexural members remain crack free even under significant overloads.This may be due to the structures’being exposed to exceptionally corrosive atmospheres during their useful life.In designing prestressed members to be used in special structures of this type,it may be necessary to compute the load that causes cracking of the tensile flange,in order to ensure that adequate safety against cracking is provided by the design.The computation of the moment that will cause cracking is also necessary to ensure compliance with some design criteria. Many tests have demonstrated that the load-deflection curves of prestressed beams are approximately linear up to and slightly in excess of the load that causes the first cracks in the tensile flange.(The linearity is a function of the rate at which the load is applied.)For this reason,normal elastic-design relationships can be used in computing the cracking load by simply determining the load that results in a net tensile stress in the tensile flange(prestress minus the effects of the applied loads)that is equal to the tensile strength of the concrete.It is customary to assume that the flexural tensile strength of the concrete is equal to the modulus of rupture of the

数控加工外文翻译

数控加工中心技术发展趋势及对策 原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China) 一、摘要 Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, Keywords:Numerical ControlTechnology, E quipment,industry 二、译文 数控技术和装备发展趋势及对策 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最为核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战

1外文文献翻译原文及译文汇总

华北电力大学科技学院 毕业设计(论文)附件 外文文献翻译 学号:121912020115姓名:彭钰钊 所在系别:动力工程系专业班级:测控技术与仪器12K1指导教师:李冰 原文标题:Infrared Remote Control System Abstract 2016 年 4 月 19 日

红外遥控系统 摘要 红外数据通信技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持。红外收发器产品具有成本低,小型化,传输速率快,点对点安全传输,不受电磁干扰等特点,可以实现信息在不同产品之间快速、方便、安全地交换与传送,在短距离无线传输方面拥有十分明显的优势。红外遥控收发系统的设计在具有很高的实用价值,目前红外收发器产品在可携式产品中的应用潜力很大。全世界约有1亿5千万台设备采用红外技术,在电子产品和工业设备、医疗设备等领域广泛使用。绝大多数笔记本电脑和手机都配置红外收发器接口。随着红外数据传输技术更加成熟、成本下降,红外收发器在短距离通讯领域必将得到更广泛的应用。 本系统的设计目的是用红外线作为传输媒质来传输用户的操作信息并由接收电路解调出原始信号,主要用到编码芯片和解码芯片对信号进行调制与解调,其中编码芯片用的是台湾生产的PT2262,解码芯片是PT2272。主要工作原理是:利用编码键盘可以为PT2262提供的输入信息,PT2262对输入的信息进行编码并加载到38KHZ的载波上并调制红外发射二极管并辐射到空间,然后再由接收系统接收到发射的信号并解调出原始信息,由PT2272对原信号进行解码以驱动相应的电路完成用户的操作要求。 关键字:红外线;编码;解码;LM386;红外收发器。 1 绪论

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.360docs.net/doc/2f18965511.html, Overview https://www.360docs.net/doc/2f18965511.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.360docs.net/doc/2f18965511.html, is part of https://www.360docs.net/doc/2f18965511.html, Framework,and when coding https://www.360docs.net/doc/2f18965511.html, applications you have access to classes in https://www.360docs.net/doc/2f18965511.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.360docs.net/doc/2f18965511.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.360docs.net/doc/2f18965511.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.360docs.net/doc/2f18965511.html, Framework.All of these are tools that you use to create https://www.360docs.net/doc/2f18965511.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.360docs.net/doc/2f18965511.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.360docs.net/doc/2f18965511.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/2f18965511.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/2f18965511.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.360docs.net/doc/2f18965511.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/2f18965511.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/2f18965511.html, Web pages on your own computer.

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

中英文文献翻译-加工中心数控技术

加工中心数控技术 出处:数控加工中心的分类以及各自特点 出版社:化学工业出版社; 第1版 (2009年3月16日) 作者:徐衡、段晓旭 加工中心是典型的集高技术于一体的机械加工设备,它的发展代表了一个国家设计制造的水平也大大提高了劳动生产率,降低了劳动成本,改善了工人的工作环境,降低了工人的劳动强度。本文经过对不同运动方案和各部件的设计方案的定性分析比较确定该教立式加工中心的进给传动方案为:采用固定床身,电主轴通过安装座安装在床身导轨的滑座上,床身导轨采用滚动导轨,可以实现Y 方向的进给运动。由X-Y双向精密数控工作台带动工件完成X,Y两个方向的进给运动;X,Y,Z三个方向的进给运动均滚珠丝杠,并由交流伺服电机驱动。导轨、滚珠丝杠有相应的润滑、防护等装置。 加工中心(英文缩写为CNC 全称为Computerized Numerical Control):是带有刀库和自动换刀装置的一种高度自动化的多功能数控机床。在中国香港,台湾及广东一代也有很多人叫它电脑锣。 工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。 加工中心数控机床是一种装有计算机数字控制系统的机床,数控系统能够处理加工程序,控制机床完成各种动作。与普通机床相比,数控机床能够完成平面曲线和空间曲面的加工,加工精度和生产效率都比较高,因而应用日益广泛。 数控机床的组成 一般来说,数控机床由机械部分、数字控制计算机、伺服系统、PC控制部分、液压气压传动系统、冷却润滑和排泄装置组成。数控机床是由程序控制的,零件的编程工作是数控机床加工的重要组成部分。伺服系统是数控机床的驱动部分,计算机输出的控制命令是通过伺服系统产生坐标移动的。普通的立式加工中心有三个伺服电机,分别驱动纵向工作台、横向工作台、主轴箱沿X向、Y向、Z向运动。X、Y、Z是互相垂直的坐标轴,因而当机床三坐标联动时可以加工空

毕业设计外文资料翻译译文

附件1:外文资料翻译译文 包装对食品发展的影响 一个消费者对某个产品的第一印象来说包装是至关重要的,包括沟通的可取性,可接受性,健康饮食形象等。食品能够提供广泛的产品和包装组合,传达自己加工的形象感知给消费者,例如新鲜包装/准备,冷藏,冷冻,超高温无菌,消毒(灭菌),烘干产品。 食物的最重要的质量属性之一,是它的味道,其影响人类的感官知觉,即味觉和嗅觉。味道可以很大程度作退化的处理和/或扩展存储。其他质量属性,也可能受到影响,包括颜色,质地和营养成分。食品质量不仅取决于原材料,添加剂,加工和包装的方法,而且其预期的货架寿命(保质期)过程中遇到的分布和储存条件的质量。越来越多的竞争当中,食品生产商,零售商和供应商;和质量审核供应商有显着提高食品质量以及急剧增加包装食品的选择。这些改进也得益于严格的冷藏链中的温度控制和越来越挑剔的消费者。 保质期的一个定义是:在食品加工和包装组合下,在食品的容器和条件,在销售点分布在特定系统的时间能保持令人满意的食味品质。保质期,可以用来作为一个新鲜的概念,促进营销的工具。延期或保质期长的产品,还提供产品的使用时间,方便以及减少浪费食物的风险,消费者和/或零售商。包装产品的质量和保质期的主题是在第3章中详细讨论。 包装为消费者提供有关产品的重要信息,在许多情况下,使用的包装和/或产品,包括事实信息如重量,体积,配料,制造商的细节,营养价值,烹饪和开放的指示,除了法律准则的最小尺寸的文字和数字,有定义的各类产品。消费者寻求更详细的产品信息,同时,许多标签已经成为多语种。标签的可读性是为视障人士的问题,这很可能成为一个对越来越多的老年人口越来越重要的问题。 食物的选择和包装创新的一个主要驱动力是为了方便消费者的需求。这里有许多方便的现代包装所提供的属性,这些措施包括易于接入和开放,处置和处理,产品的知名度,再密封性能,微波加热性,延长保质期等。在英国和其他发达经济体显示出生率下降和快速增长的一个相对富裕的老人人口趋势,伴随着更加苛

中文和英文简历和专业英语材料翻译

韶关学院 期末考核报告 科目:专业英语 学生姓名: 学号: 同组人: 院系: 专业班级: 考核时间:2012年10月9日—2012年11月1 日评阅教师: 评分:

第1章英文阅读材料翻译 (1) 第2章中文摘要翻译英文 (3) 第3章中文简历和英文简历 (4) 第4章课程学习体会和建议 (6) 参考文献 (7)

第1章英文阅读材料翻译 Mechanization and Automation Processes of mechanization have been developing and becoming more complex ever since the beginning of the Industrial Revolution at the end of the 18th century. The current developments of automatic processes are, however, different from the old ones. The “automation” of the 20th century is distinct from the mechanization of the 18th and 19th centuries inasmuch as mechanization was applied to individual operations, wherea s “automation” is concerned with the operation and control of a complete producing unit. And in many, though not all, instances the element of control is so great that whereas mechanization displaces muscle, “automation”displaces brain as well. The distinction between the mechanization of the past and what is happening now is, however, not a sharp one. At one extreme we have the electronic computer with its quite remarkable capacity for discrimination and control, while at the other end of the scale are “ transfer machines” , as they are now called, which may be as simple as a conveyor belt to another. An automatic mechanism is one which has a capacity for self-regulation; that is, it can regulate or control the system or process without the need for constant human attention or adjustment. Now people often talk about “feedback” as begin an essential factor of the new industrial techniques, upon which is base an automatic self-regulating system and by virtue of which any deviation in the system from desired condition can be detected, measured, reported and corrected. when “feedback” is applied to the process by which a large digital computer runs at the immense speed through a long series of sums, constantly rejecting the answers until it finds one to fit a complex set of facts which have been put to it, it is perhaps different in degree from what we have previously been accustomed to machines. But “feedback”, as such, is a familiar mechanical conception. The old-fashioned steam engine was fitted with a centrifugal governor, two balls on levers spinning round and round an upright shaft. If the steam pressure rose and the engine started to go too fast, the increased speed of the spinning governor caused it to rise up the vertical rod and shut down a valve. This cut off some of the steam and thus the engine brought itself back to its proper speed. The mechanization, which was introduced with the Industrial Revolution, because it was limited to individual processes, required the employment of human labor to control each machine as well as to load and unload materials and transfer them from one place to another. Only in a few instances were processes automatically linked together and was production organized as a continuous flow. In general, however, although modern industry has been highly mechanized ever since the 1920s, the mechanized parts have not as a rule been linked together. Electric-light bulbs, bottles and the components of innumerable mass-produced

相关文档
最新文档