GJB548B_2005微电子器件试验方法和程序文件

GJB548B_2005微电子器件试验方法和程序文件
GJB548B_2005微电子器件试验方法和程序文件

WORD 格式整理

GJB 548B-2005 微电子器件试验方法和程序

点击次数: 181 发布时间: 2011-3-1 14:24:07

GJB 548B-2005 代替 GJB 548A-1996

中华人民共和国国家军用标准

微电子器件试验方法和程序

Test methods and procedures for microelectronic device

方法 1009.2盐雾(盐汽)

1目的

本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验

1.1术语和定义

1.1.1腐蚀corrosion

指涂层和 ( 或 ) 底金属由于化学或电化学的作用而逐渐地损坏

1.1.2腐蚀部位corrosion site

指涂层和 ( 或 ) 底金属被腐蚀的部位,即腐蚀位置

1.1.3腐蚀生成物(淀积物) corrosion product(dcposit)

指腐蚀作用的结果 ( 即锈或氧化铁、氧化镍、氧化锡等 ) 。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流

动或蔓延而覆盖非腐蚀区域。

1.1.4腐蚀色斑corrosion stain

腐蚀色斑是由腐蚀产生的半透明沉淀物。

1.1.5气泡blister

指涂层和底金属之间的局部突起和分离

1.1.6针孔pinhole

指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。

1.1.7凹坑pitting

指涂层和 ( 或 ) 底金属的局部腐蚀,在某一点或小区域形成空洞

1.1.8起皮flaking

指局部涂层分离,而使底金属显露

2设备

盐雾试验所用设备应包括:

a)带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料( 玻璃、塑料等) 制造。在试验

箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,

以防止产生“高压”

,并保持盐雾的均匀分布;

b)能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采

用符合试验条件 C 和 D(

见 3.2) 要求的备用盐溶液容器;

c)使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由 20%氧、80%氮组成的混合气体 ( 应防止诸如油和灰尘

等杂质随气体进入雾化器中);

d)试验箱应能加热和控制

e)在高于试验箱温度的某温度下,使空气潮湿的手段;

f)空气或惰性气体于燥器;

g)1 倍 ~3 倍、 10 倍~20 倍和 30 倍 ~60 倍的放大镜。

3 程序

3.1试验箱的维护和初始处理

试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在 (35 ±3) ℃

,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。

某些试验可能在清洗

之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件( 见 3.2) 。当需要做长时间试验 ( 见 3.2 的试验

条件 C 和 D)时,盛盐溶液的容器可采用备用的容器来补充,以便试验不中断。清洗后,试

验箱开始工作时,盐溶

液应补满该容器,并且应对试验箱进行适当地控制,使其温度稳定( 见 3.1.4)。如果试验箱中断工作超过一个

星期,即使还留有盐溶液,也应废弃。而且试验箱在重新开始工作之前应当进行清洗。如果盐溶液的pH 值和浓度

保持在 3.1.1中规定的范围之内,允许试验箱不连续工作。

3.1.1盐溶液

为了达到 3.1.4所要求的淀积速率,盐溶液的浓度应为0.5%~3.0%( 重量百分比 ) 的去离子水或蒸馏水溶液。所用

的盐应为氯化钠,其碘化钠的质量百分比不得多于0.1%,且总杂质的质量百分比不得多于

0.3%。在 (35 ±3) ℃

下测量时,盐溶液的pH 值应在 6.5~7.2之间。只能用化学纯的盐酸或氢氧化钠( 稀溶液 ) 来调整 pH 值。

3.1.2引线的预处理

除另有规定外,试验样品不应进行预处理。当有要求时( 见 4c) ,样品进行试验之前,器件

引线应按方法2004 试

验条件 B1 的要求,承受弯曲应力的初始处理。如果进行试验的样品已经作为其他试验的一

部分进行过所要求的初

始处理,那么,其引线无需重新弯曲。

3.1.3试验样品的安置

样品应按下述方位安置在固定的夹具上 ( 有机玻璃棒、尼龙或玻璃纤维筛、尼龙绳等 ) 。样品应这样安置,使它

们彼此不接触,彼此不遮挡,能自由地接受盐雾作用,腐蚀生成物和凝聚物不会从一个样品

落到另一个样品上。

a)引线固定于封装侧面或引线从封装侧面引出的双列封装( 例:侧面纤焊双列封装和陶瓷玻

璃熔封双列封装)

:盖面向上,偏离垂直方向15°~45°。将有引线的一个封装侧面向上,偏离垂直方向大于

或等于 15°( 见图 Ia)

)

b)引线固定于封装底部 ( 与盖板相对的那一面 ) 或引线从底部引出的封装 ( 例如金属圆形封装,

金属平板封装

) :盖板偏离垂直方向15°~45°。试验时一半样品应盖面向上;剩下一半,引线向上( 见图1b)

c)引线固定于封装某一面或从某一面引出,且与盖板平行的封装( 例如扁平封装 ) :盖板偏离垂直方向15°~45

°将有引线的封装面向上,且偏离垂直方向或等于15°。对金属壳封装,试验时一半样品

封帽向上。剩下的样品

外壳向上。其他封装都应盖板向上做试验( 见图 1c) 。

d)无引线或有引线片式载体:盖板偏离垂直方向 15°~45°, 试验时一半样品盖板向上,剩余的

样品盖板向下 (

见图 1d)

注 1:对于要求进行两种取向的试验,应把规定的样品数分成两等份 ( 或尽可能接近一半 ) 。在所有的情况下,

对所有的封装表面按 3.4 进行试验后的检查。

注2:对开有窗口的紫外线可擦器件进行试验时,要采取保护措施,以防止光感应电动势

产生电解作用。

3.1.4试验箱的控制

按照第 3 章的要求对试验箱进行处理之后,具有温度至少35℃的盐雾在规定的试验时间内

( 见 3.2) 流过试验箱。

试验箱内的温度应保持在(35 ±3) ℃。盐雾的浓度和速度应调节到使得盐在试验区域内的淀

积速率在 (20~50)

g/(m2 ·d) 之间。盐的淀积速率可以用体积的、重要的或其他方法来测定( 由用户任意选择) 。在试验箱底部收

集的盐液应废弃。

3.2试验时间

应从下列试验条件中规定试验的最短时间。除另有规定外,应采用试验条件A

3.3 样品检验的准备工作

完成试验后,试验样品应立即用自由流动的去离子水( 水温不得超过38℃) 至少冲洗5min,以便除去样品表面沉

淀的盐。而后样品用空气或惰性气体吹干,进行下述检查。

表 1 试验条件

试验条件试验时间 h

A24

B48

C96

D240

3.4失效判据

除 3.4.1 b)和 3.4.1 c)另有规定外,所有检查都应在放大10 倍 ~20 倍的情况下进行。

注 1:腐蚀色斑不应认为是 3.4.1a)中所指的缺陷

注 2:由引线腐蚀产生的淀积在引线以外部位的腐蚀生成物,不应认为是 3.4.1a)中所指的缺陷。

注3:引线端头的腐蚀和由此腐蚀产生的腐蚀生成物,不应判为不合格。

注4:若由于几何形状尺寸或设计 ( 例如针栅阵列封装的引线底部或陶瓷双列封装的钎焊部分)

不能按 3.4.1b(

作进一步试验的引线,应根据 3.4.1a)失效判据进行判定。

3.4.1带有表面镀涂的产品

器件出现以下情况则不能接收:

a)腐蚀缺陷面积超过除引线外的任何封装零件 ( 例如盖板、管帽或外壳 ) 镀涂或底金属面积的 5%。在测量中要

计入的腐蚀缺陷有:凹坑、气泡、起皮和腐蚀生成物。腐蚀缺陷面积由以下方法确定:用已

知缺陷面积的卡片或

照片 ( 见图 2) 进行比较,用网格或类似的测量器具或镜像分析仪直接测量。

b)引线缺损、断裂或部分分离。此外,若引线出现针孔、凹坑、气泡、起皮、腐蚀生成物

完全跨越引线,或玻

璃封装中出现针孔、凹坑、气泡、起皮、腐蚀生成或腐蚀色斑的引线,应进一步做如下试验:在引线缺陷处弯曲

90°,使拉伸应力加到缺陷处。若出现引线的断裂或底层金属的破裂面超过引线横截面积的50%,应拒收。若有

多处出现缺陷,应在腐蚀最严重处进行弯曲。对10 根以上引线出现缺陷的封装,只需对最

多 10 根腐蚀最严重引线

进行弯曲。应放大30 倍 ~60 倍进行破裂情况检查。

c)规定标志的一部分脱落、褪色、弄脏、模糊或不可辨认。该检查应在室内正常照明下放

大 1 倍~3 倍进行。

3.4.2封装元件

作为来料检查,在封装装配之前,对封装元件或部分组装的封装壳体进行本试验,或作

为一种选择性的质量控

制在完成封装之前进行本试验,或作为一种要求的试验( 见 4d) 时,呈现下列现象的元件不得接收:

a) 腐蚀缺陷面积超过盖板镀涂面积或底金属面积的 1.0%,或超过除引线以外其他任何封装零件(例如外壳 )镀

涂面积或底金属面积的 2.5%。器件制造完成后不会暴露于周围环境的镀涂或底金属层上的腐

蚀不必考虑。应根据

3.4.1a)程序进行本条检查。

b)其引线镀涂根据 3.4.1b) 应被拒收的引线

4说明

有关的订购文件应规定以下内容:

a)试验时间(若不是试验条件A)( 见 3.2)

b)试验后的测量和检查 ( 除目检外 )( 见 3.4)

c)预处理的要求 ( 若需要 ) 和程序 ( 若不按 3.1.2 的规定 )

d)封装元件的来料检查或部分组装的封装壳体检查的要求( 见 3.4.2)(需要时)。

工程部维修工的岗位职责1、严格遵守公司员工守则和各项规章制度,服从领班安排,除完成日常维修任务外,有计划地承担其它工作任务; 2 、努力学习技术,熟练掌握现有电气设备的

原理及实际操作与维修; 3、积极协调配电工的工作,出现事故时无条件地迅速返回机房,听从领班的指挥; 4 、招待执行所管辖设备的检修计划,按时按质按量地完成,并填好记录表格; 5 、严格执行设备管理制度,做好日夜班的交接班工作; 6 、交班时发生故障,上一班必须协同下一班排队故障后才能下班,配电设备发生事故时不得离岗; 7 、请假、补休需在一天前报告领班,

并由领班安排合适的替班人.

电子科技大学微电子器件实验讲义

1-1 1-2 1-1 1-2 1XJ4810 2 3 1XJ4810 XJ48101-3 1 2 3 50Hz 4 5 6

XJ4810XJ4810[1] 1-3 XJ4810 23DG6 npn 1R i R i CE V B BE i I V R 3DG6V CE = 10V Q R i 1- 4 0~10V + + 0.1~1k x 0 .1V/ y 0.1mA/ x 1V/10V x 0.1V/V CE =10V 1-5 .200101.002 .03 10 V V B BE i CE I V R 1-4 1-5

2h FE h FE 1- 4 0~50V + + 0.1~1k x 2V/ y 2mA/ 0.02mA/ 1-6 11002. 02.2100 1.010 10101010B C V CE V mA C I B C V CE V mA C I FE I I I I h h FE h FE 1-7x 1-6 1-7 I B g I B B I CE c V I g ""--2mA/I E

CB V E C I I 3V CES V BES V CES V BES V CES C --E V BES B --E V BES =0.7~0.8V V BES =0.3~0.4V V CES V BES V BES 1-4I C =10mA I B =1mA 0~50V 0.5~1K + + x 0.05V/ y 1mA/ 0.1mA/ / 10 1011I C =10mA V CE V CES 1-8V CES =0.15V y x 0.1V/1-9I B =1mA V BE V BES 1-9V BES = 0.78V 1-8 V CES 1-9 V BES 4BV CBO BV CEO BV EBO V B BV CEO BV CBO c Wc BV CBO x mB V B W C c W C BV CBO C --B BV CEO

GJBB微电子器件试验方法和程序文件

G J B B微电子器件试验方 法和程序文件 Revised final draft November 26, 2020

GJB 548B-2005 微电子器件试验方法和程序 点击次数:181 发布时间:2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996?中华人民共和国国家军用标准微电子器件试 验方法和程序Test methods and procedures for microelectronic device 方法 1009.2 盐雾(盐汽) 1 目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1 术语和定义 1.1.1 腐蚀 corrosion指涂层和(或)底金属由于化学或电化学的作用而逐渐地损 坏1.1.2 腐蚀部位 corrosion site指涂层和(或)底金属被腐蚀的部位,即腐蚀位置1.1.3 腐蚀生成物(淀积物) corrosion product(dcposit)指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4 腐蚀色斑 corrosion stain腐蚀色斑是由腐蚀产生的半透明沉淀物。1.1.5 气泡 blister指涂层和底金属之间的局部突起和分离1.1.6 针孔 pinhole指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。1.1.7 凹坑 pitting指涂层和(或)

底金属的局部腐蚀,在某一点或小区域形成空洞1.1.8 起皮 flaking指局部涂层分离,而使底金属显露 2 设备盐雾试验所用设备应包括:a) 带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料(玻璃、塑料等)制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,以防止产生“高压” ,并保持盐雾的均匀分布;b) 能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采用符合试验条件C和D( 见3.2)要求的备用盐溶液容器;c) 使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中);d) 试验箱应能加热和控制e) 在高于试验箱温度的某温度下,使空气潮湿的手段;f) 空气或惰性气体于燥器;g) 1倍~3倍、10倍~20倍和30倍~60倍的放大镜。 3 程序3.1 试验箱的维护和初始处理试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在(35±3)℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件(见3.2)。当需要做长时间试验(见3.2的试验

微电子器件设计

微电子器件设计作业—MOSFET 考虑一个理想N沟和P沟MOSFET互补对,要将其设计为偏置相同时的I—V曲线也相同。器件有相同的氧化层厚度t ox=25nm,相同的沟道长度L=2μm,假设二氧化硅层是理想的。N沟器件的沟道宽度为W=20μm,μn=600cm2/Vs,μp=220 cm2/Vs,且保持不变。(a)确定p型和n型衬底掺杂浓度。(b)阈值电压是多少?(c)p沟器件的沟道宽度是多少? 设计方案 一、分析 但实际工业生产中,NMOS和PMOS均做在同一晶片上,即共用同一衬底。在互补MOS技术中,同时用到了NMOS和PMOS,而PMOS器件的实现可以通过将所有的掺杂类型取反。 对于本设计来说: 互补对:指NMOS和PMOS特性的绝对值相等; 偏置相同:指二者所加偏压的绝对值相同,当所加偏置电压相同时I—V、ID—VDS 和ID—VGS曲线都分别相同。也即是两个MOS 管的阈值电压和偏置相同时的跨导gm均相等。 迁移率:由于实际中的有效迁移率受诸多因素(栅电压、衬底浓度不均匀等)的影响,如果要精确确定器件的特性,需要大量的误差计算,以及结合实际实验和设备的有关测量进行准确设计。因此在本设计中,迁移率视为恒定的有效迁移率,。同时,忽略温度的影响, 掺杂

浓度对载流子有散射作用。在MOS 管的反型层中,当表面感生电荷密度小于10e12cm -2时,电子和空穴的有效迁移率均是常数,为半导体内迁移率的一半。 模型:因为N 沟和P 沟MOSFET 沟道长度相等,均为L=2μm,属于长沟道器件,该设计整体选定长沟道MOS 器件模型。 二、 确定各参数 1、确定p 型和n 型衬底掺杂浓度 (1)、计算P 型衬底掺杂浓度 衬底浓度时采用半导体载流子扩散模型。根据要求,形成反型层 后电子迁移率μn =600cm 2 /Vs 。由于在MOS 管的反型层中,表面感生 电荷密度小于10e12cm -2时,电子和空穴的有效迁移率是常数,为半 导体内迁移率的一半,则半导体内电子迁移率μn =1200cm 2/Vs 。 利用半导体载流子扩散模型: 2 160.9 1180232cm /Vs 1(Na/810 ) n μ=+ +? (2.115) 可以计算出:P 型衬底浓度为Nap=1.48×1016 / cm 3 (2)、计算N 型衬底掺杂浓度 形成反型层后的空穴迁移率μp =220 cm 2/Vs,半导体内迁移率那么就为μp =440 cm 2/Vs. 利用半导体载流子扩散模型: 2 p 17 1.25 370130cm /Vs 1(d/810 ) N μ=+ +? (2.116)

微电子器件实验5模版 联合仿真 nmos

南京邮电大学 课内实验报告 课程名:微电子器件设计 任课教师: 专业:微电子学 学号: 姓名: 2014/2015学年第2学期 南京邮电大学电子科学与工程学院

《微电子器件设计》课程实验第 5 次实验报告 实验内容及基本要求: 实验项目名称:MOS晶体管的工艺器件联合仿真 实验类型:验证 每组人数:1 实验内容及要求: 内容:采用Tsuprem4仿真软件对MOS晶体管进行工艺仿真,并采用MEDICI仿真软件对该MOS晶体管进行器件仿真。 要求:能够将工艺仿真软件得到的器件数据输出到某个文件中,并能在器件仿真中调用该文件。会画出并分析器件仿真结果。 实验考核办法: 实验结束要求写出实验报告。内容如下: 1、问题的分析与解答; 2、结果分析,比较不同器件结构参数对仿真结果的影响; 3、器件设计的进一步思考。 实验结果:(附后) 实验代码如下: COMMENT Example 9B - TSUPREM-4/MEDICI Interface COMMENT TSUPREM-4 Input File OPTION DEVICE=PS COMMENT Specify the mesh LINE X LOCATION=0 SPACING=0.20 LINE X LOCATION=0.9 SPACING=0.06 LINE X LOCATION=1.8 SPACING=0.2 LINE Y LOCATION=0 SPACING=0.01 LINE Y LOCATION=0.1 SPACING=0.01 LINE Y LOCATION=0.5 SPACING=0.10

LINE Y LOCATION=1.5 SPACING=0.2 LINE Y LOCATION=3.0 SPACING=1.0 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.0 Y.MAX=0.15 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.06 Y.MAX=0.20 ELIMIN COL X.MIN=0.8 Y.MIN=1.0 COMMENT Initialize and plot mesh structure INITIALIZ <100> BORON=1E15 SELECT TITLE=”TSUPREM-4: Initial Mesh” PLOT.2D GRID COMMENT Initial oxide DEPOSIT OXIDE THICKNESS=0.03 COMMENT Models selection. For this simple example, the OED COMMENT model is not turned on (to reduce CPU time) METHOD VERTICAL COMMENT P-well implant IMPLANT BORON DOSE=3E13 ENERGY=45 COMMENT P-well drive DIFFUSE TEMP=1100 TIME=500 DRYO2 PRESS=0.02 ETCH OXIDE ALL COMMENT Pad oxidation DIFFUSE TEMP=900 TIME=20 DRYO2 COMMENT Pad nitride DEPOSIT NITRIDE THICKNESS=0.1 COMMENT Field oxidation DIFFUSE TEMP=1000 TIME=360 WETO2 ETCH NITRIDE ALL COMMENT Vt adjust implant IMPLANT BORON ENERGY=40 DOSE=1E12 ETCH OXIDE ALL COMMENT Gate oxidation DIFFUSE TEMP=900 TIME=35 DRYO2 DEPOSIT POLYSILICON THICKNESS=0.3 DIVISIONS=4 COMMENT Poly and oxide etch ETCH POLY LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 ETCH OXIDE LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 DEPOSIT OXIDE THICKNESS=0.02 COMMENT LDD implant IMPLANT PHOS ENERGY=50 DOSE=5E13 COMMENT LTO DEPOSIT OXIDE THICK=0.2 DIVISIONS=10 COMMENT Spacer etch ETCH OXIDE DRY THICK=0.22 COMMENT S/D implant IMPLANT ARSENIC ENERGY=100

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

GJBB微电子器件试验方法和程序修订稿

G J B B微电子器件试验 方法和程序 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

G J B548B-2005微电子器件试验方法和程序 点击次数:181 发布时间:2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996?中华人民共和国国家军用标准微电子器件试验方法和程序Test methods and procedures for microelectronic device 方法盐雾(盐汽) 1 目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 术语和定义 1.1.1 腐蚀 corrosion 指涂层和(或)底金属由于化学或电化学的作用而逐渐地损坏 腐蚀部位 corrosion site 指涂层和(或)底金属被腐蚀的部位,即腐蚀位置 腐蚀生成物(淀积物) corrosion product(dcposit)指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4 腐蚀色斑 corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 气泡 blister 指涂层和底金属之间的局部突起和分离

针孔 pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 凹坑 pitting 指涂层和(或)底金属的局部腐蚀,在某一点或小区域形成空洞 起皮 flaking指局部涂层分离,而使底金属显露 2 设备盐雾试验所用设备应包括:a) 带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料(玻璃、塑料等)制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,以防止产生“高压” ,并保持盐雾的均匀分布;b) 能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采用符合试验条件C和D( 见要求的备用盐溶液容器;c) 使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中);d) 试验箱应能加热和控制e) 在高于试验箱温度的某温度下,使空气潮湿的手段;f) 空气或惰性气体于燥器;g) 1倍~3倍、10倍~20倍和30倍~60倍的放大镜。 3 程序 试验箱的维护和初始处理试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在(35±3)℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件(见。当需要做长时间试验(见的试验

GJB548B_2005微电子器件试验方法和程序文件

WORD 格式整理 GJB 548B-2005 微电子器件试验方法和程序 点击次数: 181 发布时间: 2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996 中华人民共和国国家军用标准 微电子器件试验方法和程序 Test methods and procedures for microelectronic device 方法 1009.2盐雾(盐汽) 1目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1术语和定义 1.1.1腐蚀corrosion 指涂层和 ( 或 ) 底金属由于化学或电化学的作用而逐渐地损坏 1.1.2腐蚀部位corrosion site 指涂层和 ( 或 ) 底金属被腐蚀的部位,即腐蚀位置 1.1.3腐蚀生成物(淀积物) corrosion product(dcposit) 指腐蚀作用的结果 ( 即锈或氧化铁、氧化镍、氧化锡等 ) 。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4腐蚀色斑corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 1.1.5气泡blister 指涂层和底金属之间的局部突起和分离 1.1.6针孔pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7凹坑pitting 指涂层和 ( 或 ) 底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8起皮flaking 指局部涂层分离,而使底金属显露

2设备 盐雾试验所用设备应包括: a)带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料( 玻璃、塑料等) 制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风, 以防止产生“高压” ,并保持盐雾的均匀分布; b)能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采 用符合试验条件 C 和 D( 见 3.2) 要求的备用盐溶液容器; c)使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由 20%氧、80%氮组成的混合气体 ( 应防止诸如油和灰尘 等杂质随气体进入雾化器中); d)试验箱应能加热和控制 e)在高于试验箱温度的某温度下,使空气潮湿的手段; f)空气或惰性气体于燥器; g)1 倍 ~3 倍、 10 倍~20 倍和 30 倍 ~60 倍的放大镜。 3 程序 3.1试验箱的维护和初始处理 试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在 (35 ±3) ℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。 某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件( 见 3.2) 。当需要做长时间试验 ( 见 3.2 的试验 条件 C 和 D)时,盛盐溶液的容器可采用备用的容器来补充,以便试验不中断。清洗后,试 验箱开始工作时,盐溶

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电 性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。 3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 ~1kΩ(适当选择) ?x轴作用电压0 .1V/度 ?y轴作用电流10A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 十、实验结论:

微电子工艺课程设计

微电子工艺课程设计 一、摘要 仿真(simulation)这一术语已不仅广泛出现在各种科技书书刊上,甚至已频繁出现于各种新闻媒体上。不同的书刊和字典对仿真这一术语的定义性简释大同小异,以下3种最有代表性,仿真是一个系统或过程的功能用另一系统或过程的功能的仿真表示;用能适用于计算机的数学模型表示实际物理过程或系统;不同实验对问题的检验。仿真(也即模拟)的可信度和精度很大程度上基于建模(modeling)的可信度和精度。建模和仿真(modeling and simulation)是研究自然科学、工程科学、人文科学和社会科学的重要方法,是开发产品、制定决策的重要手段。据不完全统计,目前,有关建模和仿真方面的研究论文已占各类国际、国内专业学术会议总数的10%以上,占了很可观的份额。 集成电路仿真通过集成电路仿真器(simulator)执行。集成电路仿真器由计算机主机及输入、输出等外围设备(硬件)和有关仿真程序(软件)组成。按仿真内容不同,集成电路仿真一般可分为:系统功能仿真、逻辑仿真、电路仿真、器件仿真及工艺仿真等不同层次(level)的仿真。其中工艺和器件的仿真,国际上也常称作“集成电路工艺和器件的计算机辅助设计”(Technology CAD of IC),简称“IC TCAD”。

二、 综述 这次课程设计要求是:设计一个均匀掺杂的pnp 型双极晶体管,使T=346K 时,β=173。V CEO =18V ,V CBO =90V ,晶体管工作于小注入条件下,最大集电极电流为IC=15mA 。设计时应尽量减小基区宽度调制效应的影响。要求我们先进行相关的计算,为工艺过程中的量进行计算。然后通过Silvaco-TCAD 进行模拟。 TCAD 就是Technology Computer Aided Design ,指半导体工艺模拟以及器件模拟工具,世界上商用的TCAD 工具有Silvaco 公司的Athena 和Atlas ,Synopsys 公司的TSupprem 和Medici 以及ISE 公司(已经被Synopsys 公司收购)的Dios 和Dessis 以及Crosslight Software 公司的Csuprem 和APSYS 。这次课程设计运用Silvaco-TCAD 软件进行工艺模拟。通过具体的工艺设计,最后使工艺产出的PNP 双极型晶体管满足所需要的条件。 三、 方案设计与分析 各区掺杂浓度及相关参数的计算 对于击穿电压较高的器件,在接近雪崩击穿时,集电结空间电荷区已扩展至均匀掺杂的外延层。因此,当集电结上的偏置电压接近击穿电压V 时, 集电结可用突变 结近似,对于Si 器件击穿电压为 4 3 13 106- ?=)(BC B N V , 集电区杂质浓度为: 3 4 13 34 13)1106106CEO n CBO C BV BV N β+?=?=()( 由于BV CBO =90所以Nc=*1015 cm -3 一般的晶体管各区的浓度要满足NE>>NB>NC 设N B =10N C ;N E =100N B 则: Nc=*1015 cm -3 ;N B =*1016 cm -3 ;N E =*1018 cm -3 根据室温下载流子迁移率与掺杂浓度的函数关系,得到少子迁移率: s V cm ?==/13002n C μμ;s V cm P B ?==/3302μμ;s V cm N E ?==/1502μμ 根据公式可得少子的扩散系数:

微电子器件试验二极管高低温特性测试及分析

电子科技大学微固学院 标准实验报告(实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。

3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。 图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100?A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 0.1~1kΩ(适当选择) ?x轴作用电压0 .1V/度

?y轴作用电流10?A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流0.1?A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 图 3 常温二极管直流特性 十、实验结论:

微电子实验完成版

实验指导书 教学单位:电子工程系 课程名称:微电子器件 面向专业:电子科学与技术 电子科技大学中山学院 2008年5月

实验指导书 实验名称:实验一图示仪检测晶体管和MOS管参数学时安排:4 实验类别:验证性实验要求:必做 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄一、实验目的和任务 本实验目的是用图示仪检测晶体管直流参数;学习并掌握该仪器的基本测试原理和使用方法,并巩固及加深对晶体管原理课程的理解。 二、实验原理介绍 测定晶体管的特性曲线和各种直流参数,最原始的方法是逐点测试扫描图法。例如测定PNP晶体管共发射极输出特性(V c ~ I c | I b = 常数),只要R B远大于晶体管的输入电阻,则确定一个基极电位E BB,而改变集电极电位E CC,即能测出确定I B条件下V C和I C各个对应值,适当选取坐标就可绘制出晶体管特性曲线。若要得到一族曲线,就得改变数次I B值。显然,这种测试方速度太慢,而且在测试击穿特性(如击穿电压V CEO、V CBO)和最大I CM 时易烧坏晶体管。如果E CC能随时间连续变化,击穿电压和最大电流将是瞬时值,只要不过大,一般不会损坏晶体管。如果把基极电压(或电流)改变数次,用一个等阶梯波代替,且把集电极电压和电流加到示波器上,就能直接从示波管的屏幕上得到一族晶体管特性曲线。 其中仪器里面的阶梯波信号电路:它包括阶梯波发生器、阶梯放大器及阶梯选择开关。它的作用是产生一个阶梯幅度相等,重复频率为100周和200周并与集电极半波正弦扫描电压有一定对应关系的阶梯波,根据测试要求,通过“阶梯选择”开关改变阶梯波幅度的大小(即改变被测晶体管基极电流或基极电压的阶梯值)、阶梯波的极性,对于每组出现的阶梯数也可由“级/簇”开关控制其大小。 集电极扫描电路:由扫描电压发生器、极性开关及功耗限制电阻组成。它给被测晶体管提供一个100周半波正弦扫描电压,其幅值有五个档位,且线性可调。根据被测管的类型,改变扫描电压极性、幅度,选择适当功耗电阻值。注意:对于NPN晶体管测量时,扫描电压极性选择为“+”,阶梯信号的极性为“+”;而PNP管测试时,扫描电压极性为“-”,阶梯信号极性为“-”。测试管座上C和E孔分别接在仪器内部电源的正极和负极上;而当扫描电压极性为“-”时,测试管座上C孔和E孔分别接在仪器内部电源的负极和正极上。在测试击穿电压时不要接错。 为使在测试时不损坏晶体管,在测试电路中引入了功耗限制电阻。功耗限制电阻在测量

GJB-B--微电子器件试验方法和程序

GJB 548B-2005 微电子器件试验方法和程序 点击次数:181 发布时间:2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996 中华人民共和国国家军用标准 微电子器件试验方法和程序 Test methods and procedures for microelectronic device 方法 1009.2 盐雾(盐汽) 1 目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1 术语和定义 1.1.1 腐蚀 corrosion 指涂层和(或)底金属由于化学或电化学的作用而逐渐地损坏 1.1.2 腐蚀部位 corrosion site 指涂层和(或)底金属被腐蚀的部位,即腐蚀位置 1.1.3 腐蚀生成物(淀积物) corrosion product(dcposit) 指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4 腐蚀色斑 corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 1.1.5 气泡 blister 指涂层和底金属之间的局部突起和分离 1.1.6 针孔 pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7 凹坑 pitting 指涂层和(或)底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8 起皮 flaking 指局部涂层分离,而使底金属显露

2 设备 盐雾试验所用设备应包括: a) 带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料(玻璃、塑料等)制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,以防止产生“高压” ,并保持盐雾的均匀分布; b) 能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采用符合试验条件C和D( 见3.2)要求的备用盐溶液容器; c) 使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中); d) 试验箱应能加热和控制 e) 在高于试验箱温度的某温度下,使空气潮湿的手段; f) 空气或惰性气体于燥器; g) 1倍~3倍、10倍~20倍和30倍~60倍的放大镜。 3 程序 3.1 试验箱的维护和初始处理 试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在(35±3)℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件(见3.2)。当需要做长时间试验(见3.2的试验 条件C和D)时,盛盐溶液的容器可采用备用的容器来补充,以便试验不中断。清洗后,试验箱开始工作时,盐溶

基于微电子器件的可靠性分析

基于微电子器件的可靠性分析 发表时间:2016-11-08T10:25:33.353Z 来源:《电力设备》2016年第16期作者:宋健 [导读] 若夹断层的热载流子与声子碰撞,热载流子会进入到栅氧化层,引起阀值电压飘逸,造成整个电路性能的缺失或不灵敏。 (潍坊科技学院) 摘要:近年来人们对于电子器件的要求越来越高,集成度要求高,造成电流密度的增加,对电子元件的耐压和公路容量的要求也在提高。集成度高,电流密度增加,最频繁的工作量下,其器件的热分布也会有很大的变化,会造成电子元件的失效甚至损坏。加强电子元件的可靠性,成为越来越重要的命题。本文针对微电子器件的可靠性进行了分析。 关键词:基于微电子器件的可靠性分析 随着电子信息产业的发展越来越快,微电子技术水平不断提高,对于微电子技术来说,电子产品的微型化,需要材料的支持,随着电子产品的缩小,相关物件想要达到一定的性能,会受到物理条件的制约,但微电子器件又需要朝着高集成度、高速度、高可性等方向发展,功能要求也需要日益强大。这就需要提高微电子器件的可靠性,保证电子产品的正常运行。 1影响微电子器件可靠性的主要因素 1.1热载流子效应,影响微电子器件的可靠性 热载流子效应是影响微电子电路失效的重要因素之一。集中度过高,造成电流密度的增加,器件中电荷的分布被改变,导致器件性能灵敏度下降甚至失效。与此同时,热载流子效应会对集成电路的集成度及电路和器件的可靠性造成影响。产生雪崩倍增效应、阀值电压飘逸、MOSFET(金属氧化物半导体场效应管)性能退化、寄生晶体管效应。雪崩倍增效应产生于热载流子与价电子之间的碰撞,一般在小尺寸的MOSFET中,因为源一漏电压的升高以及沟道长度的变化,夹断层会相应的产生变化。若夹断层的热载流子与声子碰撞,热载流子会进入到栅氧化层,引起阀值电压飘逸,造成整个电路性能的缺失或不灵敏。 1.2金属化和点的迁移,也会影响微电子器件的可靠性 金属原子发生扩散和迁移的物理现象是电迁移。电迁移使得原子不断的聚集,另一侧则形成空洞,原子的聚集造成导电截面的缩小,于此同时导电截面的缩小又造成原子的聚集,最终导致器件完全的失效。直流电在电子器件中作用于金属,会引起金属中离子位置的变动,这种电迁移现象,首先表现的是电阻的变化,进而影响金属膜局部出现破洞,或者是局部金属膜的堆积,造成电路的连线或者完全失效,影响器件的使用时间。 在我们日常生活中会碰到的静电,在电子器件中也存在,并会对器件可靠性造成影响。静电放电在传统的微电子器件中相对能量较小,可能造成的后果和影响并不明显,一般不被人觉察,但是在高密度的微电子器件中,因为电流密度的倍增,可能造成的静电远远超过了传统的微电子器件,在高密度的微电子器件中,因为静电电场变化和静电放电电流会引起微电子器件内部各个部分失衡,导致设备无法正常运转。 静电放电直接或者间接地都会对电子器件本身造成伤害。直接损伤由电流产生的功耗引起,它会熔化器件的一部分造成故障,电子器件无法正常运转,影响设备的部分功能,或使设备无法正常工作。温度是造成电子器件出现问题的直接原因,但是造成其温度变化的正是静电放电,造成器件内部原子分布问题,电离子移动、聚集,同时静电放电本身也会产生散热对器件造成永久性的伤害。焦耳热是因为静电放电造成的后果,焦耳热产生的温度上升会使金属膜融化,当到达一定熔点,精密的电子器件中的长丝可能会被击断,导致开路,更为严重的情况是,结漏电流会同时使得结细丝、结尖刺及其金属都被融化。与此同时,静电放电还可能在绝缘层发生作用,发生绝缘层的击穿。潜在损伤因为电荷的变化导致器件晶体管电流电压的变化,使电路出现退化,但是整个器件并不会出现功能的失效,只是器件内部电路的退化,但是潜在的损害,在我们发现问题时,更加的难以处理,因为我们并不能确定到底是哪个部分出现的问题。 2栅氧化层及栅氧击穿 因为微电子技术向微型化发展造成基层电路细微化,栅氧化层越来越薄,而电源电压却保持定值,这就对栅氧化层提出了新的要求。如果栅氧化层的导电性能和抗电性能出现问题,那么整个电子器件的安全性都将成为突出问题。这个模型图可以看出有关氧化层TDDB的问题,正确的认识氧化层的寿命。 3微电子器件可靠性的提升措施 3.1抑制热载流子效应,由上文所述我们已经知道热载流子产生的原因及如何对电子器件造成损害。针对其原因,①要对电子器件的制作和设计提高要求。减少漏结附近的电场,可使热载流子发射的可能性降低。要改善栅氧化层的质量,②采用更加先进的技术,有效的降低热载流子的陷进密度及俘获截面,减少原子被截留的数量,进而减少由于热载流子进入到栅氧化层而对器件性能的影响。③采用新的结构模式,如低掺杂漏结构等,可提高击穿电压,减少可能会发生碰撞的电离。④可在电路和版画设计上采取如采用钳位器件或适当增大宽长比等措施。 3.2改善金属化问题,首先要解决界面效应,因为器件性能的提高,热电应力在器件金属化单位面积上不断增大,导致金属与金属、金属与半导体之间的界面扩散及反应的几率增大或许会形成金属与金属的高阻化合物,上层金属穿过阻挡层进人半导体中也可能使器件漏电增大或结短路。因此,界面效应成为目前急需解决的问题。解决界面效应最有效的方法是选择一个合适的阻挡层。事实上,为了防止金属与金属以及金属与半导体的反应及扩散,引人了金属阻挡层。TiN熔点高,热稳定性和化学稳定性好,有极高的硬度和较低的电阻率,干法

GJB548B_2005微电子器件试验办法和程序文件

GJB548B-2005微电子器件试验方法和程序 点击次数:181发布时间:2011-3-114:24:07 GJB548B-2005代替GJB548A-1996 ?中华人民共和国国家军用标准 微电子器件试验方法和程序 方法 1目的 1.1 1.1.1腐蚀 指涂层和( 1.1.2 指涂层和( 1.1.3 指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4腐蚀色斑corrosionstain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 1.1.5气泡blister

指涂层和底金属之间的局部突起和分离 1.1.6针孔pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7凹坑pitting 指涂层和(或)底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8起皮 2设备 a))制造。在试验 b) 验条件C 见3.2) c)使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中); d)试验箱应能加热和控制 e)在高于试验箱温度的某温度下,使空气潮湿的手段; f)空气或惰性气体于燥器;

g)1倍~3倍、10倍~20倍和30倍~60倍的放大镜。 3程序 3.1试验箱的维护和初始处理 试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在(35±3)℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。某些试 (见3.2的试验 条件C和 的pH 保持在 3.1.1 的盐应为氯化钠,其碘化钠的质量百分比不得多于0.1%,且总杂质的质量百分比不得多于0.3%。在(35±3)℃ 下测量时,盐溶液的pH值应在6.5~7.2之间。只能用化学纯的盐酸或氢氧化钠(稀溶液)来调整pH 值。 3.1.2引线的预处理 除另有规定外,试验样品不应进行预处理。当有要求时(见4c),样品进行试验之前,器件引线应按方法2004试

GJBB微电子器件试验方法和程序

G J B B微电子器件试验方 法和程序 Revised final draft November 26, 2020

G J B548B-2005微电子器件试验方法和程序 点击次数:181 发布时间:2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996?中华人民共和国国家军用标准微电子器件试验方法和程序Test methods and procedures for microelectronic device 方法盐雾(盐汽) 1 目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 术语和定义 1.1.1 腐蚀 corrosion 指涂层和(或)底金属由于化学或电化学的作用而逐渐地损坏 腐蚀部位 corrosion site 指涂层和(或)底金属被腐蚀的部位,即腐蚀位置 腐蚀生成物(淀积物) corrosion product(dcposit)指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4 腐蚀色斑 corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 气泡 blister 指涂层和底金属之间的局部突起和分离

针孔 pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 凹坑 pitting 指涂层和(或)底金属的局部腐蚀,在某一点或小区域形成空洞 起皮 flaking指局部涂层分离,而使底金属显露 2 设备盐雾试验所用设备应包括:a) 带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料(玻璃、塑料等)制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,以防止产生“高压” ,并保持盐雾的均匀分布;b) 能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采用符合试验条件C和D( 见要求的备用盐溶液容器;c) 使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中);d) 试验箱应能加热和控制e) 在高于试验箱温度的某温度下,使空气潮湿的手段;f) 空气或惰性气体于燥器;g) 1倍~3倍、10倍~20倍和30倍~60倍的放大镜。 3 程序 试验箱的维护和初始处理试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在(35±3)℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件(见。当需要做长时间试验(见的试验

相关文档
最新文档