空间数据坐标系转换方法

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

空间立体几何建立直角坐标系

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB = AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是 B 1C 1的中点。 (1)证明:A 1D ⊥平面A 1BC ; (2)求二面角A 1-BD -B 1的平面角的余弦值。 解析:(1)证明:设E 为BC 的中点,连接A 1E ,AE ,DE ,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE 。 因为AB =AC ,所以AE ⊥BC 。 故AE ⊥平面A 1BC 。 由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形。 故A 1D ∥AE 。 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC 。 (2)方法一:作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F 。 由AE =EB =2,∠A 1EA =∠A 1EB =90°, 得A 1B =A 1A =4。 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等。 由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1-BD -B 1的平面角。 由A 1D =2,A 1B =4,∠DA 1B =90°,得 BD =32,A 1F =B 1F =43 , 由余弦定理得cos ∠A 1FB 1=-1 8。 方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示。

不同空间直角坐标系的转换

不同空间直角坐标系的转换 欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。 三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式: 坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。 两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在???? ??????+??????????=??????????000111222Z Y X Z Y X Z Y X ???? ??????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε

不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

84坐标系向其他的坐标系转化方法

Garmin手持机中WGS84坐标转换成BJ54坐标时要设置哪些参数?如何设置? 答:可以通过用户自定义的方式来实现。方法如下: 1.进入"主菜单页面"的"设置"子页面中,按动方向键选择“单位”按输入键进入坐标设置 的页面,将"位置格式"的选项改为" User UTM Grid "(自定义坐标格式)。 2.在出现的参数输入页面中输入相关的参数,包括中央经线,投影比例(该数值为1), 东西偏差(该数值为500000),南北偏差(该数值为0)。 3.按下屏幕上的"存储"按钮后,再将"地图基准"(有的机器称之为"坐标系统")的选项改 为"User"(自定义坐标系统)。 4.在出现的参数输入页面中输入相关参数,包括DX,DY,DZ,DA和DF。其中DA的数值 为-108,DF的数值为0.0000005。按下屏幕上的"存储"按钮后,机器显示的位置将用北京54坐标来表示了。如果是80坐标,则DA=-3,DF=0。 5.DX,DY,DZ三个参数因地区而异,具体如何求解可以让他们首先与本地测绘部门去咨 询,如果不给的话,可以通过如下方法来求解: 首先知道一个点的已知BJ54坐标(这个他们肯定都有,如果要做工作的话),然后用手持机测此点的坐标(WGS84坐标),通过坐标转换程序,即可求出DX,DY,DZ。需要注意的是,此程序中的y为6位数,也就是要将Bj54坐标中的前两位(带数)去掉。如果不知道BJ54坐标的高程,可以输入与WGS84坐标相同的即可。 通过上述设置后,即可将坐标系进行转换,此时手持机中显示的坐标上行为y,下行为x坐标。 中央子午线计算方法:例如,计算东经85°32'在3度带/6度带的代号N 经度L1与6度带带号N的关系为: L1=6N-3° 则N=Int((L1+3°)/6 + 0.5)=Int((85°32'+3°)/6 +0.5)=Int(15.26)=15 其中,Int()为取整函数 所以,东经85°32'在6度带上的带号为15,则带号为15的6度带的中央子午线为L1=6N-3=87° 经度L2与3度带带号n的关系为: L2=3n 则n=Int(L2/3+0.5)=Int(85°32'/3 +0.5)=Int(29.01)=29 所以,东经85°32'在3度带上的带号为29,则带号为29的3度带的中央子午线为L2=3n=87°

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换 1.空间直角坐标系/笛卡尔坐标系 坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。 以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。 在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。 空间直角坐标系 2.空间大地坐标系 由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量: 2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。 2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。 2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。 以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。 空间大地坐标系 3.空间直角坐标与大地坐标间的转换 3.1大地坐标转换为空间直角坐标

空间直角坐标系的旋转转换

空间直角坐标系的旋转转换 using System; using System.Collections.Generic; using https://www.360docs.net/doc/3017162054.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.IO; using System.Windows.Forms; namespace ReferenceTransition { public partial class Form1 : Form { public Form1() { this.MaximizeBox = false; InitializeComponent(); } private double x, y, z; private double i, j, k; private double a1,a2,a3; private double b1, b2, b3; private double c1, c2, c3; private double rx, ry, rz; private string t1, t2, t3; private string k1, k2, k3; private void button1_Click(object sender, EventArgs e) { textBox1.Text = ""; textBox2.Text = ""; textBox3.Text = ""; textBox4.Text = ""; textBox5.Text = ""; textBox6.Text = ""; textBox7.Text = ""; textBox8.Text = ""; textBox9.Text = ""; richTextBox1.Text = ""; } private void button4_Click(object sender, EventArgs e) { try {

空间向量之 建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 空间向量之 建立空间直角坐标系的方法及技巧 . 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 就是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,, (010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317cos BC CD BC CD θ==u u u u r u u u r g u u u u r u u u r . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,. 设30E a ?? ? ??? ,,且1322a -<<,

空间向量之建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 . 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos 17 BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1 (0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,.

设302E a ?? ? ???,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ????--= ? ???? ?, 即12a =或32a =(舍去).故3102E ?? ? ??? ,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角. 因11(002)B A BA ==,,,31222EA ? ?=-- ? ??,, 故11112cos 3 EA B A EA B A θ= =,即2tan 2θ= 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ; (2)求面VAD 与面VDB 所成的二面角的余弦值. 解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、 V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3). 由(020)(103)0AB VA =-=, ,,,,得

高考立体几何复习三部曲—空间直角坐标系的应用

高考数学立体几何三部曲—空间之直角坐标系专项 一、积及坐标运算 1.两个向量的数量积 (1)a·b =|a||b|cos 〈a ,b 〉; (2)a ⊥b ?a·b =0(a ,b 为非零向量); (3)|a |2=a 2,|a |=x 2+y 2+z 2. 2.向量的坐标运算 3、应用共线向量定理、共面向量定理证明点共线、点共面的方法比较: 一、空间向量的简单应用 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 2.(2012·济宁一模)若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0;

②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r = ________(用a ,b ,c 表示). 5.013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 6已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.62 7 B.637 C.60 7 D.657 二、利用空间向量证明平行或垂直 [例] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点. (1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE . 8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如 果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.

空间向量之建立空间直角坐标系的方法及技巧

空间向量之建立空间直角坐标系的方法及技巧 、禾U用共顶点的互相垂直的三条棱构建直角坐标系 例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB// CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值. 解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角 1 , 2)、B(2, 4, 0), ?- BC =(-2,3,2) , CD =(0, -1,0). 坐标系,则C (0, 设BC i与CD所成的角为v CD 3 '17 17 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点, EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值. 3 解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系. 由于BC= 1, BB= 2, AB= -/2,/ BCG=—, 3 ???在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0, C 1 第3 / —,—,0 . I2 2丿輛〕〔3设E — , a, 0 且一丄

BA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角. 訳=BA = (0,0八 2) , EA 二 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCD AB 丄 VA 又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则 J-1显1 I 2 2丿 即「2,一皿] X ,2—aJ < 2 丿 +a (a —2)=a 2—2a+3=0,「. 'a —丄 | 4 I 2丿 3 4 即-2或a =| (舍去).故 E 佇,,0 . ■ 3i 3 去(3,0,_Q ,时,2, -纠 辽 2丿 I 2 2丿 ,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V = 灵晁^,即ta —子 EA'B 1A 1 (1)证明 AE 丄平面VAD (2)求面 VAD 与面VDB^成的二面角的余弦值. 解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、 V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ). 由 ABVA = (0,2,0壯1,0, - . 3) = 0,得 AB 丄平面VAD

电子图纸坐标系的转换方法和步骤

电子图纸坐標系的轉換方法和步驟 测量坐标系在整个测量工作中是非常重要的。相对一些结构复杂,难度系数比较大的工程,在坐标及角度计算方面的工作量就相当之大,同时对于数据计算的准确度要求就更严格,为了减轻测量数据的计算量和提高数据计算的效率及准确度,确保工程的质量,特对电子图纸坐标系的转换方法和步骤简介如下。 1、确定电子图纸坐标系的夹角。如果所承建的工程不是座落在正南正北方向上的话,就要确定设计的现场轴线测量坐标系与电子图纸上的轴线坐标系所存在的夹角度数(如东莞玉兰大剧院工程所存在的夹角度数为75.4823°)。方法:就是用90°减去设计图纸上坐标方格轴线纵横方位角中小于90°的方位角即可。 2、旋转电子图纸的面。方法:在CAD的命令行里输入UCS—新建N—X轴—180°—回车。意思是说整个图纸以X轴为旋转轴顺时针旋转了一个180°的面。 3、旋转电子图纸的坐标系。方法:利用直线命令在操作面上画出“十”字标志,然后用旋转命令旋转第一步中所知道的夹角度数。 4、定义电子图纸的坐标系。方法:在CAD的命令行里输入UCS—新建N—三点—原点(用光标选中“十”字标志的交叉点)—X轴(用光标选中“十”字标志竖轴的正上方端点)—Y轴(用光标选中“十”字标志横轴的右手方端点)—回车。意思就是确定电子图纸轴线坐标系的X轴和Y轴的方向。 5、定义电子图纸的坐标原点。方法:由于电子图纸上的轴线坐标点在没有转换坐标系之前,该点的实际坐标值与图纸上所标注的坐标值是不一致的,所以首先要在电子图纸上找到有坐标值的点作为基点,然后用相对坐标法画直线,在直线命令中输入下一点时就要按“@-x,-y”的方法输入该基点的坐标值,最后在画完直线后就要定义原点了,

空间立体几何建立直角坐标系资料

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点。 (1)证明:A1D⊥平面A1BC; (2)求二面角A1-BD-B1的平面角的余弦值。 解析:(1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E ⊥平面ABC,所以A1E⊥AE。 因为AB=AC,所以AE⊥BC。 故AE⊥平面A1BC。 由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE ∥A1A且DE=A1A,所以A1AED为平行四边形。 故A1D∥AE。 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC。 (2)方法一:作A1F⊥BD且A1F∩BD=F,连接B1F。

由AE=EB=2,∠A1EA=∠A1EB=90°, 得A1B=A1A=4。 由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等。 由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角。 由A1D=2,A1B=4,∠DA1B=90°,得 BD=32,A1F=B1F=4 3, 由余弦定理得cos∠A1FB1=-1 8。 方法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正

半轴,建立空间直角坐标系E -xyz ,如图所示。 由题意知各点坐标如下: A 1(0,0,14), B (0,2,0),D (-2,0,14),B 1(-2, 2,14)。 因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0)。 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2)。 由??? m ·A 1B →=0,m ·BD →=0, 即????? 2y 1-14z 1=0,-2x 1-2y 1+14z 1=0, 可取m =(0,7,1)。 由??? n ·DB 1→=0,n ·BD →=0,即????? 2y 2=0,-2x 2-2y 2+14z 2=0, 可取n =(7,0,1)。 于是|cos 〈m ,n 〉|=|m·n ||m |·|n |=18 。 由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD -B 1的平 面角的余弦值为-18。

空间坐标转换说明

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ????--=+-++==)1(sin /]})1((/[)(arctan{)/arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半 轴a =6378137±2m ,短半轴b =6356.7523142km ,90130066943799 .02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出的具有一定精度的0B ,直接求出H ,一次性计算出满足精度要求的H ;再将H 值代入公式(2)中,求出B 值。 令))/(arctan(22b Y X Za u ?+=,a 、b 分别为长半轴和短半轴。将u 代入下

空间直角坐标系的建立

第二章解析几何初步 第3.1节空间直角坐标系的建立 本节教材分析 (1)三维目标 ①知识与技能:掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面 问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力. ②过程与方法:建立空间直角坐标系的方法与空间点的坐标表示。 ③情感、态度与价值观:解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一 思想的教育;培养学生积极参与,大胆探索的精神. (2)教学重点 在空间直角坐标系中确定点的坐标. (3)教学难点 通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。 (4)教学建议 学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空 间思维与数形结合方面存在困惑. 本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望,使学生主动参与教学实践活动.创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题. 新课导入设计 导入一 思路1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非 常快,有很多飞机时速都在 1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系:a)以参心0为坐标原点; b)Z 轴与参考椭球的短轴(旋转轴)相重合;c)X 轴与起始子午面和赤道的交线重合; d)Y 轴在赤道面上与X 轴垂直.构成右手直角坐标系0-XYZ ;e) 地面点P 的点位用(X.Y.Z )表示; B :参心大地坐标系:a)以参考椭球的中心为坐标原点.椭球的短轴与参考椭球旋转轴重合;b)大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ;c)大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ;d)大地高H :地面点沿椭球法线至椭球面的距离为大地高H ;e) 地面点的点位用(B.L.H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2公式中.N 为椭球面卯酉圈的曲率半径.e 为椭球的第一偏心率.a 、b 椭球的长短半径.f 椭球扁率.W 为第一辅助系数 或 a b a e 2 2-= f f e 1 *2-=W a N B W e = -=22 sin *1(西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ) )1(**)() (*arctan(arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关.与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形.采用分带投影的方法。常用3度带或6度带分带.城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =)3、高斯投影反算公式:

相关文档
最新文档