人热休克蛋白90α

人热休克蛋白90α
人热休克蛋白90α

人热休克蛋白90α,即Hsp90α,是热休克蛋白家族中的重要成员。1989年国外专家首次报道了Hsp90α的基因序列,确认了该蛋白的身份。1992年外国科学家发现,Hsp90α能被肿瘤细胞分泌到细胞外,但其分泌调控机制在此后很长时间里并不清楚。[1]

热休克蛋白,英文简称HSPs,它是细胞在某些环境因素或应激条件刺激下形成的一类具有分子伴侣特性的蛋白质,广泛存在于从细菌到哺乳动物的各类细胞中。

热休克蛋白90α

清华大学发布消息,山东籍归国博士罗永章研究组,在国际上首次发现热休克蛋白90α为一个全新的肿瘤标志物,并自主研发出试剂盒,只需要采一滴血液,就可以对肿瘤进行预警和诊断。热休克蛋白90α,是一种与肿瘤相伴的物质,早在24年前,科学家就发现了这种蛋白。但这种物质与肿瘤的关系却是罗永章团队率先发现的,项目研发初期曾得到国家、山东省科技资金和平台支持。

清华大学教授罗永章:“肿瘤恶性程度越高它分泌到细胞里的量越多而且还发现在血液里面它的含量明显多于健康人基于这个发现我们就想能不能作为一个肿瘤标志物就是利用肿瘤病人血液里面含量的变化来测量一个病人是不是得了肿瘤”与其它检测手段相比,肿瘤标志物更加方便快捷,成本大大降低,但如何以这个标志物为基础,生产出临床试剂,是一项更为困难的科技攻关。罗永章团队与普罗吉生物公司合作,用四年时间,研发出了性能稳定的“定量检测试剂盒”,只需要采一滴血,就可以进行肿瘤检测、和疗效评价。[

中国科技网北京11月17日电(记者朱丽)记者今天从清华大学获悉,该校生命学院罗永章教授研究组在国际上首次发现热休克蛋白90α(Hsp90α)为一个全新的肿瘤标志物,自主研发的Hsp90α定量检测试剂盒已通过临床试验验证,并获准进入中国和欧盟市场。这是人Hsp90α被发现24年来,全球首个将其用于临床的产品,对于提高肿瘤患者的病情监测和疗效评价水平、实现肿瘤个体化治疗具有重要推动作用。

热休克蛋白(Heat shock proteins, HSPs)是细胞在某些环境因素或应激条件刺激下形成的一类具有分子伴侣特性的蛋白质,广泛存在于从细菌到哺乳动物的各类细胞中。1974年,Tissieres 课题组首先从果蝇中分离得到了HSPs。按照蛋白的大小,HSPs分为HSP100,HSP90,HSP70,HSP60 和小分子HSP。人热休克蛋白90α(Hsp90α)是热休克蛋白家族中的重要成员。1989年,Weber课题组首次报道了人Hsp90α的全长基因序列,使该蛋白的身份得到了确认。1992年,Ferrarini课题组发现,人Hsp90α能被肿瘤细胞分泌到细胞外,但其分泌机制在过去的近二十年间却并不清楚。

Hsp90α这一全新肿瘤标志物的确认,源于罗永章课题组首次揭示癌细胞分泌Hsp90α调控机制的重大科学发现。2009年,该课题组在世界上首次报道了肿瘤细胞特异分泌Hsp90

α的调控机理,同时首次揭示了细胞外Hsp90α与细胞内Hsp90α的分子差异。该团队进一步证明了分泌型Hsp90α能促进肿瘤侵袭及转移,且其在血液中的含量与肿瘤恶性程度正相关。这些发现预示了血液中Hsp90α作为肿瘤标志物的良好潜质。

罗永章课题组在上述重大科学发现的基础上,与普罗吉生物科技发展有限公司合作,攻克了一系列技术难题,成功研发出了性能稳定的“Hsp90α定量检测试剂盒”,已完成2347例临床试验,成功证明Hsp90α是肺癌相关肿瘤标志物,可用于患者病情监测和疗效评价。同时,Hsp90α肿瘤标志物具有广谱特性,其用于肝癌、乳腺癌、结直肠癌、前列腺癌、胰腺癌、胃癌等其他多个瘤种的临床试验也将在近期完成。

罗永章教授介绍说,与其他肿瘤检测手段相比,肿瘤标志物更加方便快捷,成本也大大降低。患者只需取一滴血液,通过“Hsp90α定量检测试剂盒”检测血浆中Hsp90α的含量,即可用于病情监测和治疗效果的评价,为指导肿瘤个体化治疗提供辅助依据。

该成果是抗肿瘤蛋白质药物国家工程实验室的一项重要研究成果。该国家工程实验室于2008年设立,是国家发改委设在清华大学的第一个国家工程实验室,由清华大学与普罗吉公司共同创建,致力于转化医学研究。该国家工程实验室名誉主任由我国“两弹一星”元勋之一、中国科协名誉主席周光召院士和DNA双螺旋结构发现者、诺贝尔奖获得主詹姆士·沃森(James D. Watson)博士担任,罗永章教授任该实验室主任。Hsp90α肿瘤标志物及定量检测产品是产学研紧密结合的科研运行模式下的一个成功典范。

分泌型热休克蛋白90α在肿瘤发生和转移中的作用机理

宋晓敏

【摘要】:热休克蛋白90α(Hsp90α)是一个伴侣蛋白,能够辅助蛋白折叠和维持细胞内多种信号传导蛋白的稳定,从而促进细胞存活和生长。在肿瘤细胞中,Hsp90α能够使过度激活或突变的信号传导蛋白保持活性,加速了肿瘤细胞的恶性转变。目前,Hsp90α已成为重要的抗肿瘤治疗靶点。除胞内形式以外,Hsp90α还能被分泌到胞外。分泌型Hsp90α在肿瘤细胞、神经细胞、皮肤上皮细胞和免疫细胞中均被发现,但其功能和作用机理仍不清楚。本工作首先检测了分泌型Hsp90α在恶性程度不同的乳腺癌细胞系及正常乳腺上皮细胞系培养基中的含量,发现Hsp90α的分泌水平随肿瘤细胞侵袭程度的增加而升高,表明分泌型Hsp90α与肿瘤的侵袭密切相关。接下来,本工作克隆了人Hsp90α的基因,制备了人Hsp90α的重组蛋白及抗体;体外实验证明,分泌型Hsp90α能够促进肿瘤细胞侵袭,而对增殖没有明显作用。进一步的,在黑色素瘤转移模型中,Hsp90α小鼠单抗能够明显抑制肿瘤的肺转移,更为显著的是,肿瘤的淋巴结转移被完全抑制。更进一步的,本工作证明Hsp90α能够在血浆中被检测到,肿瘤病人血浆中Hsp90α的含量与肿瘤的恶性程度,尤其是转移正相关,有希望成为肿瘤诊断和预后的标志物。同时,本工作探讨了分泌型Hsp90α促进肿瘤侵袭的机理。已有报道称,分泌型Hsp90α与基质金属蛋白酶-2(MMP-2)相互作用,Hsp90α的抑制剂能够降低MMP-2的活性,进而抑制肿瘤细胞侵袭;但对分泌型Hsp90α调节MMP-2活性的分子机制还没有解释。本研究证明分泌型Hsp90α能够通过与MMP-2的Hemopexin结构域相互作用,阻止MMP-2在Glu~(443)-

Leu~(444)位点被酶切,进而阻止MMP-2降解失活。进一步的,我们还发现以上机制也存在于激活的内皮细胞中,分泌型Hsp90α能够促进肿瘤的新生血管生成。以上发现对分泌型Hsp90α的功能首次给予了分子机制上的解释,为分泌型Hsp90α新的相互作用蛋白的发现和机理研究提供了思路。

日前,清华大学对外发布我国科学家在国际率先成功证明了热休克蛋白90α是一个全新的肿瘤标志物,它在血液中的含量和肿瘤的恶性程度密切相关。肿瘤标志物指的是可以反映肿瘤存在的物质,在肿瘤患者中的含量远远超过健康人,是肿瘤诊断治疗过程中的重要检测对象。

今天(18日),清华大学抗肿瘤蛋白质药物国家工程实验室对外发布,我国在国际上率先自主成功证明了一种新的肿瘤标志物热休克蛋90α,可用于肺癌患者的病情监测和疗效评价。同时研究发现,癌细胞通过分泌热休克蛋白90α促进肿瘤转移。

人的热休克蛋白90α,是一种维持细胞稳定状态的关键蛋白,自1989年被发现以来它的分泌调控机制始终无人破解。罗永章教授率领的科研团队不仅率先揭示了热休克蛋白90α如何从细胞内分泌到血液中,而且证实它在血液中的含量与肿瘤的恶性程度正相关。

目前,全球有31个被明确用于癌症检测的标示物,但都是国外科学家发现和定义等。而我国科学家的这项发现,有望使热休克蛋白90α成为国际上最好的肿瘤标志物之一,这将对我国和世界的肿瘤临床治疗产生重大影响。

11月17日,清华大学宣布,抗肿瘤蛋白质药物国家工程实验室主任、我司首席科学家罗永章教授研究组在国际上首次发现热休克蛋白90α(Hsp90α)为一个全新的肿瘤标志物,自主研发的Hsp90α定量检测试剂盒已通过临床试验验证,获得了国家第三类(最高类别)医疗器械证书,并通过了欧盟认证,从此获准进入中国和欧盟市场。这是人Hsp90α被发现24年来,全球首个将其用于临床的产品,对于提高肿瘤患者的病情监测和疗效评价水平、实现肿瘤个体化治疗具有重要推动作用。

肿瘤标志物是一类反映肿瘤存在的物质,在肿瘤患者体内的含量远远超过健康人群。肿瘤标志物的存在或量变可以提示肿瘤的性质,现已成为肿瘤诊断、预后及治疗指导中的重要辅助手段。2011年,美国国家癌症研究院(National Cancer Institute)公布了全球31个被明确用于癌症检测的产品,其中以血液为检测对象的有17个,均由外国科学家发现和定义,至今尚无我国自主发现的肿瘤标志物在临床中被广泛应用和认可。

热休克蛋白(Heat shock proteins, HSPs)是细胞在某些环境因素或应激条件刺激下形成的一类具有分子伴侣特性的蛋白质,广泛存在于从细菌到哺乳动物的各类细胞中。人热休克蛋白90α(Hsp90α)是热休克蛋白家族中的重要成员。1989年,Weber课题组首次报道了人Hsp90α的全长基因序列,使该蛋白的身份得到了确认。1992年,Ferrarini课题组发现,人Hsp90α能被肿瘤细胞分泌到细胞外,但其分泌调控机制在之后很长一段时间里却并不清楚。

Hsp90α这一全新肿瘤标志物的确认,源于罗永章教授课题组首次揭示癌细胞分泌Hsp90α调控机制的重大科学发现。2009年,该课题组在世界上首次报道了肿瘤细胞特异分泌Hsp90α的调控机理,同时首次揭示了细胞外Hsp90α与细胞内Hsp90α的分子差异。该团队进一步证明了分

泌型Hsp90α能促进肿瘤侵袭及转移,且其在血液中的含量与肿瘤恶性程度正相关。这些发现预示了血液中Hsp90α作为肿瘤标志物的良好潜质。该成果受到了DNA双螺旋发现者、诺贝尔奖得主詹姆斯·沃森(James D. Watson)博士推荐,于2009年在《美国科学院院刊》(PNAS)发表,引起了国际同行的广泛关注和引用。甄选生物学及医学领域中最重要的论文、由全球知名科研机构的著名专家组成的专业学术评价系统Faculty of 1000评价说“该发现为癌症治疗提供了一个潜在靶点”。

罗永章课题组在上述重大科学发现的基础上,与我司合作,攻克了一系列技术难题,成功研发出了性能稳定的“Hsp90α定量检测试剂盒”,于2010年获得医疗器械生产许可证。随后,在以中国医学科学院肿瘤医院为组长单位的国内8家三甲医院的共同参与下,完成了世界上首个Hsp90α作为肿瘤标志物的临床试验,总样本数达2347例,成功证明了Hsp90α是肺癌相关

肿瘤标志物,可用于患者病情监测和疗效评价。近日,当沃森博士获悉这项成果后,立即来信表示祝贺,并兴奋地评价罗永章及其团队“向攻克癌症这一目标又前进了一大步”。同时,Hsp90α肿瘤标志物具有广谱的特性,其用于肝癌、乳腺癌、结直肠癌、前列腺癌、胰腺癌、胃癌等其他多个瘤种的临床试验也将在近期完成。

罗永章教授介绍说,与其他肿瘤检测手段相比,肿瘤标志物更加方便快捷,成本也大大降低。通过“Hsp90α定量检测试剂盒”检测患者血浆中Hsp90α的含量,即可用于病情监测和治疗效果的评价,为指导肿瘤个体化治疗提供辅助依据。哈佛大学医学院病理学教授陈良博(Lan Bo Chen)评价产品是“首个在临床上用于检测癌症病人血清或血浆Hsp90α的试剂盒”。他同时认为“罗教授被公认为Hsp90这一重要研究领域的国际领导者之一。”

该成果是抗肿瘤蛋白质药物国家工程实验室的一项重要研究成果。国家工程实验室于2008年设立,是国家发改委设在清华大学的第一个国家工程实验室,由清华大学与我司共同创建,致力于转化医学研究。实验室名誉主任由我国“两弹一星”元勋之一、中国科协名誉主席周光召院士和DNA双螺旋结构发现者、诺贝尔奖得主詹姆斯·沃森(James D. Watson)博士担任,罗永章教授任实验室主任。Hsp90α肿瘤标志物及定量检测产品是产学研紧密结合的科研运行模式下的一个成功典范。

罗永章教授领导的研究团队在生物医药领域屡有建树,特别是在重组蛋白质大规模纯化和复性领域拥有一系列世界领先的核心技术。2005年,罗永章主持研发的全球首个内源性血管抑制剂抗肿瘤药物获得了国家I类新药证书。该药从药物设计到制备技术都实现了重大突破,从2006年至今连续7年被美国国立综合癌症网络(National Comprehensive Cancer Network ,NCCN)恶性肿瘤临床实践指南(中国版)推荐为非小细胞肺癌一线治疗方案,在全国500多家医院得到了广泛应用。最近,他领导研发的分子靶向抗肿瘤候选新药M2ES即将完成II期临床试验,有望成为世界首例可以实现个体化治疗的内源性血管抑制剂抗肿瘤药物。

人热休克蛋白90α

人热休克蛋白90α,即Hsp90α,是热休克蛋白家族中的重要成员。1989年国外专家首次报道了Hsp90α的基因序列,确认了该蛋白的身份。1992年外国科学家发现,Hsp90α能被肿瘤细胞分泌到细胞外,但其分泌调控机制在此后很长时间里并不清楚。[1] 热休克蛋白,英文简称HSPs,它是细胞在某些环境因素或应激条件刺激下形成的一类具有分子伴侣特性的蛋白质,广泛存在于从细菌到哺乳动物的各类细胞中。 热休克蛋白90α 清华大学发布消息,山东籍归国博士罗永章研究组,在国际上首次发现热休克蛋白90α为一个全新的肿瘤标志物,并自主研发出试剂盒,只需要采一滴血液,就可以对肿瘤进行预警和诊断。热休克蛋白90α,是一种与肿瘤相伴的物质,早在24年前,科学家就发现了这种蛋白。但这种物质与肿瘤的关系却是罗永章团队率先发现的,项目研发初期曾得到国家、山东省科技资金和平台支持。 清华大学教授罗永章:“肿瘤恶性程度越高它分泌到细胞里的量越多而且还发现在血液里面它的含量明显多于健康人基于这个发现我们就想能不能作为一个肿瘤标志物就是利用肿瘤病人血液里面含量的变化来测量一个病人是不是得了肿瘤”与其它检测手段相比,肿瘤标志物更加方便快捷,成本大大降低,但如何以这个标志物为基础,生产出临床试剂,是一项更为困难的科技攻关。罗永章团队与普罗吉生物公司合作,用四年时间,研发出了性能稳定的“定量检测试剂盒”,只需要采一滴血,就可以进行肿瘤检测、和疗效评价。[ 中国科技网北京11月17日电(记者朱丽)记者今天从清华大学获悉,该校生命学院罗永章教授研究组在国际上首次发现热休克蛋白90α(Hsp90α)为一个全新的肿瘤标志物,自主研发的Hsp90α定量检测试剂盒已通过临床试验验证,并获准进入中国和欧盟市场。这是人Hsp90α被发现24年来,全球首个将其用于临床的产品,对于提高肿瘤患者的病情监测和疗效评价水平、实现肿瘤个体化治疗具有重要推动作用。 热休克蛋白(Heat shock proteins, HSPs)是细胞在某些环境因素或应激条件刺激下形成的一类具有分子伴侣特性的蛋白质,广泛存在于从细菌到哺乳动物的各类细胞中。1974年,Tissieres 课题组首先从果蝇中分离得到了HSPs。按照蛋白的大小,HSPs分为HSP100,HSP90,HSP70,HSP60 和小分子HSP。人热休克蛋白90α(Hsp90α)是热休克蛋白家族中的重要成员。1989年,Weber课题组首次报道了人Hsp90α的全长基因序列,使该蛋白的身份得到了确认。1992年,Ferrarini课题组发现,人Hsp90α能被肿瘤细胞分泌到细胞外,但其分泌机制在过去的近二十年间却并不清楚。 Hsp90α这一全新肿瘤标志物的确认,源于罗永章课题组首次揭示癌细胞分泌Hsp90α调控机制的重大科学发现。2009年,该课题组在世界上首次报道了肿瘤细胞特异分泌Hsp90

热休克蛋白70

本科生毕业论文(设计)册 学院生命科学院 专业生物科学 班级(届) 2015届 学生张川 指导教师李东明 任务书编号 2015届103

河北师范大学本科毕业论文(设计)任务书 编号: 2015届103 论文(设计)题目:急性低氧刺激下树麻雀HSP70基因的适应性变化 学院:生命科学院专业:生物科学班级(届): 2015届 学生姓名:张川学号: 2011012028 指导教师:李东明职称:副教授 1、论文(设计)研究目标及主要任务 研究目标:在急性低氧刺激下,树麻雀肝脏组织中HSP70基因水平的变化。 主要任务:分析低氧刺激对树麻雀HSP70基因水平的影响。 2、论文(设计)的主要内容 热休克蛋白是一种高度保守的应激蛋白,在受到外界刺激时,机体的HSP70会有一定变化,以保护组织器官等。本研究以树麻雀为研究对象,研究其在低氧刺激下肝脏组织中HSP70基因的变化。 3、论文(设计)的基础条件及研究路线 基础条件:本实验室主要研究动物对环境的适应性,具备研究树麻雀HSP70的基础条件,实验室仪器设备齐全,并具有野外取材的条件和能力。 研究路线:将树麻雀放入模拟各种海拔高度低氧的环境生活一定时间,然后提取其肝脏组织,对肝脏组织中HSP70基因的mRNA表达量进行分析对比。 4、主要参考文献 [ 1 ] Welch WJ. Mammalian stress response: cell physiology, struc2 ture / function of stress p roteins, and imp lications for medicine and disease[ J ]. Physiol Rev, 1992, 72 (4) : 1063 - 1081. [ 2 ] Suzuki k, Sawa Y, Kagisaki k, et a l. Reduction in myocardial apop tosis associated with overexp ression of heat shock p rotein 70 [ J ]. Basic Res Cardiol, 2000, 95 (5) : 397 - 403. [ 3 ] 任宝波,王玉艳,王纯净,等. HSP70 家族的分类及基因结构与功能[J ]. 动物医学进展,2005 , (26) :98 - 101. [ 4 ] Ishii T ,VdonoH ,Yamano T ,et al. Isolation of MHC class I - restricted tumor antien peptide and its precursors asso2 ciated with heat shock proteins HSP70 , HSP90 and gp96 [J ]. Immunol ,1999 ,162 :1303 - 1309. [ 5 ] 陈劲松. 热休克蛋白的分子遗传学研究进展[J ] . 国外医学一遗传学分,2001 ,24 (3) 128 - 132. 指导教师:年月日 教研室主任:年月日

热休克蛋白hsp70

1、热休克蛋白的发现 热休克蛋白最初是在果蝇中发现的。早在1962年Ritossa把25℃下培养的果蝇幼虫无意间置于32℃的环境中30min后在其巨大唾液腺染色体上发现了3个新的膨突,说明该区域基因转录增强,可能在热休克时有某种蛋白合成的增加。人们将该现象称为热休克反应。1974年Tissieres等用SDS凝胶电泳技术和放射自显影技术首次证明,热休克反应产生一组特殊的蛋白质,即热“休克蛋白”。近年研究表明,HSP的生成,不仅见于果蝇,而且是普遍存在于从细菌直至人类的整个生物界(包括植物和动物)的一种现象 2 热休克蛋白的分类及特性 热休克蛋白按照蛋白的大小共分为以下几个家族,分别为HSP100,HSP90,HSP70,HSP60 以及小分子热休克蛋白,每个家族各有很多成员。其中HSP70家族成员最多,共有21种蛋白质,是一组在进化上高度保守的应激蛋白。主要包括HSP68、72、73。、HSC70、GRP75、78、80、Bip等 HSP70有许多重要的生物学特性:第一、存在的普遍性,从原核生物到真核生物都有表达。第二、高度的保守性,不同来源的HSP氨基酸序列有50%-90%的同源性。第三、正常情况下HSP70在细胞内表达水平很低,只有在应急条件下,HSP70的合成才显著,以提高其本身的抗应急能力。第四、正常情况下HSP70位于细胞浆内,只有当细胞受到应急作用时,才迅速移入细胞核。 3、HSP70的表达与调控 随着研究的深入,人们发现真核生物HSP70的转录需要三个步骤:在应急条件下,如热休克,导致热休克转录因子(HSTF)的激活。活化的HSTF与HSP70

基因的HSE区域结合,从而诱导基因的转录。HSTF是一种蛋白质,HSE是位于HSP70基因启动子TATA盒上游的一段保守序列,具有增强子的一些特性。HSP70可作为一种负性调节物来调节HSP的表达:在正常情况下HSP70蛋白与HSTF结合,以单体的形式存在,此时HSTF的活性被抑制,不具有与HSE 结合的能力。热应急条件下,细胞内大量增加的非稳定蛋白等与HSP70有高度的亲和力,可竞争性地结合HSP70使大量的HSTF游离出来,形成三聚体,进入细胞核【1】]。HSTF三聚体与HSE快速、高效地结合,保证HSP基因的高效转录,从而HSP70蛋白的合成增多。当产生的HSP70的水平到一定量,足够结合HSTF的时候,使其活性降低,从而关闭热休克基因的表达. [1] 陈劲松. 热休克蛋白的分子遗传学研究进展[J ] . 国外医学一遗传学分,2001 ,24 (3) 128 - 132. 正常情况下HSP70的mRNA很不稳定,半衰期很短,只有20min左右,而在热应激下可长达几个小时之久。HSP70 mRNA常温下的不稳定由mR2 NA 降解系统控制,而热应激影响了系统的活性[ 2 ]。热应激下细胞内其他的mRNA 虽不被降解,但翻译停止,HSP70mRNA大量翻译。 [2] 孙克年 .能提高牛乳品质的饲料添加剂[J ].《中国奶牛》 4 热休克蛋白70家族的功能 4.1分子伴侣功能 分子伴侣,是一类帮助新合成或解折叠蛋白质正确折叠和成功组装而本身非最终装配产物的组成蛋白,HSP70是目前发现的主要的分子伴侣之一,在细胞内分

热休克蛋白在肿瘤治疗领域中的研究进展

第18卷 第1期医学研究生学报Vol.18 No.1  2005年1月Journal of Medical P ostgraduates Jan.2005 ?综 述?热休克蛋白在肿瘤治疗领域中的研究进展 颜士岩综述, 张东生, 郑 杰审校 (东南大学基础医学院病理与病理生理学系,江苏南京210009) 摘要: 热休克蛋白(HSP)是一个成员庞大的多肽类蛋白质家族。大量资料表明,HSP作为分子伴侣,参与其他蛋白质的折叠、转运、合成等过程,并可与细胞内的其他肽类蛋白质结合,参与细胞的抗损伤、修复和热耐受过程。近来随着对热休克蛋白研究的不断深入,HSP在肿瘤发病学、治疗和预防医学中的意义已引起广泛关注,成为近年来最活跃的研究领域之一。 关键词: 热休克蛋白; 肿瘤; 诊断; 治疗 中图分类号: R739.5 文献标识码: A 文章编号: 100828199(2005)0120059204 Advance in research on heat shock proteins in therapeutic field of tumor Y AN Shi2yan reviewing,ZH ANG D ong2sheng,ZHE NGJie checking (Department o f Pathology and Pathophysiology,School o f Basic Medical Science,Southeast Univer sity,Nanjing 210009,Jiangsu,China) Abstract: Heat sh ock protein(HSP)is a family of poly2peptdic2proteins with many members.A great deal of data sh ow that heat sh ock proteins act as m olecular chaperones to regulate protein folding,translocation and as2 sembly,it can combine with other peptidic2proteins existing in cells and participating in the process of anti2dam2 age,repair and therm otolerance of cells.In recent years,with the progress of research in this field,it has arisen extensive attentions of the application of heat sh ock proteins in etiology,therapeutics and prevention of tum or. HSP becomes one of the m ost active research field. K ey w ords: Heat Sh ock Protein; T um or; Diagn osis; Therapy 0 引 言 热休克蛋白(heat sh ock protein,HSP)是所有原核细胞和真核细胞在生理、病理及环境因素(高温、缺氧或病毒感染)下均可产生的一组高度保守的蛋白质分子家族。最近的研究发现,HSP与肿瘤的发生、发展、肿瘤免疫与治疗以及机体对肿瘤治疗药物耐药性的发生和肿瘤的预后等都有密切关系。本文仅就HSP 在肿瘤治疗领域中的新进展作一综述。1 H SP的概念、种类和功能 1962年Ritossa研究果蝇唾液腺染色体时发现,将在25℃状态下培养的果蝇幼虫置于30℃~32℃的环境中时,果蝇巨大的唾液腺染色体上出现了新的膨突,其后正常蛋白质的合成被抑制,但却合成了一组特殊的蛋白质,由于这组特殊的蛋白质是在热刺激下产生的,故称其为HSP[1]。HSP通常可分为小分子HSP(相对分子质量为40000)、HSP60、HSP70、 ? 9 5 ? 收稿日期: 2004206224; 修订日期: 2004209208 基金项目: 国家863计划资助项目(批准号:2002AA302207);国家自然科学基金资助项目(批准号:30371830);江苏省自然科学基金资助项目(批准号:BK2001003);江苏省中医药中西医结合重点项目(批准号:H027);东南大学科学基金资助项目(批准号: 9223001162) 作者简介: 颜士岩(19732),男,江苏淮安人,助教,医学硕士研究生,从事肿瘤病理学专业。 通讯作者: 张东生(19512),男,河南罗山人,教授,医学硕士,博士生导师,从事肿瘤病理专业。

线粒体蛋白质组学在肿瘤研究中的进展_凌孙彬

基金项目:国家863高技术研究发展计划项目(2006AA02A309) 收稿日期:2011-10-14;修回日期:2012-02-13作者简介:凌孙彬(1989-),男,浙江杭州人,大连医科大学七年制学生。E -mail :lsb0330@126.com 通信作者:王立明,教授,博士生导师。E -mail :Wangbcc259@yahoo.com.cn 第34卷第2期2012年4月 大连医科大学学报 Journal of Dalian Medical University Vol.34No.2Apr.2012 线粒体蛋白质组学在肿瘤研究中的进展 凌孙彬1 ,唐 博2,王立明 2 (1.大连医科大学七年制2007级,辽宁大连116044;2.大连医科大学附属第二医院普外三科,辽宁大连116027) 摘要:线粒体DNA 的突变和蛋白表达谱的异常,将严重影响细胞的凋亡和能量代谢过程,这一变化可能是恶性肿瘤细胞代谢及功能异常的重要组成部分。蛋白质组学技术可以分析肿瘤细胞或组织在某一时间点内全蛋白的表达情况及活性,而基于亚细胞水平研究的线粒体蛋白质组学较传统蛋白质组学研究有更高的分辨率。线粒体蛋白质组的改变与多种肿瘤相关,随着亚细胞分离技术和蛋白质鉴定技术的发展,线粒体蛋白质组学在寻找新的肿瘤相关特性蛋白研究中显示出越来越重要的意义。关键词:肿瘤;线粒体;蛋白质组学中图分类号:R34 文献标志码:A 文章编号:1671-7295(2012)02-0179-03 Advance of mitochondrial proteomics in cancer research LING Sun -bin 1,TANG Bo 2,WANG Li -ming 2 (1.Grade 2007,Department of Seven -year Curriculum ,Dalian Medical University ,Dalian 116044,China ;2.Department of General Surgery ,the Second Affiliated Hospital of Dalian Medical University ,Dalian 116027,China ) Abstract :The mutational mitochondrial DNA and abnormally expressed mitochondrial proteins ,inducing a severe impact on apoptosis and energy metabolism of cells ,may serve as a significant composition of overall metabolic and functional dis-order in malignant cells.Proteomics displayed the capability on analysis of entire proteins expression in certain period in cells or tissues.Furthermore ,mitochondrial proteomics ,focusing on phenotype on subcellular level ,has higher resolution.Numbers of researches have shown the correlation between changes in mitochondrial proteome and tumors.Along with the progress of subcellular isolation and proteins identification technics ,mitochondrial proteomics plays an increasingly signifi-cant role in finding cancer -related specific molecules.Key words :tumor ;mitochondria ;proteomics 近年来,蛋白质组学的发展为肿瘤研究提供了 全新的方法和思路,细胞水平的肿瘤蛋白质组学研究得到了广泛的开展,但是,现有分离技术下往往难以一步到位地获得细胞的全蛋白质组,大量的低丰度蛋白质未能得到显现和分析。因此,亚细胞蛋白质组学的开展可以作为传统蛋白质组学的重要补充,同时也极大地降低了针对全细胞蛋白质组学研 究的复杂性。线粒体(mitochondria , Mt )是真核细胞中一种重要的细胞器,除作为能量产生的场所外,已发现其参与包括肿瘤细胞发生发展在内的多种病理 生理过程[1] 。线粒体蛋白质组学已被运用于部分 肿瘤的研究中, 进一步阐明线粒体蛋白质与肿瘤的关系,有助于寻找新的肿瘤相关特异性蛋白。本文就线粒体蛋白质组学在肿瘤研究中的进展进行综

热休克蛋白-hsp70

热休克蛋白-hsp70

1、热休克蛋白的发现 热休克蛋白最初是在果蝇中发现的。早在1962年Ritossa把25℃下培养的果蝇幼虫无意间置于32℃的环境中30min后在其巨大唾液腺染色体上发现了3个新的膨突,说明该区域基因转录增强,可能在热休克时有某种蛋白合成的增加。人们将该现象称为热休克反应。1974年Tissieres等用SDS凝胶电泳技术和放射自显影技术首次证明,热休克反应产生一组特殊的蛋白质,即热“休克蛋白”。近年研究表明,HSP的生成,不仅见于果蝇,而且是普遍存在于从细菌直至人类的整个生物界(包括植物和动物)的一种现象 2 热休克蛋白的分类及特性 热休克蛋白按照蛋白的大小共分为以下几个家族,分别为HSP100,HSP90,HSP70,HSP60 以及小分子热休克蛋白,每个家族各有很多成员。其中HSP70家族成员最多,共有21种蛋白质,是一组在进化上高度保守的应激蛋白。主要包括HSP68、72、73。、HSC70、GRP75、78、80、Bip等 HSP70有许多重要的生物学特性:第一、存在的普遍性,从原核生物到真核生物都有表达。第二、高度的保守性,不同来源的HSP氨基酸序列有50%-90%的同源性。第三、正常情况下HSP70在细胞内表达水平很低,只有在应急条件下,HSP70的合成才显著,以提高其本身的抗应急能力。第四、正常情况下HSP70位于细胞浆内,只有当细胞受到应急作用时,才迅速移入细胞核。 3、HSP70的表达与调控 随着研究的深入,人们发现真核生物HSP70的转录需要三个步骤:在应急条件下,如热休克,导致热休克转录因子(HSTF)的激活。活化的HSTF与HSP70基因的HSE区域结合,从而诱导基因的转录。HSTF是一种蛋白质,HSE是位于HSP70基因启动子TATA盒上游的一段保守序列,具有增强子的一些特性。HSP70可作为一种负性调节物来调节HSP的表达:在正常情况下HSP70蛋白与HSTF结合,以单体的形式存在,此时HSTF的活性被抑制,不具有与HSE结合的能力。热应急条件下,细胞内大量增加的非稳定蛋白等与HSP70有高度的亲和力,可竞争性地结合HSP70使大量的HSTF游离出来,形成三聚体,进入细胞核【1】]。HSTF 三聚体与HSE快速、高效地结合,保证HSP基因的高效转录,从而HSP70蛋白的合成增多。当产生的HSP70的水平到一定量,足够结合HSTF的时候,使其活性降低,从而关闭热休克基因的表达. [1] 陈劲松. 热休克蛋白的分子遗传学研究进展[J ] . 国外医学一遗传学分,2001 ,24 (3) 128 - 132. 正常情况下HSP70的mRNA很不稳定,半衰期很短,只有20min左右,而在热应激下可长达几个小时之久。HSP70 mRNA常温下的不稳定由mR2 NA降解系统控制,而热应激影响了系统的活性[ 2 ]。热应激下细胞内其他的mRNA虽不被降解,但翻译停止,HSP70mRNA大量翻译。 [2] 孙克年 .能提高牛乳品质的饲料添加剂 [J ].《中国奶牛》

西医综合真题及答案全

、A型题:1?40小题,每小题1.5 分;41?115小题,每小题2分;共210分,在每小题给出的A 、B、C、D 四个选项中,请选出一项最符合题目要求 的 1.葡萄糖分子进入小肠上皮刷状缘时是 A. 单纯扩散 B. C. 原发性主动转运 D. 正确答案:D 2.下列关于骨骼肌收缩耦联叙述正确的是 A. 纵管将电兴奋传入肌细胞深部 B. 易化扩散继发 性主动转运 肌膜和横管膜L 型钙通道激活 C. 终池内Ca2+ 逆浓度差进入胞质 D.Ca2+ 与肌动蛋白钙结合亚基结合正确答案:B 3.生理止血过程中促进血小板不可逆聚集的原因 A. 内皮受损,PGI2 生成减少 B. ADP ,TXA2 生成 C. 内皮受损,内皮下胶原聚集 D. 血小板收缩蛋白收缩正确答案:B 4.与心室肌相比,窦房结细胞的生理电活动特点有 A.0 期去极化速度快 B. 静息电位绝对值小 C.0 期能被河豚毒素阻断 D.4 期自动去极化速度慢 正确答案:B 5. 一个心动周期中,主动脉瓣开始关闭的瞬间是 A. 等容收缩期初 B. C. 快速射血期初 D. 正确答案:B 等容舒张期初快速充盈期初 6. 肺换气过程是指 A. 外界环境中的O2 进入肺泡 B. C. 肺泡与血液进行气体交换 D. 正确答案:C 7. 下列能使气道平滑肌舒张的化学因素是肺泡与外界环境进行气体交换肺泡内气体不断更新的过程 A?组胺B. PGF2 a C. 乙酰胆碱 D. 去甲肾上腺素正确答案:D 8. 关于肠吸收脂肪叙述,正确的是 A.吸收后与胆盐结合成混合微胶粒 B.长链脂肪酸在上皮细胞重新合成甘油三酯 C.胆盐随胆固醇进入上皮细胞

蛋白质组学在肿瘤研究的应用

蛋白质组学在肿瘤研究的应用 姓名:学号 专业:病理学与病理生理学导师: 摘要随着人类全基因组计划(HGP)测序工作的完成, 对基因功能即基因表达产物蛋白的研究已经拉开了序幕。蛋白质组学研究直接定位于蛋白质水平, 大规模地分析组织细胞的蛋白质表达水平、翻译后修饰以及蛋白质间相互作用, 是后基因组计划的重要组成部分。肿瘤的发生涉及一系列复杂的分子事件, 蛋白质组学研究手段可以大规模地定量分析细胞内的蛋白质表达水平、翻译后修饰等性质以及定义信号网络中的蛋白质间相互作用, 从而有希望发现控制肿瘤进程的关键分子, 为肿瘤的诊断、分型、药物研制带来新的思路和途径。蛋白质组学为肿瘤的研究提供了新的平台。本文就蛋白质组学研究的技术方法和在肿瘤研究方面的应用做一个综述。 关键词蛋白质组学肿瘤应用 蛋白质组学(Proteomics)是研究一种细胞或一种生物中全部蛋白质的表达、结构、功能等的新兴学科,与基因组学、代谢组学等一起构成了当代生命科学的组学( -omics) 系列。蛋白质组学一般分为表达蛋白质组学( expression proteomics)、结构蛋白质组学( structural proteomics) 和功能蛋白质组学( functional proteomics) 3 个方面。表达蛋白质组学也叫差异蛋白质组学,主要对正常、疾病或药物处理细胞或亚细胞中的所有蛋白质进行定性或定量的研究; 结构蛋白质组学主要研究特定细胞或细胞器中蛋白质及蛋白质复合体的组成,确定其定位并了解蛋白质间相互作用; 功能蛋白质组学是一个较为广义的概念,主要研究蛋白质转录后修饰,为细胞信号转导、疾病机制等提供重要信息。恶性肿瘤的发生是一个涉及多因素、多基因的多阶段病理过程. 以往的研究主要集中在基因组和转录组分析. 随着人类基因组计划的完成, 肿瘤研究开始进入“后基因组时代”, 肿瘤蛋白质组学应运而生. 蛋白质作为基因功能的主要执行者, 一方面在肿瘤发生发展过程中扮演重要角色, 另一方面在很大程度上决定正常细胞和肿瘤细胞之间的差异(如异型性、恶性特征等).李国庆[1]等参考了他人的研究成果,通过对肿瘤发生与蛋白质表达(谱)的改变、肿瘤与翻译后修饰蛋白质

蛋白质组学技术及其在肿瘤特异性分子标记物中的应用

蛋白质组学技术及其在肿瘤特异性分子标记物中的应用 摘要:前言随着人类基因组测序工作的顺利完成,人们逐渐意识到仅靠基因组的测序来揭示生命现象是远远不够的。蛋白质是基因编码的最终产物,是生命活动的真正执行者,只有从蛋白质水平来研究生命现象,才能从根本上把握生命本质,找到生命活动规律。目前,生命科学的重点己经从转录组学转移到蛋白质整体水平的研究上来。蛋白组学在提供蛋白质动态信息方面具有独特的优越性,其中涉及了蛋白质全面综合的结构和数量变化,而这些变化信息是不能通过基因组学和转录组学获得的。 关键词:蛋白质组学技术;肿瘤特异性分子标记; 转录组学和蛋白质表达之间极其微弱的联系也支持这一观点。尽管人类已经在肿瘤分子水平方面取得了一些成绩,但在其发病机制及早期诊断方面仍不理想,因此寻找准确、无创、有效的肿瘤特异性标记物具有重要的临床意义。蛋白质组学的发展为肿瘤标记物的检测及肿瘤早期正确的诊断提供了新的技术手段。各种疾病的发展过程中往往有蛋白质的动态变化。肿瘤在其不同的发病阶段,即使在没有任何临床症状的早期,在蛋白质水平方面就已经发生了变化,而这些被确认在早期发生的蛋白质变化都有可能发展成为临床早期诊断指标。肿瘤蛋白组学是蛋白组学技术在肿瘤学上的应用,主要就是通过肿瘤发生发展过程中微观的蛋白质改变去寻找理想的生物学标记。 本文着重就蛋白质组学技术及其在肿瘤特异性分子标记物中的应用予以简要综述。蛋白质组学主要研究技术“蛋白质组”最早是在1995年由MarcWilkinS和KeithWilliamS 在澳大利蛋白质组学技术及其在肿瘤特异性分子标记物中的应用亚Macquarie大学的分析生物技术中心所提出,旨在研究一种个体、一个器官、一个组织、一个细胞或者血清及体液等生理或病理条件下含有的全部蛋白质[3]。由于同一基因组在不同组织、细胞中的表达情况不同,即使是同一细胞,在不同的生理状态、不同的发育阶段甚至不同的生长环境下,蛋白质的表达也各不相同。此外,由于基因组内重组或转录过程中不同的剪接可翻译成不同的蛋白质,且在蛋白质合成之后又会进行一系列翻译后修饰,比如甲基化、硫基化、磷酸化、糖基化及酞基化等[4]。因此,蛋白质组是一个在时间和空间上不断变化的整体。蛋白质组学就是从整体角度出发,利用不同领域的技术工具,探索和实现对各种蛋白质的分离、纯化和鉴定,并且融合这些有价值的信息去分析机体、组织、细胞等动态变化的蛋白质成分、修饰状态、表达水平以及这些蛋白质之间的相互关系,从而揭示和阐明生命活动的基本规律。蛋白质组学研究主要涉及到两个方面:蛋白质表达模式的研究和蛋白质组功能模式的研究[51。目前主要集中在蛋白质表达模式也即是蛋白质组组分的研究,主要涉及到的技术包括蛋白质分离技术、蛋白质鉴定技术、生物信息学。蛋白质分离技术主要由双向凝胶电泳、色谱分离技术及蛋白质芯片技术等。蛋白质鉴定技术主要包括氨基酸分析法、Edman降解法、基质辅助激光解析电离飞行时间质谱(MALDI一TOF一MS立、液相色谱电喷雾电离串联质谱(LC一ESI- MS/MS)等。 蛋白质组学分离技术 双向凝胶电泳系统双向凝胶电泳(2一DE)技术是较为传统的蛋白质组学研究方法,可以完成对蛋白质的有效分离和半定量分析脸。2一DE中,第一相是根据蛋白质的等电点差异,通过等电位聚焦来实现分离的。随后,其第二相则是根据蛋白质相对分子量的不同,采用十二烷基硫酸钠聚丙烯酞胺凝胶电泳进行分离。2一DE是目前最常用的蛋白质分离技术,通常伴随着质谱分析技术共同运用,选取兴趣点之后进行消化,然后运用质谱技术进行分析。尽管其具有高通量、高分辨率及高灵敏度等优点,且图像比较容易分析,但该项技术还存

热休克蛋白与免疫应答

收稿日期:1999-10-20;修订日期:2000-12-30基金项目: 国家自然科学研究基金资助(39770824) 作者简介:范云霞(1964-),女(汉族),河南平顶山市,中国协和医科大学生物化学硕士研究生审校者:中国协和医科大学肿瘤研究所 黄常志 026 热休克蛋白与免疫应答 范云霞 (中国协和医科大学肿瘤研究所,北京 100021)) 摘要:近年研究发现,热休克蛋白参与免疫应答过程,在抗原受体成熟、抗原加工、呈递等多方面起作用,并且这种作用具有潜在的临床应用前景,本文综述这一领域的研究现状。 关键词:热休克蛋白;免疫应答;抗原受体;抗原加工呈递 文章编号:1001-103X(2001)02-0062-03 中图分类-号:R392 11 文献标识码:A 热休克蛋白(Heat Shock Protein,HSP)是一组具有重要生理功能,高度保守的蛋白质分子家族。生理、病理及环境因素等都可诱导热休克蛋白产生,故又称为应激蛋白(Stress Protein)。根据分子量大小和同源程度可分为HSP110、HSP90、HSP70、HSP60、小分子HSP 及泛素等几个家族。热休克蛋白的生物学功能广泛,不仅表现在应激条件下维持细胞必需的蛋白质空间构象,保护细胞生命活动,以确保细胞生存,而且在蛋白质折叠、跨膜运输、转位、细胞骨架及核骨架稳定等基本功能方面发挥重要作用,调节这些蛋白的活性和功能。而自身并不参与大分子蛋白组成,故称为 分子伴侣 。本文主要综述HSP70、HSP90、泛素等在抗原受体装配、抗原加工与呈递等方面的作用。 1 HSP70、HSP90、泛素组成和结构 HSP70家族成员广泛存在细胞的各个亚细胞结构、胞浆及胞核中,如:组成性表达HSC70(Heat Shock Cognate Protein,HSC70),热诱导表达HSP70,定位于内体和质膜PBP72/74(Peptide Binding Protein,PBP),线粒体基质中GRP75(Glucose Regulated Protein,GRP),内质网腔丰富存在BiP(Immunoglobulin hea vy chain binding Protein,BiP)。HSP 家族N 端结构域高度保守,具有ATP 酶活性,类似肌动蛋白ATP 酶结构域。HSP70C 端结构域是多肽和蛋白结合的部位,同源性差异大,其C 端空间结构类似于MHC(Major Histocompatibillity Comple x ,MHC)结合抗原肽的结构域。HSP70家族具有翻译后磷酸化修饰,大多在Ser/Thr 位点,个别在Tyr 位点(GRP75),结合ATP 后 空间构象改变促使其与结合蛋白解离,HSP70/ADP 对底物具有更高亲和力,有助于HSP70/蛋白复合体稳定 1,2 。 HSP90家族常见有HSP90、gp96(GRP94)等。gp96存在于内质网腔,gp96N 端具有跨膜序列,故可在细胞膜上表达,其C 端有内质网腔定位序列(KDEL)。HSP90存在于胞浆,其N 端结构域是结合底物蛋白结构域,类似蛋白酶结合底物口袋,C 端为寡聚化结构域,HSP90含有两个高极性氨基酸区,这些极性氨基酸残基可能位于蛋白表面,参与其它蛋白的相互作用 3,4,20 。 泛素(Ubiquitin,Ub)广泛分布在胞浆及胞核中小分子蛋白,富含半胱氨酸和赖氨酸,其空间结构中有一疏水性内核,具有锌指结构,可能有结合DNA 功能,泛素通过其羧基端的甘氨酸与异常蛋白和短寿蛋白的赖氨酸残基的侧链氨基以异肽键方式共价结合,介导蛋白的降解 5 。 2 热休克蛋白与抗原受体的相互作用 免疫应答过程中,抗原受体包括免疫球蛋白I g,膜表面Ig,MHC 类分子,MHC 类分子,TCR/CD3复合受体。细胞表面有功能抗原受体产生是免疫应 答的物质基础,热休克蛋白参与抗原受体肽链的折叠促进正确装配,阻止无功能中间体聚集,促进错误折叠的抗原受体的降解,保证有功能抗原受体生成。2 1 Ig I g 单体由轻链(Light chain,L)及重链(Heavy chain,H)组成四聚体分子,BiP 与L 链结合部位为V L ,与H 链结合部位主要在C H 1功能区,促进新生轻

心房颤动的基因学研究进展

3.4特别注意:老年人(老年糖尿病病人控制血糖宜放宽,空腹6~7mmol/L,餐后2小时在8~10mmol/L,降糖药小剂量开始,缓慢调整为宜)、肾功不良病人易发生严重的低血糖症状;身体、营养状态欠佳,并发其他严重疾病的病人由于食欲不佳、进食少也易发生严重的低血糖症状,应住院强化治疗。 3.5注意合并药的相互作用:磺脲类降糖药同水杨酸类、磺胺类等可使胰岛素、磺脲类降糖药半衰期延长,在体内代谢缓慢,用药剂量须相应调整。 参考文献: [1]周秀华.急危重症护理学[M].2版.北京:人民卫生出版社,2007:260. [2]曾晓华.糖尿病低血糖128例临床分析.海南医学,2007,18(7):76. [3]杨凤萍.糖尿病低血糖的相关因素及护理对策[J].现代护理,2005, 11(10):51. 收稿日期:2010-09-07 心房颤动(简称房颤)的特点是快速不规则的心房激动。对房颤机制最为认同的理论是在心房多发子波再折返通道。“多发子波假说”的主要特征是心房动作电位时间缩短和有效不应期延长。同时心房电重构产生重要作用。 房颤是最常见的心律失常,65岁以上老年人患病率增加约6%。在美国,据估计超过300万持续性房颤患者,到2050年这个数字预计将增加到560万。40岁以上发展成为房颤机会约为25%。房颤增加中风的危险约3~5倍,在美国每年房颤相关中风患者约为75,000例,占所有栓塞性中风约三分之一。房颤可分为阵发性,持续性或永久性,阵发性房颤占所有房颤的35%~ 40%,阵发性房颤有30%~50%的机会转变永久性。大多数房颤合并高血压,动脉粥样硬化,心肌病或瓣膜病。在一项研究中,36%的房颤患者没有明显原因被称为孤立性房颤。房颤的综合分子基础是不清楚的,但新兴遗传基础上对这种疾病的信息被阐明,在治疗和预防可能提供新的希望。现将阐述房颤基因学进展。 1房颤与离子通道遗传改变 离子通道病由于囊性纤维化导致跨膜电导调节因子处于隔离状态[1]。一个的大基因家族编码离子通道中的400多相关蛋白质,其中超过总基因库的1%。离子通道与酶是截然不同的,因为没有酶反应参与;相反,运输无机离子。离子通道主要功能是通过膜水孔传导离子下调电化学梯度。离子本身的运输很少有任何生理后果,但诱导瞬间膜电流和控制细胞膜电位。离子通过单一的通道从细胞外表面进入细胞内C-末端结构域,距离是88A。胞外弹性连接器连接内外螺旋到N-端和C端结构域。现以阐明这个分子基础是如何调节中央孔的开合。然而基因突变有助于确定分子基础在中央孔的功能,通过丧失功能,这个突变基因诱导长QT综合征。以类似的功能分析方式,发现肌节蛋白突变导致家族性肥厚性心肌病[2]。这些突变导致多个研究阐明在肌节蛋白另有一些功能未知的领域。对于新抗心律失常药物的开发多个目标将成为可用。1.1钾通道相关基因突变:钾通道是一个基本亚基的四聚体。四聚体的不同亚基提供钾离子通道的多样性。每个亚基包含有6个跨膜螺旋结构,氨基酸和羧基末端各在细胞膜一侧。每个亚基包含一个电压传感器和形成中央孔。四个亚基围绕中央孔形成单一的蛋白质。该通道至少有三个时相:关闭时相,中央孔处于非传递状态;开放时相,中央孔传递约107离子每秒,产生10-12安培电流或皮安培;失活时相,在该通道不能打开或关闭。通过膜电位改变使通道处于开放或关闭状态。在每个通道总是由成孔单位(α亚基)有辅助单位(β亚基)组成,如那些在KCNE基因家族,来调节通道的功能。 1.1.1KCNQ1基因:尽管在1997年标定家族性房颤的第一个基因位点,但是直到2003年该基因才被测序。在中国一个四代家族中显示为常染色体显性遗传。基因位点是染色体11p15.5和基因KCNQ1,编码的α亚基心脏钾离子通道(IKs的)。这α亚基与其他五个亚基结合形成的钾通道(KCNQ1,KCNE1,KCNQ1,KCNE2或KCNQ1-KCNE3,KCNQ1,KCNE4,KCNQ1-KCNE5). 418A?G的突变,导致140位上丝氨酸替换甘氨酸。显性遗传接近100%。在几个物种140位上发现丝氨酸残基并位于KCNQ1的S1跨膜部分,位置接近质膜外基质表面。表达野生型与突变型KCNQ1基因的COS细胞中,使用膜片钳技术显示在突变基因的细胞钾电流密度增加。2005年,Robyn等[3]调查了50个房颤家系的先证者,在其中一个家系中发现了KCNQ1基因外显子的一个错义突变R14C,此家系中所有患者同时合并高血压及左房扩张。随后该课题组研究发现R14C KCNQ1单独突变不足以诱发房颤,并提出了“二次打击”学说。随着对KCNQ1基因研究的不断深入,在家族性房颤中发现KCNQ1基因不同位点的变异与房颤之间的密切联系,尤其是与家族性房颤的因果联系已逐步得到国内外学者的认可。 1.1.2KCNE2基因:KCNE2是KCNQ1-KCNE2通道的β亚基,产生钾背景电流。79位点上C·G基因突变的杂交,编码KCNE2。在房颤患上显示27位上的精氨酸替代半胱氨酸。27位上的精氨酸替代半胱氨酸为常染色体显性遗传。KCNE2突变在KCNQ1基 综述与讲座 心房颤动的基因学研究进展 向建强综述,韩明华审校 (昆明医学院附属一院心内科,云南昆明650032) 【摘要】心房颤动(简称房颤)是最常见的心脏心律失常之一。1997年,Brugada等确定了第一个常染色体10q22。至今,另外7个基因位点被定位并测序了四个相关基因。除了单基因疾病外,通过遗传的DNA多态性,使结构性心脏病患者易患房颤。成千上万的单核苷酸多态性的基因芯片的发展将进一步阐明单核苷酸多态性致使易患房颤。在未来10年内,参与房颤的大部分基因和单核苷酸多态性将可能被测定,以个人基因序列基础的治疗将发展。将阐述到目前为止已鉴定了的相关基因突变,并简要讨论这些信息在实践中可能的影响。 【关键词】心房颤动;心脏疾病;遗传学 文章编号:1009-5519(2011)02-0240-03中图分类号:R5文献标识码:A

第四章 热休克蛋白与免疫

第四章热休克蛋白与免疫 (Heat Shock Protein and Immunity) 一、概述 热休克蛋白(heat shock protein,HSP)是一类具有重要生理功能,参与免疫应答的高度保守的蛋白质分子大家族。根据其分子量大小和同源程度,可将其分为HSP110、HSP90、HSP70、HSP60、小分子HSP等几个家族。生理、病理(如创伤和感染)及环境因素(如温度突然升高)等都可诱导一切生物细胞包括原核细胞和真核细胞产生HSP,又称应激蛋白(stress protein,SP)。 HSP的生物学功能广泛,不仅表现在应激条件下维持细胞必需的蛋白质空间构象,保护细胞生命活动,以确保细胞生存,而且在蛋白质折叠、跨膜运输、转位、细胞骨架及核骨架稳定等基本功能方面发挥重要作用,以调节这些蛋白质的活性和功能。HSP自身又不参与大分子蛋白质的组成,又被称为“分子伴侣”(molecular chaperon)。 最先发现HSP的是Ritossa(1962年),他观察到正常果蝇暴露于高温,发生休克后,其唾液腺染色体变得疏松膨胀,对此现象的发生原因,他未能作深入的研究。12年后,Tissieres等(1974年)证实,增高温度时果蝇染色体蓬松是由热休克激发染色体内基因转录合成特异蛋白质引起的,遂将该蛋白称为热休克蛋白(HSP)。 Nover(1984年)与Soger等(1987年)先后阐明编码这种蛋白质的基因序列、基因结构及位点,如编码HSP70的基因在人类MHC基因位点图上介于补体成分基因与肿瘤坏死因子(TNF)基因之间;在大鼠,则靠近MHC-Ⅲ类抗原基因,在小鼠,HSP84基因与MHC连锁。 除了温度刺激以外,还发现其它一些有害的理化因素,如氧化剂、重金属、乙醇或代谢抑制物等亦可促使HSP的合成增加。在机体遭遇组织损伤、病原体感染、炎症或遇有某些细胞因子(IL-1、IL-2、TNF、IFN)的刺激,皆会伤害细胞,使其蛋白质构型发生改变及功能消退,从而引起细胞的应激反应,诱导机体某些细胞合成HSP,以保护细胞和对抗有害因子。 Ames等(1986年)及Filds等(1986年)分别用小剂量H 2O 2 预先处理能高表达HSP、细胞 内感染的鼠伤寒沙门氏菌,使其合成HSP,结果能耐受致死量H 2O 2 或高热度攻击而不死;另 一方面用同量的H 2O 2 预先处理缺乏HSP基因表达的感染该菌的变异株,随后用高剂量的H 2 O 2 或热攻击,结果病原体和感染细胞皆失活,因缺乏产生HSP之故。 Srivastava(1996年)从甲基胆蒽诱发的小鼠纤维瘤细胞上分离得到HSP70,并证实可作为一种肿瘤转移性抗原诱发宿主的抗肿瘤免疫反应。Tamura等(1993年)也在H-ras转化的小鼠纤维肉瘤细胞W31上证实其表达HSP70,并发现一种CD8-CD4-双阴性T细胞介导了HSP70诱发的抗肿瘤免疫反应,这种CD8-CD4-双阴性T细胞后来被证实为γδT细胞。近年来证实HSP及其相关复合物是γδT细胞能识别的配体。 近十几年来,发现某些HSP具有分子伴侣作用后,HSP研究工作产生了一次飞跃,成为目前生命科学的热点课题。 HSP广泛分布于生物界,在动物、植物、微生物及人类中普遍发现了HSP,其功能也是多种多样的。

相关文档
最新文档