冷却塔阻力计算

冷却塔阻力计算
冷却塔阻力计算

冷却塔的通风阻力计算

在设计新的冷却塔时,首先要选定冷却塔的型式,根据给定的工作条件决定冷却塔的基 本尺寸和结构,其中包括淋水装置的横截面面积和填料高度、冷却塔的进风口、导风装置、 收水器、配水器等,并选定风机的型号和风量、风压,这样就需要对冷却塔内气流通风阻力作比较准确的计算。

1. 冷却塔的通风阻力构成

冷却塔的通风阻力,即空气流动在冷却塔内的

压力损失,为沿程摩阻和局部阻力之和。通常把冷却塔的全部通风阻力从冷却塔的进口到风机出口分为10个部分进行计算,如图所示: 1p ?——进风口的阻力; 2p ?——导风装置的阻力; 3p ?——空气流转弯的阻力;

4p ?——淋水装置进口处突然收缩的阻力;

5p ?——空气流过淋水装置的阻力(摩擦阻力和局部阻力); 6p ?——淋水装置出口处突然膨胀的阻力; 7p ?——配水装置的阻力; 8p ?——收水器的阻力; 9p ?——风机进口的阻力; 10p ?——风机风筒出口的阻力。

冷却塔的通风总阻力 : ∑?P =?i

z p (1)

2.冷却塔的局部通风阻力计算

如前所述,冷却塔总的局部阻力包括进风口、导流设施、淋水装置、配水系统、收水器以及风筒阻力(包括风机进出口)、气流的收缩、扩大、转弯等部分。各局部阻力可按下述公

式来计算:

g

v P i i i

22

i ?=?γξ(毫米水柱) (2)

式中: i ξ ——各局部阻力系数;

i v ——相应部位的空气流速(米/秒); i γ——相应部位的空气比重(公斤/米3

);

g ——重力加速度。

而冷却塔的总局部阻力可写成:g

v P h i i i

22

i ?∑=∑?=γξ(毫米水柱)

由于气流密度在冷却塔内变化很小,所以在球求解时,各处的密度值均取冷却塔进、出口的几何平均值。

气流通过冷却塔各种部件处的速度,可先根据风机特性曲线及热力计算时确定的气水比选择风量G(公斤/时)后,由下式确定:

10

...3,2,110...3,2,13600F G

v =

冷却塔各部件处局部阻力系数 3,2,1ξ值的确定: (1)进风口 55.01=ξ

(2)导风装置式中:()L q 25.01.02+=ξ

q ——淋水密度(米3/米2·小时);

L ——导风装置长度(米)。

(3)进入淋水装置处气流转弯:5.03=ξ

(4)淋水装置进口处突然收缩: ???

? ??-=ξcp F F 0415.0 cp F ——淋水装置的截面(m 2

)。

(5)淋水装置 ()Z Kq e +ξ=ξ15

式中:e ξ——单位高度淋水装置的阻力系数; K ——系数;

Z

——淋水装置高度(m )。 淋水装置的阻力亦可以从试验资料直接查得,若需改变形水装置的尺度时,其阻力降的近似值计算可参阅资料。

(6)淋水装置出口突然膨胀2

061???

? ??-

=ξcp F F

(7)配水装置???

?

??????????

????? ??-

+=ξ32

3713.15.0F F F F cp cp 式中:3F ——配水装置中气流通过的有效截面积(米2

)

cp F ——塔壁内的横截面积(米2)。

(8)收水器式中:2

22

28125.0???

?

??????????

????? ??-

+=ξF F F F cp cp 式中:2F ——收水器中气流通过的有效截面积(米2

);

cp F ——塔壁内的横截面积(米2)。

(9)风机进口

9ξ可根据下式确定:ξξξ+???

? ??-=cp F F 4091 0ξ——根据0D l 查表取值;

4F ——收缩后的截面积(㎡); cp F ——收缩前的截面积(㎡);

2

sin

8124α??

??

???????? ??-λ=

ξcp F F

式中:λ—摩擦系数;可采用0.03。

(10)风机凤筒出口(扩散筒) ()p ξδ+=ξ110

式中:δ —-风筒速度分布不均匀而影响修正系数,根据0/l D ; p ξ——根据0D l 查表取值。

由上述计算,我们得到冷却塔的总通风阻力,然后再确认它是否与风机的额定风量下所能提供的风压相适应。如果相适应且又能满足热力性能要求,则该冷却塔的设计计算完成。若不适应就要选用另外的风机或改变冷却塔部件的结构尺寸,重新计算空气的流动阻力,经过多次反复直到既满足风机的风压要求又满足热力性能时为止。

空调用封闭式冷却塔空气动力特性的实验研究

作者:李永安李继志尚丰伟

阅读:1183次

上传时间:2005-08-09

推荐人:source00 (已传论文360套)

简介:本课题在理论研究的基础上,建立了由锅炉、换热器、孔板流量计、水泵、微压计、温度计等仪器设备组成的封闭式冷却塔实验台。在该实验台上,详细测试了在封闭式冷却塔内空气与水逆向流动条件下,空气流经冷却盘管的阻力,探讨了封闭式冷却塔内空气的流动规律,分析了空气流过正三角排列管束的特

性。

关键字:封闭式冷却塔空气动力特性准则方程

相关站中站:空调水泵选型设计锅炉及锅炉房专题如何选择冷却塔?冷却塔最新技术资料大全

1 引言

我国水资源非常紧张,城市缺水现象比较严重。据统计,我国人均水资源量约2304m3/人,1984年在世界排名为88位,1996年降为第109位[1]。我国666座城市中,有333座城市缺水,有108座城市严重缺水。因此,我国人均水资源占有量呈下降趋势,农业缺水量大,城市供水不足,地下水位严重下降。进入21世纪,随着我国经济建设的飞速发展和人口增加,水资源供需矛盾将进一步加剧,据预测,2010年全国供水缺口近1000亿立方米。国际上有“19世纪争煤,20世纪争石油,21世纪可能争水” 和21世纪国际投资与经济发展,一看人,二看水的说法。因此,水可能成为我国可持续发展的重要制约因素。

在城市用水中,冷却水量占较大的比例,这些冷却水直接排放不仅造成热污染,还会造成较大的经济和资源浪费,所以,需要将这些冷却水循环重复利用,以提高水的有效利用率,缓解当前水资源短缺的状况。封闭式冷却塔是一种既能降低冷却水的温度,又能保持水质纯净的新型冷却设备,同时还具有功能多、用途广、对环境的适应能力强、可冷却高温水、安全防火等特点,因此,封闭式冷却塔在空调领域有着广阔的应用前景,在水环热泵系统、冷却塔直接供冷系统中更显示了其独特的优势。

空调用封闭式冷却塔空气动力特性实验研究的主要目的是寻求塔内进风口、冷却盘管、淋水装置、挡水板、风机进口、风筒出口等各部件阻力的计算方法;分析对比冷却塔内总阻力与风机压头之间的关系,使风机始终运行在最佳工况点;进一步揭示冷却塔内气流流动的规律,优化塔体形状,降低空气阻力,提

高冷却效率。

2 空气的流动特性

空调用封闭式冷却塔主要由冷却盘管、风机、管通泵、喷淋排管、淋水喷头(喷咀)、挡水板、底

池、百叶进风口、塔体等几部分组成[2] 。

空调用封闭式冷却塔的工作原理是,从冷凝器、吸收器或工艺设备等出来的温度较高的水,由冷却水循环泵加压输送到封闭式冷却塔的冷却盘管中。另一方面,利用管道泵将冷却塔底池中的水抽吸到喷淋排管中,然后,喷淋在冷却盘管的外表面上,蒸发吸取冷却水的热量,从而使冷却水的温度得以降低。

与此同时,靠安装在挡水板上面风机的抽吸作用,使空气自下而上流经冷却盘管,这样不仅可以强化冷却盘管外表面的放热,而且还可以及时带走蒸发所形成的水蒸汽,以加速水分的蒸发,提高冷却效果。

具体说来,就是冷却盘管内温度较高的水以对流的形式将热量传给冷却盘管内表面,这部分热量再由冷却盘管的内表面传到冷却盘管的外表面。由于冷却盘管外表面喷淋循环水,循环水落到冷却盘管的外

表面,靠对流和蒸发将这部分热量散到空气中去。

图1是封闭式冷却塔中冷却盘管的一种排列形式即正三角形排列,纵向管间距与横向管间距相等,

均等于两倍管径。

封闭式冷却塔中除冷却盘管外,其余部件的空气阻力,均可用下式计算[3]:

(Pa)(1)

式中,ρ为冷却塔内空气密度,kg/m3;v为冷却塔内空气流速,m/s ;ζ为各部件的局部阻力系数。

如图1所示,在空调用封闭式冷却塔中,空气在管束间交替收缩和扩张的弯曲通道中流动。空气在管束中流动,除第一排管子保持了外掠单管的特征外,另一个重要特点是从第二排管子起流动被前面几排管子引起的涡旋所干扰,因此,管束中流动的状态比较复杂。影响空气流动阻力的主要因素是流速和管束本身所引起的紊流度。因此,管束的几何条件,即管径、管间距、管排数、管子的排列方式等与空气流动

阻力密切相关。

空气的流动阻力表现为流经冷却盘管后的压力降低,可表示成欧拉数E u和雷诺数Re之间的关系[4]。

(2)

式中,E u 为欧拉数,; Re为雷诺数,Re=V·do/;ΔP为空气阻力,Pa;ρ为空气密度,kg/m3;V为空气流速,m/s;d0为定性长度,m;为空气的运动粘滞系数(运动粘度),m2/s。

从式(2)可见,在做冷却盘管外侧空气阻力实验时,需要测定空气流经冷却盘管所产生的压力降、空气的流速、空气的温度,然后,根据空气的温度查物性参数表,求得空气的密度ρ和运动粘滞系数,

就可以计算出对应的Re数、E u数。

在封闭式冷却塔中,由于温度的变化,会导致空气物理性质的改变,这就涉及到确定空气物性参数的温度如何选定,也就是如何确定定性温度值。有人主张用动力粘度的比值μf /μw来考虑物性变化的影响[5]。对于空气、水这类流体,粘性比较小,流体随着温度变化的物性主要是粘性,所以,P rf / P rw≈μf /μw。但是,热交换的基础是所形成的温度场,是用普朗特准则表征的,所以,应用比值P rf / P rw是比较好的,其结果也是令人满意的。因此,在本课题的研究中,按空气的平均温度确定空气的物性参数,同时,在准则方程中增加一项补充参数考虑物性变化的影响,即(P rf / P rw)0.25。

封闭式冷却塔进口空气的温度t i可用玻璃管温度计测出,出口空气的温度t0可由出口空气的焓值i0求出,因为,出冷却塔的空气状态可以近似地认为是饱和湿空气[3],所以,由i0查饱和水蒸汽表可求出t0,

其平均温度t m=(t i+ t0)/2。

冷却盘管的几何特性如管束的排列方式、管间距、管径、管子的排数、管子的几何形状等因素都对空气流动阻力有重要影响[6]。经分析,在式(2)中定型尺寸为管外径d0。

在式(2)中流速V采用流通截面最窄处的空气速度,结合图1可见,最窄处的流通面积可用式(3)

计算。

(3)

式中,B1为封闭式冷却塔的宽,m; L1为封闭式冷却塔的长,m;n1为每排管子的根数。

式(2)中的Δp可由测点分设于冷却盘管上下的微压计测出[7]。

3 实验数据的整理

表1 是用拉制光滑铜管作冷却盘管,管子外径为20 mm,壁厚 1 mm, 管排数为10排,每排32根管(奇数排)、31根管(偶数排),正三角形排列条件下,所测得的值。

表1 空气阻力测试记录表

根据上面的分析及式(2),可得下列准则方程:

为了求出上式中的系数C及指数n,对式(4)作如下处理。

首先两边取对数,得

令z

所以,式(5)变为:

将表1前6组数据代入式(6)得:

(7)

将表1后6组数据代入式(6)得:

(8)

解(7)、(8)方程组,得:

所以,Y=-7.59+2B Z(9)

即(10)

(11)

整理上式,得:

(12)

考虑到物性场的不均匀性,所以:

(13)

利用式(13)可方便地求出冷却盘管空气侧的阻力。

4 结论

4.1通过对封闭式冷却塔冷却盘管外空气流动状况的分析,利用实测数据,建立了反映封闭式冷却塔空气流动阻力的准则方程式,欧拉数E u=2.57×10-8·(R e)2·(P rf/P rw)0.25,利用这个准则方程,可准确地计算空

气流经冷却盘管的阻力。

4.2 封闭式冷却塔进口百叶窗、挡水板、风机进风口、风机出风口等阻力构件的局部阻力可用公式

计算。

4.3空调用封闭式冷却塔空气阻力的正确计算为合理选择冷却塔所配置的风机提供了理论依据只有风机的风压、风量满足设计要求或稍大于冷却塔内的空气总阻力及理论风量,封闭式冷却塔才能正常运行。

参考文献

1. 齐冬子. 敞开式循环冷却水系统的化学处理. 北京:化学工业出版社,2001

2. 李永安,尚丰伟,潘强. 空调用封闭式冷却塔的研究. 制冷学报,1997. 18(1):48-50

3. 史佑吉. 冷却塔运行与试验. 北京:水利电力出版社,1990

4. E. R. G. Eckert . Analysis of heat and mass transfer. USA: Mcgraw-hill kogakusha, LTD

5. J.P. Holman . Heat transfer. USA: Mcgraw-hiu book company , 1976

6. Jean Lebran , C. Aparecide Sila . Cooling tower model and experimental Validation . ASHRAE Transactions, 2002. part 1:751-759 . 李永安,尚丰伟,焦明先. 空调用封闭式冷却塔热工性能的动态仿真及

实验研究. 制冷学报,1998. 19(4):66-70

冷却塔用水量(环评)

想评估一天冷却塔补水量,粗略就行,800rt天补水多少呢?暂还不想装水表衡量,有没有其他的理论公式之类的,看规范为水流量的1/100,好象不可能吧,象良机800rt那补水不得6T/H.吓人哦! 大家有好办法没,介绍介绍,在下不胜感激! 穷,没龙币 以下是引用片段: 冷却塔之补给水量计算说明 1、循环水量在冷却塔运转当中,因下列因素逐渐损失: A当热水与冷空气在塔体内产生热交换过程中,部份水量会变成气体蒸发出去; B由于冷空气系借助机械动力(马达与风车)抽送,在高风速状况下,部份水量会被抽送出去; C由于冷却水重复循环,水中之固体浓度日渐增加,影响水质,易生藻苔,因此必须部份排放,另行以新鲜的水补充之。 2、补给水量计算说明: A 蒸发损失水量(E) E = Q/600 = (T1-T2)*L /600 E 代表蒸发水量 (kg/h) ; Q代表热负荷(Kcal/h); 600代表水的蒸发潜热(Kcal/h); T1代表入水温度(℃); T2代表出水温度(℃); L代表循环水量(kg/h) B飞溅损失水量(C) 冷却塔之飞溅损失量依冷却塔设计型式、风速等因素决定之。一般正常情况下,其值约等于循环水

量的0.1~0.2%左右。 C定期排放水量损失(D) 定期排放水量损失须视水质或水中固体浓度等因素决定之。一般约为循环水量之0.3%左右。 D补给水量(M) 水塔循环水之补给总水量等于 M=E + C + D 冷却塔用于空调时,温度差设计在5℃,此时冷却塔所须之补给水量约为循环水量的2%左右。 哥们,按你这样说也差不多是循环水量的1%,可这循环水量水量是指那的能?看一台铭牌(800RT,??M3/H)算出来是6T/H,那夏天如果运行12H,不得72T.工厂中央空调的,是不是很大点?在下非专业,疑问多多! 在下是评估用水,想该用浓水做空调补水,这水量不好算,很多不一样的不在同一起的装水表太多,所以想找一种理论且合实际的法子. 谢谢!!! 制冷设计规范中是这样规定的: 8.1.2 冷却水宜采用淡水,其水质应符合表8.1.2的规定。 8.1.4冷凝器采用直流水冷却时,其用水量应按下式(8.1.4)计算: 8.1.5 冷凝器采用混合循环水冷却时,其补充水量应按下式(8.1.5)计算: 见下边图片。希望能解答你的问题.

冷却塔的有关知识

冷却塔的有关知识 This manuscript was revised by the office on December 10, 2020.

冷却塔的有关知识 1)蒸发量(WE)kg/h ,一般空调用的场合,Tw1-Tw2=5℃,WE=×L,也就是说循环水量的%被蒸发。 2)2)漂水量(WD)kg/h 3) 4)根据冷却塔的构造、通风速度有所差别,一般漂水量如下: 5) 6)开放式,循环水量的% 7) 8)密闭式,循环水量的% 9) 10)3)排污水量(WB)kg/h 11) 12)排污水量是根据水质、浓缩倍数而不同。一般空调用的场合,开放式、密闭式一样为循环水量的%。 13) 14)补水水量(ΔL)kg/h 15) 16)补水水量是上计3项的合计。(ΔL=WE+WD+WB) 17)补水水量是上计3项的合计。(ΔL=WE+WD+WB) 18) 19)空调用开放式的场合:循环水量的% 20) 21)密闭式的场合:循环水量的%。 冷却塔是一种广泛应用的热力设备,其作用是通过热、质交换将高温冷却水的热量散入大气,从而降低冷却水的温度,其凉水作用主要是靠冷热两股流体在塔内混合接触,借助两股流体间的水蒸汽分压力差使热流体部分蒸发并自身冷却。 进行冷却塔选型时,具体该怎么做啊只是有个流量和进出水温差就可以了么 目前,公知的冷却塔为凉水式和空气冷却式两种主要形式。这两种冷却塔又有自然通风冷却塔和机械通风冷却塔。 由于凉水塔主要受空气湿球温度的影响,是靠水的蒸发和传导来散热,因此其对水的消耗量非常大。 而空气冷却塔是利用传导使空气吸热来实现散热,主要受空气干球温度的影响。 由于空气干球温度较高,比热小,吸热能力有限,且冷却效率低,因此,需要空气冷却器有很大的表面积,使的空气冷却器造价高。 冷却塔服务的工艺设备各行业有所不同,现在从工艺设备的差异来看冷却塔的合理变化。民用冷却塔所服务的对象都是制冷机,它要求冷却塔的水温是相同的,即:进塔水温37℃,出塔水温32℃。所不同的是:制冷机的容量不同,不同的容量配不同大小水量的冷却塔,民用塔的冷却水量与其它工业冷却

冷却塔选型计算28843

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt’。Δt’=t2-ξ(℃)Δt’称为冷却幅高。Δt’值越小,

冷却塔计算

冷却塔设计计算参考方法 本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。 一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约

4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。 冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件:

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 () dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; "t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

冷却塔选型计算

冷却塔选型 1.冷却水流量计算: L=(Q1+Q2)/(Δt*1.163)*1.1 L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取4.5-5 冷却塔的水流量= 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32o C/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法:

. 6.冷却水管径选择

7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。 8.冷却塔的选择:

耗水量计算

冷却塔耗水量计算论证 在湿式冷却塔中,热水将热量传给空气,由空气带走,散到大气中去。水向空气散热有三种形式:①接触散热;②蒸发散热;③辐射散热。冷却塔主要靠前两种散热,辐射散热量很小,在此忽略不计。 两种不同温度的物质接触,热量从温度高的一方传向温度低的一方,称为接触散热。冷却塔中,当低温度空气通过高温度水面时,水面会通过接触散热,把热量传给空气。 蒸发散热通过物质交换完成,即通过水分子不断扩散到空气中来完成。水分子有着不同的能量,平均能量由水温决定。在水表面附近,一部分动能大的水分子,克服邻近水分子的吸引力,逃出水面而成为水蒸气。由于能量大的水分子逃离,水面附近的水体能量变小,因此水温降低,这就是蒸发散热。 如下为水的冷却过程: 在冷却塔中水的冷却过程由水温、空气的干球温度θ、湿球温度τ决定。单位面积,单位时间的接触散热量为αq ,蒸发散热量为 βq 。可分为下图所示的四种传热情况。 (1)水温大于气温。两种热量都由水面散向空气, βα+=q q q ,水温降低, 水量产生蒸发损失。 (2) θ=t ,水温和气温相等。接触散热停止,蒸发散热照常进行,β=q q ,水温 降低,水量产生蒸发损失。本项目中冷却水要求出水温度31℃,而哈尔滨地区的干球温度达到或接近31℃的时候必然存在,该计算即按照该条件下进行。

(3) θ<<τt 。由于水温低于空气干球温度,从空气向水中产生接触传热;水面蒸发散热照常进行,0>-=αβq q q ,水温降低。 (4) θ<=τt 。同(3)的传热情况,但βα=q q ,所以0=q ,即水温不再降低,但 蒸发仍在发生。这是水冷却的极限情况,如果水温继续下降,将产生αq > βq 水 温又会升高,所以t =τ是水冷却的极限。 综上分析,按照第2种情况下计算耗水量进行论证 该项目设计条件为: 管程循环水体积流量: h m q v 32450=, 进水温度:℃8.37=in t ,出水温度要求℃31 out ≤t 环境干球温度℃31 =d t ,湿球温度℃24=w t ,相对湿度%60=d h 总热负荷h kcal kw t q C Q m P 1526600017750 ==?= 耗水量计算: 水的蒸发潜热为2260千焦/千克(0.628kWh/kg ),因在此计算条件下绝大多数 热量都需要由水的蒸发来带走,故需要的蒸发水量为: )/(28264628.017750h kg =。 以上数据就是当外界环境温度达到或接近冷却水温的条件下的耗水量,不管采用什么形式的自然散热(包括加翅片),都必须要达到该数据,因为在此条件下的接触散热已经停止,只能靠水的蒸发散热来带走热量。如果外界温度高于冷却水温度,则改数据还要增加,以弥补接触散热部分的反向传热(在该项目条件下哈尔滨地区一般不存在这种情况)。 以上是对蒸发水量的计算,还有如下部分水的损失也不可忽略: 1、即喷淋的漂水量,即有一部分细小的水滴会在没有蒸发的情况下被风机抽走,该部分水损失很难确定多少,由不同的填料和收水器性能来决定。虽然好多厂家宣称自己产品达到零漂水,但是这肯定不可能实现的。根据以往经验,

冷却塔流量计算

冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。水塔的构造及设计工况在说明书上有注明,而我们现在采用的水吨为单位是国际上比较常用的单位。在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。 以日立RCU120SY2 为例: 冷凝:37℃ 蒸发:7 ℃ 蒸发器:Q = 316000 Kcal/h Q = 63.2m3/h 冷凝器:Q = 393000 Kcal/h Q = 78.6m3/h 这些在日立的说明书上可以查到; 如选用马利冷却塔则: 78.6×1.2 = 94.32 m3/h(每小时的水流量) 选用马利SR-100 可以满足(或其它系列同规格的塔,如SC-100L) 在选用水泵时要在SR-100 的100 吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS 泵。 100×1.1=110 吨水/小时 选用管道泵GD125-20 可以满足; 而在只知道蒸发器Q=316000Kcal/h 时,则可以通过以下公式算出需要多大的冷却塔: 316000×1.25(恒值)= 395000 Kcal/h, 1.25——冷凝器负荷系数 395000÷5 = 79000 KG/h = 79 m3/h 79×1.2(余量) = 94.8m3/h(冷却塔水流量) (电制冷主机—通式:匹数×2700×1.2×1.25÷5000 或冷吨×3024×1.2×1.25÷5000 = 冷却塔水流量m3/h) 冷却塔已知基它条件确定冷却塔循环水量的常用公式: a. 冷却水量=主机制冷量(KW)×1.2×1.25×861/5000(m3/h) b. 冷却水量=主机冷凝器热负荷(kcal/h)×1.2/5000(m3/h) c. 冷却水量=主机冷凝器热负荷(m3/h)×1.2(m3/h) d. 冷却水量=主机制冷量(冷吨)×0.8(m3/h) e. 冷却水量=主机蒸发器热负荷(kcal/h)×1.5×1.25/5000(m3/h) f. 冷却水量=主机蒸发器热负荷(m3/h)×1.2×1.25(m3/h) g. 冷却水量=主机蒸发器热负荷(冷吨)×1.2×1.25×3024/5000(m3/h) 注:以上:1.2为选型余量 1.25为冷凝器负荷系数。 Q=cm(T2-T1)t是时间,即降温需要多少时间 算出来的制冷量单位是大卡(kcal/h),然后再除以0.86就是制冷量(w) 如果是风冷,再除以2500,就是匹数 如果是水冷,再除以3000,就是匹数 Q单位J ; 冷却塔C比热,如果是水就是4.2kJ/K*kg ; T2-T1就是降温差值 制冷量=Q/4.2/t

冷却塔水量损失计算(技术部)

冷却塔水量损失计算 水的蒸发损失[()]* :水的定压比热,取.摄氏度,:水的蒸发潜热,:循环水流量,():温差。 例如你设计的温差是度,就是,每小时循环水量吨的话,每小时蒸发吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为℃,出水温度为℃,湿球温度为,则*:(℃)() 式中::冷却水的温度差,对单位水量即是冷却的热负荷或制冷量 对式()可推论出水蒸发量的估算公式 *:()×() 式中:当温度下降℃时的蒸发量,以总循环水量的百分比表示,考虑了各种散热因素之后确定之常数。 如:℃ 则{(×)}总水量 或℃,即温差为℃时的水蒸发量

*:℃() 式中:逼近度,即出水温度()逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取≥℃(推进≥即℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失。二、风吹损失。三、排污损失: 四、冷却池的附加蒸发损失水量 第2.2.5条冷却塔的蒸发损失水量可按下式计算: Δ 式中——蒸发损失水量,; Δ——冷却塔进水与出水温度差,℃。 ——循环水量,。 ——系数,℃1,可按表2.2.5采用。 系数 气温- 第2.2.6条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可采用下数值 机械通风冷却塔(有除水器) ~’$ ( $ ( {. ]* " ) 风筒式自然通风冷却塔(以下简称自然通风冷却塔) 当有除水器时

冷却塔简要计算

冷却塔简要计算方式 冷却塔的选择: 1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却 塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100 m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。 即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165 2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和 出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。 3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件。 简要经验值计算公式: 设备总冷量(KW)×856(大卡)÷3000=冷却塔水流量 但在此基础上加上25T~100T=冷却塔实际规格流量 或冷却塔水流量×1.2~1.3=冷却塔实际规格流量

单位换算: ,埃 1 = 10-8cm = 10-10m 是光波长度和分子直径的常用计量单位。当讨论粉尘表面与其它表面间的范德瓦耳斯引力时,也用 来计量表面间的距离。气体分子的直径约为3 。从长度单位上讲, 比纳米小一个数量级。 与取自瑞典科学家 ngstr m(1814-1874)的名字, 的正确发音为“欧”、“埃”。 cfm(cubic foot per minute),立方英尺/分钟 英制风量单位,1 cfm ≈ 1.7 m3/h 特别地:2000 cfm = 3400 m3/h 英国人已经不用英制了。美国人和日本人有时仍用英制单位。 ℉ (Fahrenheit),华氏温标 华伦海特(1686-1736)确定了三个温度固定点:海水结冰时为零度、人的体温为96度、水结冰时为32度。在现代温标中,纯净水的冰点0℃=32℉,沸点100℃=212℉。 北美国家仍使用华氏温标。 fpm (foot per minute),英尺/分钟 英制风速单位,1000 fpm ≈ 5.08 m/s mbar (millibar),毫巴 气压单位,有时用于过滤器阻力,1 mbar = 100 Pa = 10 mm WG mg (milligram),毫克

冷却塔日常维护和保养

冷却塔系统日常维护与保养 一.冷却塔的工作原理 该设备是一种机力通风型冷却塔,其工作原理是把所需冷却处理的水压到冷却塔塔上部,再通过配水系统均匀地喷洒于填料上,热水从填料上部落下,同时不饱和空气从塔下部上升,在填料间隙的流动中,热水与不饱和各空气进行冷热交换,空气把热量向上传递,变成热空气,再由风机抽出塔外,从而达到水温降低的效果。 二.冷却塔运行规程 2.1冷却塔运行前准备 2.1.1清扫现场,保证塔内、塔上无零星杂物。 2.1.2复验各部件安装位臵是否符合安装要求,各紧固件有否松动。 2.1.3检查电动机绝缘电阻,以免电机运转时烧坏。 2.1.4冷却塔运行前必须清理管道内杂质,以免堵塞布水器上出水孔,造成配水不均匀。 2.1.5检查风机叶片处的叶尖与风筒壁间隙,保证叶尖与风筒壁间隙在252 mm之间,达不到上述要求应于调整。 2.2循环水系统试运行 2.2.1逐步打开进水总管闸,通过阀门将水量调至额定值。 2.2.2冷却塔采用旋转布水器,应观察布水器旋转情况,布水器应运转平稳,布水均匀,如有异常情况,按常见故障及排除的规定排除。 2.2.3冷却塔出水应保证畅通。 2.2.4检查冷却塔塔体有否渗漏,如有渗漏应及时密封。 2.3风机系统试运行 2.3.1清扫现场 2.3.2复验各部件安装位臵是否符合安装要求,各紧固件连接件有否松动。 2.3.3检查叶片安装角是否正确、一致,各叶片水平位臵误差是否在允许范围内。 2.3.4检查叶轮、叶片安装紧固螺栓是否牢固,轴端止动保险是否安全可靠。 2.3.5检查电机绝缘电阻是否达到标准。 2.3.6手工转动风机叶轮,整机运转应轻重均匀。 2.3.7点动电机,检查叶片旋转方向是否正确,本公司叶片旋转方向为顺时针方向。 2.3.8连续运转1小时,测定,记录电机电流值、电压值、振动值,检查减速机是否有不正常响声等其它异常现象。 2.3.9观察塔体震动状况 2.3.10如上述2.8条不在设计范围内,则关闭风机,调整叶片安装角直到符合要求。 2.3.11连续运行4小时停机后: 2.3.11.1复验各部件的位臵有否走动。 2.3.11.2检查各连接件,紧固件有否松动。 2.3.11.3检查各密封部件是否漏油。 2.3.11.4检查电机、减速机温度是否符合要求。

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看 作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦 克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一 个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 ( ) dV h h dH t xv q 0" -=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; " t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

冷却塔损失量计算

冷却塔的工作原理: 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。 冷却塔的工作过程: 圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类: 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按形状分有圆形冷却塔、方形冷却塔、矩形冷却塔。 五、按冷却温度分有标准型冷却塔、中温型冷却塔、高温型冷却塔。 六、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 七、按用途分有塑机专用冷却塔、发电机专用冷却塔、中频炉专用冷却塔、中央空调冷却塔、电厂冷却塔。 八、其他有喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

冷却塔计算公式与单位

冷却塔计算公式与单位 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

经某一过程温度变化为△T,它吸收(或放出)的热量. Q=cm·△T. 其中C是与这个过程相关的比热(容). 热量的单位与功、能量的单位相同.在国际单位制中热量的单位为焦耳(简称焦,缩写为J).历史上曾定义为卡路里(简称卡,缩写为cal),目前只作为能量的辅助单位,1卡=焦.注意:1千卡=1大卡=1000卡路里=4184焦耳=千焦 在国际单位制中,比热的单位是焦耳/(千克·摄氏度)读作焦每千克摄氏度。 比热容是单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量),比热容本质是吸收的热量,不管固体液体的,单位都是一样的。 单位质量的某种物质温度升高1℃吸收的热量叫做这种物质的比热容,简称比热。 比热是通过比较单位质量的某种物质温升1℃时吸收的热量,来表示各种物质的不同性质。 水的比热最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温升慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。

水比热大的特点,在生产、生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖 水的比热容是*103焦/千克·摄氏度,蒸气的比热容是*103焦/千克·摄氏度 汽化热是一个物质的物理性质。其定义为:在标准大气压 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。其他仍在使用的单位包括 Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。 水的汽化热为千焦/摩尔,相当于2260千焦/千克。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量。 湿比热容 以单位千克绝干气体为基准,将(1+H)kg湿空气温度升高或降低1oC所需要吸收或放出的热量,称为湿空气的比热容,简称湿比热容,用cH表示,单位为kJ/(kg干空气.K) cH=ca+cvH (12-9) 式中,ca—干空气的比热容,kJ/; cv—水汽的比热容,kJ/. 在常用的温度范围内,ca≈ (kgK),cv≈ (kgK),将这些数据代入式(12—9),得

冷却塔性能参数说明

冷却塔性能参数说明

1.设备组成 1.1设备原产地及制造厂家 广东省广州市/斯必克(广州)冷却技术有限公司。 1.2供货明细 NC玻璃钢冷却塔/NC8330F/4台 SR玻璃钢冷却塔/SR-200/2台 SR玻璃钢冷却塔/SR-40/2台 1.3其他 2.设备性能及技术参数 2.1设备性能 1)NC系列产品简介 A、NC型横流式冷却塔系统性设计 横流式冷却塔是马利公司工程师通过 冷却塔多年热工测试试验,引进世界上最 大的冷却塔生产商斯必克公司的先进技术 和设备,对测试数据进行全面综合处理, 参照美国冷却协会CTI标准和 GB7190-1997等依据计算机运算得出的淋 水填料的容积散质系数 xv,选择最佳的水 气比,最佳截面水负荷,截面气负荷和填 料的高度范围以确定填料体积,并以流体 力学、空气动力学、材料学、建筑学等多 种学科观点,综合设计塔的外型与结构, 根据测试计算通风阻力,参考风机特性曲 线和对测试数据进行优化,选择符合风量 和噪音要求的风机和匹配的电机,使冷效、 能耗、噪音达到一个优化的系统设计效果。 B、NC型横流式冷却塔淋水填料 马利NC方形横流式冷却塔采用的 MX-75型高级薄膜式复合波淋水填料, 堪 称世界上薄膜式淋水填料的佼佼者,此填料

片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。 一般冷却塔产品填料均采用竖直放置,且无明显收水端。参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。那么按照一般冷却塔 起不了作用,而有水的G区却又没有填料。 马利的工程师们对这个问题进行了深入的 研究,在千百次的实验之后,提出了冷却 塔填料倾斜悬挂式安装的方案,在马利冷 却塔当中C、D、E、F、G区充满填料,A、 B两区无填料,而倾斜的角度又根据不同的 塔型有十分严格的要求,这种方法有效地解 决了进风面下端“无水区”问题,且填料带 有明显的收水端,克服了竖直放置填料的 缺点。因此,倾斜悬挂放置的填料比竖直 放置填料漂水损失小,水与空气接触充分, 热工性能好。 马利冷却塔填料片高度是根据填料片特性、进风宽度、布水状况及与之相匹配的风量、电机功率、风机等,进行分析计算而得出的。其设计高度可保证热湿交换效率达到极限值,同时,MX-75型填料集均匀布风、换热、收水于一体,其卓越的收水性和导风性使冷却塔无需安装百叶窗,经测试其漂水损失小于循环水量的0.001%。实践证明,MX-75型填料片的亲水性和抗冰性能好,耐温-50~+70?C,适合于北方严寒气候的地区使用,是理想的进口填料片。 该填料以抗紫外线和抗腐蚀的聚氯乙烯(PVC)经热塑真空加压成型,其表面亲水性好,散热面积大、冷效高,在使用环境空间受限制多的热交换过程中更能体现其优越性。从而使整个填料体积发挥最有效的冷却作用,该填料无须胶水粘接,防止了由于粘接对填料造成的损坏,便于清洗安装,延长了使用寿命。 C、NC型横流式冷却塔的进风装置 此塔由于使用马利MX-75填料,无需另配进风百叶窗,该型填料将进风口百叶部位与填料淋水部位模塑成一体,这种美国马利公司获得专利的装置可以防止溅水漂出塔外,在多变的气流条件下保证配水的均匀性,无需再增加安装进风百叶窗的麻烦。 D、NC型横流式冷却塔除水系统 高效蜂窝式除水器与填料膜塑成为一体,属于美国斯必克公司专利产品,其收水率比老式的半弧型收水器高出许多倍,大大降低了漂水损失,使水耗费用减少,另外这种除水器能引导空气流向风机,降低风阻,从而使能耗降低, 其漂水损失小于循环水量的0.001%。

冷却塔设计选型的简单方法

冷却塔设计选型的简单方法 1、确定流体排热总量Q,Kw/h; 2、确定冷却塔希望达到的进出水温度差Δt,即T1-T2。在空调工程中,吸收式冷机一般取Δt=8℃;压缩式制冷剂一般取取Δt=5℃。 3、按下列公式计算冷却水量: 名义水量=3.6×Q×K/(C×Δt)m3/h 注:K吸收式取3.0; 压缩式取1.56; C水的比热4.19KJ/(㎏℃)。 4、根据当地的气象条件,当湿球温度小于27℃时,可不加设计富余量。 例: 为一制冷量为1160KW/H的溴化锂制冷机配冷却塔,要求入制冷剂冷却水温度不高于32℃,安装现场大气湿球温度为28℃。 取K=3,C=4.19Kj/kg,Δt=8℃; 那么名义水量=3.6×1160×3/(4.19×8)=373m3/h; 冷却塔的型号为375或者400m3/h,温差为40-32=8℃;

除外,冷却塔的选型受环境条件制约因素较多。特别在置放在层间冷却塔,应当注意进、排风区间,是选型计算需要考虑的重要因素。如示例: 冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小); 它们分别是: a区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c区——冷却塔高速排风区。 d区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约40 00mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。

冷却塔水量损失计算

冷却塔水量损失计算 水的蒸发损失WE=[(Tw1-TW2)Cp/R]*L CP:水的定压比热,取4.2KJ/KG.摄氏度,R:水的蒸发潜热2520KJ/KG ,L:循环水流量,(Tw1-TW2):温差。 例如你设计的温差是10度,就是10/600=1.67 %,每小时循环水量1000吨的话,每小时蒸发16.7吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:令:进水温度为T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------(2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃----------(3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失;二、风吹损失;三、排污损失: 四、冷却池的附加蒸发损失水量

冷却塔模拟计算方法1

一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。

c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约4000m m)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。

冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件: 冷却塔LRCM-H-200SC8在37-32-28℃温度条件下单元名义处理水量L=200 M3/H;冷却塔风量G=1690M3/min。 2、设计条件: 热水温度:T1=38℃; 冷水温度:T2=32℃; 外气湿球温度:T w=27.9℃; 大气压:Pa=76mmHg; 处理水量:L=179 M3/min; 水气比:L/G=1.605; 热负荷:Q=1074000Kcal/h; 组合单元数:N=8。 3、冷却塔特性值 依照CTI标准所给出的计算公式 Ka·V/L= 近似计算为 Ka·V/L=× 代入数据得,Ka·V/L=1.251。 其中

冷却塔的降温及耗水量分析

冷却塔的降温及耗水量分析 在冷却塔的水气热交换中,水蒸发吸收潜热、湿空气升温吸收显热,是冷却水温度降低的原因。据热平衡原理有: Q = r×I + C×CL×ΔT, Kcal/h ⑴ 或 Q = LO×(t1-t2), Kcal/h ⑵ 式中,Q:冷却水释放的热量,即是冷却水塔的热负荷或制冷量 r:水的蒸发潜热 Kcal/h I:水的蒸发量 Kg/h C:空气的比热 Kcal/kg.℃ CL:空气的质量流量 Kg/h ΔT = T2-T1:空气通过水塔的温升 ℃ LO:冷却水的质量流量 Kg/h t1-t2:冷却水进出塔的温差 ℃ 由于水的蒸发潜热是很大的(约2427.9KJ/KG 或580Kcal/KG)而空气的比热则是很小的(0.2Kcal/kg℃),所以两种热量传递方式中,尤其是在气候温度比较高时,水的蒸发吸收的热量是引起冷却水降温的主要原因 ,而水、气之间的温差传递则是次要的,二者比值将随着气候条件而变化。通常,可设水蒸发吸热占总散热量的75~80%,温差传热占20~25%,并以此比值估计水塔的空气用量。了解冷却水塔的工作原理,就不难进行耗水量分析,如不考虑冷却水系统的漏损,则冷却水的消耗包括如下三部分: ①、冷却水的部分蒸发:

部分水蒸发引起冷却水消耗是正常的、必须的,其消耗量不仅同冷却水本身的质量、流量、降温幅度(即热负荷)有关,同时还和入塔空气的温度(包括干球温度和湿球温度)和质量流量有关,用如下公式计算的: e=G(X2 - X1)/L×100% 式中: e:水的百分蒸发量 % G:空气的质量流量 kg/h 或 kg/min L:冷却水的质量流量 kg/h 或 L/min X2 - X1:空气在出塔和入塔时的含湿量 kg/kg ②、冷却水的适量放空: 为了保证冷却水的水质达到国家环保要求,允许冷却水有一定比例的放空量,以便补充更新。通常,此放空量控制在冷却水总量的0.3%,亦可由用户据环保技术规范自行确定放空量。 ③、飘水损失 这是一项非正常的水耗,也是衡量一台冷却水塔技术性能的指标之一,通常飘水损失应控制在冷却水总量的0.2%以下,它的大小和水塔的结构(是否采取除水设备)、风机的性能(包括风量、风压及叶片角度的调节以及它们之间的匹配等)、水泵的匹配以及水塔的安装质量等因素有关。 综上所述,冷却水塔处于正常运行时,补充水量为总水量的1.3% 。

相关文档
最新文档