P0012S BCA蛋白浓度测定试剂盒

P0012S BCA蛋白浓度测定试剂盒
P0012S BCA蛋白浓度测定试剂盒

白蛋白(ALB)测定试剂盒(溴甲酚绿法)产品技术要求lideman

白蛋白(ALB)测定试剂盒(溴甲酚绿法) 适用范围:本产品用于体外定量测定人血清中白蛋白的含量。 1.1规格 试剂(R)5×80mL;7×60mL;5×40mL; 2×100mL;3×400mL;1×20mL。 校准品(选配):1×3mL。 1.2组成 1.2.1 试剂组成 1.2.2校准品的组成:单个水平的液体校准品,在水基质中添加牛血清白蛋白(纯度:95%以上),稳定剂0.1%。定值范围:(40-60)g/L。 2.1 外观 液体单试剂:黄绿色液体。 校准品:无色至淡黄色澄清液体。 2.2 净含量 液体试剂的净含量不得低于标示体积。 2.3 空白吸光度

在37℃、(630nm±10%范围内的)波长,1cm光径条件下,试剂空白吸光度应<0.25 ABS。 2.4 分析灵敏度 浓度为40g/L时,吸光度变化范围在(0.4-0.8)ABS之间。 2.5 线性范围 测试血清样本,试剂线性在[10.0-60.0]g/L范围内:线性相关系数(r)≥0.990;在[20.1-60.0]g/L范围内,线性偏差应不超过±10%;[10.0-20.0]g/L范围内,线性应在±4.0g/L范围内。 2.6 精密度 重复测试浓度在(40.0±5.0)g/L的控制血清,所得结果的重复性(变异系数,CV)应不大于2.0 %。 2.7 批间差 测试浓度在(40.0±5.0)g/L的控制血清,批间相对极差应不大于5.0 %。 2.8 准确度 相对偏差应不大于 6.0%。 2.9 稳定性 2.9.1效期稳定性 原包装试剂(含校准品),在(2-8)℃下有效期为18个月,取失效期的试剂盒检测其准确度和线性,试验结果满足2.5、2.8的要求。 2.9.2 开瓶稳定性 试剂(含校准品)开瓶后,在(2-8)℃保存,可以稳定14天。在第15天检测线性和准确度,试验结果满足2.5、2.8的要求。

白蛋白试剂盒产品技术审评规范2017版

附件2 白蛋白测定试剂(盒)产品技术审评规范(2017版) 本规范旨在指导注册申请人对白蛋白测定试剂(盒)注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本规范是对白蛋白测定试剂(盒)的一般要求,申请人应依据具体产品的特性对注册申报资料的内容进行充实和细化,并依据产品特性确定其中的具体内容是否适用。 本规范是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本规范。 本规范是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本规范相关内容也将进行适时调整。 一、适用范围 白蛋白测定试剂(盒)用于体外定量测定人血清或血浆中白蛋白的浓度。 从方法学考虑,本规范主要指基于分光光度法原理,利用全自动、半自动生化分析仪或分光光度计,在医学实验室采用溴甲酚绿法、溴甲酚紫法进行白蛋白定量检验所使用的临床化学体外诊断试剂。本文不适用于干式或免疫比浊法的白蛋白测定试剂,但适用处可参照执行。 依据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)、《食品药品监管总局关于印发体外诊断试剂

分类子目录的通知》(食药监械管[2013]242号)白蛋白测定试剂(盒)管理类别为Ⅱ类,分类代号为6840。 二、注册申报资料要求 (一)综述资料 综述资料主要包括产品预期用途、临床意义、产品描述、有关生物安全性方面说明、研究结果的总结评价以及同类产品上市情况介绍等内容,应符合《体外诊断试剂注册管理办法》和《关于公布体外诊断试剂注册申报资料要求和批准证明文件格式的公告》(国家食品药品监督管理总局〔2014〕第44号公告)相关要求。下面着重介绍与白蛋白测定试剂(盒)预期用途有关的临床背景情况。 白蛋白为含580个氨基酸残基的单链单纯蛋白质,分子量66.3kD,分子中含17个二硫键,在Ph7.4体液中为每分子可以带有200个以上负电荷的负离子。白蛋白由肝实质细胞合成分泌,是血浆中含量最多的蛋白质,约占血浆总蛋白的57%-68%,血浆半衰期约15-19天。白蛋白为体内重要营养蛋白,并参与维持血浆胶体渗透压、酸碱平衡等内环境稳定,也是血浆中多种物质的主要转运蛋白。白蛋白增高主要见于血液浓缩而致相对性增高,如严重脱水和休克、严重烧伤、急性出血、慢性肾上腺皮质功能减低症。白蛋白降低常见于肝硬化合并腹水及其他肝功能严重损害(如急性肝坏死、中毒性肝炎等)营养不良、慢性消耗性疾病、糖尿病、严重出血肾病综合征等。 注:若注册申报产品声称临床意义超出此内容范围,应提供相关文献或临床研究依据。 (二)主要原材料研究资料(如需提供) 主要原材料的选择、制备、质量标准及实验验证研究资料;质控品、校准品的原料选择、制备、定值过程及试验资料;校准品的溯源性文件,包括具体溯源链、实验方法、数据及统计分析等详细资料。

蛋白质浓度的测定

蛋白质浓度的测定 一.紫外吸收法 1. 近紫外吸收光谱法(280 nm) 原理:蛋白质中含有色氨酸与酪氨酸残基,这两种氨基酸残基具有吸收紫外光的性质,它们的紫外光吸收谱峰值在280 nm附近。某些蛋白质含有二硫键,也会在280 nm附近吸收紫外光。近紫外吸收法就是根据这个性质,对蛋白质进行定量。因为不同的蛋白质中所含有的色氨酸与酪氨酸的数量存在很大的差异,所以蛋白质在280 nm处的吸光度A280也存在非常大的差异。比如,当蛋白质浓度为1 mg/ml时,吸光度A280可为0-4之间的任何值。但是,大部分的蛋白质的吸光度A280时0.5-1.5之间的某个值。 该方法测定蛋白质的浓度具有明显的优缺点。这种方法操作简单,测定完成后,样品可以被回收,对buffer没有特殊要求,这是该方法的优点。该方法的缺点是:其他的生色基团会影响蛋白质吸收光谱的测定,比如核酸在该波长的紫外吸收能力非常强,少量的核酸就会对蛋白质吸光值的测定造成很大的干扰。同时,不同的蛋白质的消光系数需要在实验前确定。 蛋白质浓度的计算: 朗伯比尔定律:A(absorbance) = ε c l,因此:c(mg/ml)= A/ε l (cm)。 消光系数:当蛋白质浓度为1 mg/ml,光径为1 cm时,所测得的吸收值为该蛋白质的消光系数。 蛋白质的消光系数计算公式:A280 (1 mg/mL) = (5690n w + 1280n y + 120n c)/M。其

中M为蛋白质分子质量,5690、1280与120分别是色氨酸、酪氨酸与半胱氨酸的消光系数,n是该氨基酸残基的数目。 2. 远紫外吸收光谱法 在190-210 nm范围内,蛋白质中的肽键具有非常强的吸收紫外光的能力。此波长范围内,肽键在190 nm处的吸收值是其在205 nm的2倍,而且在190 nm,氧气对紫外光的吸收非常强,因此,通常取205 nm处的吸收值对蛋白质进行定量。对于1 mg/ml的蛋白质溶液,它们的消光系数通常在30-35之间。对于不同的蛋白质,其消光系数差别很小。 该方法的优点是操作简单,灵敏度高,样品可以回收。缺点:在使用前,必须对分光光度计进行准确校正,多种buffer,heme or pyridoxal groups在该波长具有很强的吸收紫外光的能力。 测定: 1.用生理盐水溶解蛋白质样品,确保其在215 nm处的吸收值小于1.5。 2.磷酸钾buffer不影响吸收值的测定。 3.计算公式:A2051 mg/mL = 27 + 120 (A280/A205) 或Protein concentration (μg/mL) = 144 (A215– A225)。 Notes: 1.使用这两个方法进行蛋白质定量时,最佳的吸收值范围为0.05-1,当吸收值 为0.3时,测定的结果最精确。 2.如果样品浑浊,可以扣除310 nm处的吸收值。

BCA法测蛋白浓度

【目的】:掌握BCA法测定蛋白质浓度的原理。 【原理】: BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂,混合一起即成为苹果绿,即BCA工作试剂。在碱性条件下,BCA与蛋白质结合时,蛋白质将Cu2+还原为Cu+,一个Cu+螯合二个BCA分子,工作试剂由原来的苹果绿形成紫色复合物,最大光吸收强度与蛋白质浓度成正比。 【操作】 标准曲线的绘制:取试管七支、编号,按下表操作: 【计算】 (一)绘制标准曲线。 (二)以测定管吸光度值,查找标准曲线,求出待测血清中蛋白质浓度(g/L)。 (三)再从标准管中选择一管与测定管光密度相接近者,求出待测血清中蛋白质浓度(g/L)。 【优缺点】 (一) 操作简单,快速,45分钟内完成测定,比经典的Lowary法快4倍且更加方便; (二) 准确灵敏,试剂稳定性好,BCA试剂的蛋白质测定范围是20-200μg/ml,微量BCA测定范围在0.5-10μg/ml。 (三) 经济实用,除试管外,测定可在微板孔中就进行,大大节约样品和试剂用量; (四) 抗试剂干扰能力比较强,如去垢剂,尿素等均无影响

【器材】 (一)7220型分光光度计 (二)恒温水浴箱 (三)中试管7支 (四)枪式移液管 【试剂】 1、试剂A:1%BCA二钠盐 2%无水碳酸钠 0.16%酒石酸钠 0.4%氢氧化钠 0.95%碳酸氢钠 混合调PH值至11.25。 2、试剂B:4%硫酸铜。 3、BCA工作液:试剂A 100ml +试剂B 2ml混合。 4、蛋白质标准液:用结晶牛血清白蛋白根据其纯度用生理盐水配制成1.5mg/ml的蛋白质标准液。(纯度可经凯氏定氮法测定蛋白质含量而确定) 5、待测样品:用双缩脲测定法的样品稀释而成。 此法测定蛋白质浓度,近些年被科研工作者广泛选用。目前BCA法的试剂盒市面有售。 总之,虽然蛋白质含量的测定方法很多,但是,还没有一个完美的方法。在选择测定方法时,可根据实验要求和实验室条件决定。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

肌红蛋白测定试剂盒(直接化学发光法)产品技术要求ja

肌红蛋白测定试剂盒(直接化学发光法) 组成: 适用范围:本试剂用于体外定量检测人血清、血浆中的肌红蛋白(MYO)的含量。

批特异性:每批校准品的值、质控品的质控范围具有特异性,详见瓶签。 以上校准品(选配1)、校准品(选配2)须选择一项获取校准信息。 2.1 物理性状 2.1.1外观 本试剂盒中的组分齐全、完整,液体试剂澄清,无异物、沉淀物、絮状物和无渗漏。各组分标签字迹清晰、无破损。质控品、校准品为淡黄色冻干品,用蒸馏水复溶后应为淡黄色液体。 2.1.2 装量 液体装量不少于标示值。 2.2线性 在[2,3000]ng/mL范围内,用线性拟合公式拟合,相关系数应不低于0.9900。 2.3准确度 将已知浓度的肌红蛋白(MYO)加入到低值样本中,其回收率应在85%-115%。 2.4空白限

本试剂盒的空白限不大于2ng/mL。 2.5重复性 分别用高、低2个浓度的样本,各重复检测10次,其变异系数(CV)不大于8.0%。 2.6 批间差 用3个批号试剂盒分别检测高、低2个浓度的样本,则3个批号试剂盒之间的批间变异系数(CV)不大于15%。 2.7 质控品、校准品批内瓶间差 质控品、校准品批内瓶间差CV(%)应不高于10%。 2.8特异性 检测表2中相应浓度的交叉反应物,检测结果应小于2ng/mL。 表2 被测物常见的交叉反应物 2.9 质控品赋值有效性 质控品测定结果应在本试剂盒规定的范围内。 2.10 校准品溯源性 应根据GB/T21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》提供所用校准品的来源、赋值过程以及测量不确定度等内容,校准信息可溯源至本公司工作校准品,工作校准品与已上市肌红蛋白检测系统比对赋值。 2.11 稳定性 2.11.1效期稳定性 将试剂盒在2℃~8℃的环境中放置12个月后,分别检测2.1、2.2、2.3、2.4、2.5、2.9项,结果应符合各项目的要求。 2.11.2复溶稳定性 质控品复溶后在2℃~8℃条件下储存28天后,产品性能应符合2.7、2.9规定的要求。校准品复溶后在2℃~8℃条件下储存28天后,产品性能应符合2.7规定的要求。

bradford法测定蛋白的浓度

Bradford法测定蛋白质的浓度 原理 Bradford测定蛋白质浓度的方法和考马斯亮蓝法测定蛋白质浓度一样,是利用蛋白质-染料结合的原理,定量地测定微量蛋白质浓度的快速灵敏的方法。 该法是根据最常用的两种蛋白浓度检测方法之一Bradford法研制而成,实现了蛋白浓度测定的快速,稳定和高灵敏度。 利用此方法检测速度极快,10~20个样品只需不足10分钟即可完成。 灵敏度高,检测浓度下限达到25ug/ml,最小检测蛋白量达到 0.5ug,待测样品体积为1~20ul。 且在50~1000 ug/ml浓度范围内有较好的线性关系。 Bradford法测定蛋白浓度不受绝大部分样品中的化学物质的影响。样品中-巯基乙醇的浓度可高达1M,二硫苏糖醇的浓度可高达5mM。但受略高浓度的去垢剂影响。需确保SDS低于 0.01%,Triton X-100低于 0.05%,Tween 20, 60, 80低于 0.015%。 试剂和仪器 一、试剂 试剂盒自备: G250染色液、BSA标准蛋白。 BSA标准蛋白浓度已稀释至500μg/ml,-20℃保存。二、测试样品 待测样品蛋白浓度稀释在50-500μg/ml范围内为宜。

三、仪器 96孔酶标、酶标仪。 操作方法 标准品编号 500ug/mlBSA/μl 蒸馏水/μl10302 1.5 28.45 12 186 6830 0分别于小离心管中混匀后,取20μl加入到对应酶标孔中待测样品编号31415……待测样品稀释后,各取20μl加入到相应酶标孔中G250/μl200μl/孔 反应3-5min 1.用酶标仪测定A595nm处的吸光值。 2.根据标准曲线计算待测样品的蛋白浓度。

高铁血红素白蛋白检测试剂盒(Schumm法)

高铁血红素白蛋白检测试剂盒(Schumm 法) 简介: 出现严重血管内溶血,产生的游离血红蛋白量超过结合珠蛋白所能结合的量,血液中结合珠蛋白几乎被耗尽,游离血红蛋白分解成珠蛋白和血红素,有一部分会被氧化成高铁血红素,高铁血红素和血浆白蛋白结合生成高铁血红素白蛋白(Methemalbumin ,MHA),MHA 分子较大,不能由肾脏排出,而是经肝脏清除。 Leagene 高铁血红素白蛋白检测试剂盒(Schumm 法)(Methemalbumin Assay Kit)采用Schumm 法,其检测原理是严重血管内溶血时,结合珠蛋白与血红素结合蛋白均被耗尽,高铁血红素与白蛋白结合成MHA ,经氧化作用后用分光镜或分光光度计检测,若在处出现强的吸收峰,表示存在高铁血红素白蛋白。该试剂盒主要用于定性检测血清或血浆样本,亦可用于定性检测细胞或组织的裂解液或匀浆液等中的高铁血红素白蛋白,血清中出现高铁血红素白蛋白是溶血严重的指标。该试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。 组成: 自备材料: 1、 生理盐水 2、 比色杯 3、 分光光度计或分光镜 操作步骤(仅供参考): 1、 准备样品:按照常规方法制备溶血标本血清或血浆,检测前再次高速离心,除尽红细胞,-80℃冻存。如果样品中的MHA 含量过高,可以用生理盐水适当稀释后再进行测定。 2、 加样:轻轻向待测样品加入Schumm Reagent A ,使Schumm Reagent A 完全覆盖样品表面,然后加入样品Schumm Reagent B ,轻轻混合。 4、 检测:取或恰当容量的比色杯,分别加入上述混合液,以生理盐水作为空白对照,用分光光度计或分光镜检测,若在处出现强的吸收峰,表示存在高铁血红素白蛋白,一般应数小时内检测完毕。 编号 名称 TC0211 50T Storage 试剂(A): Schumm Reagent A 15ml RT 避光 试剂(B): Schumm Reagent B 5ml ×2 RT 避光 使用说明书 1份

蛋白质浓度测定集合

一、蛋白浓度的直接测定(UV法) 这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受到平行物质的干扰,如DNA 的干扰;另外敏感度低,要求蛋白的浓度较高。 (1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor (2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果: 蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D 其中d为测定OD值比色杯的厚度 D为溶液的稀释倍数

二.紫外吸收法测定蛋白质含量 【实验目的】 1. 学习紫外吸收法测定蛋白质含量的原理。 2. 掌握紫外分光光度计的操作方法。 【实验原理】 大多数蛋白质分子结构中含有芳香族氨基酸(酪氨酸和色氨酸)残基,使蛋白质在280nm的紫外光区产生最大吸收,并且这一波长范围内的吸收值与蛋白质浓度的成正比,利用这一特性可定量测定蛋白质的含量。 紫外吸收法可测定0.1-0.5mg/ml的蛋白质溶液,此操作简便,测定迅速,不消耗样品,低浓度盐类不干扰测定。因此,此法在蛋白质的制备中广泛应用。 【实验材料】 1.实验器材 试管及试管架;50毫升容量瓶 2只;移液管;紫外分光光度计。 2.实验试剂 (1)标准蛋白质溶液:精确配制2mg/ml的酪蛋白溶液。 (2)样品溶液:配制约0.5mg/ml的酪蛋白溶液作为未知样品溶液。

蛋白浓度测定的各种方法

蛋白浓度测定的各种方法 蛋白质的定量分析是生物化学和其它生命学科最常涉及的分析内容,是临床上诊断疾病及检查康复情况的重要指标,也是许多生物制品,药物、食品质量检测的重要指标。在生化实验中,对样品中的蛋白质进行准确可靠的定量分析,则是经常进行的一项非常重要的工作。 蛋白质是一种十分重要的生物大分子:它的种类很多,结构不均一,分子量又相差很大,功能各异,这样就给建立一个理想而又通用的蛋白质定量分析的方法代来了许多具体的困难。目前测定蛋白质含量的方法有很多种,下面列出根据蛋白质不同性质建立的一些蛋白质测定方法: 物理性质:紫外分光光度法 化学性质:凯氏定氮法、双缩脲法、Lowry 法,BCA法,胶体金法 染色性质:考马氏亮蓝染色法、银染法 其他性质:荧光法 蛋白质测定的方法很多,但每种方法都有其特点和局限性,因而需要在了解各种方法的基础上根据不同情况选用恰当的方法,以满足不同的要求。例如凯氏定氮法结果最精确,但操作复杂,用于大批量样品的测试则不太合格;双缩脲法操作简单,线性关系好,但灵敏度差,样品需要量大,测量

范围窄,因此在科研上的应用受到限制;而酚试剂法弥补了它的缺点,因而在科研中被广泛采用,但是它的干扰因素多;考马氏亮兰染色法因其灵敏而又简便开始重新受到关注;BCA法又以其试剂稳定,抗干扰能力较强,结果稳定,灵敏度高而受到欢迎;胶体金法具有较高的灵敏度,可达到毫微克水平,用于微量蛋白的测定。常用的测定蛋白质含量方法的比较方法 测定范围 (μg/ml) 不同种类 蛋白的差异 最大吸收 波长(nm) 特点凯氏定氮法

小 标准方法,准确,操作麻烦,费时,灵敏度低,适用于标准的测定紫外分光光度法 100—1000 大 280

糖化白蛋白测定试剂盒(过氧化物酶法)产品技术要求北检

糖化白蛋白测定试剂盒(过氧化物酶法) 适用范围:本产品用于体外定量测定人血清或血浆中糖化白蛋白的含量。 1.1 规格 具体产品规格见下表:

1.2 组成成分 1.2.1 试剂的组成 试剂1: Tris缓冲液≥50mmol/L 酮胺氧化酶≥30U/ml N,N-双(4-磺丁基)-3-甲基苯胺≥2mmol/L 试剂2: Tris缓冲液≥50mmol/L 蛋白酶K ≥40U/ml 过氧化物酶≥60U/ml 4-氨基安替比林≥5mmol/L 1.2.2 校准品的组成(选配) 糖化白蛋白(0.40~2.00)g/dl 该校准品为血清基质冻干校准品 1.2.3 质控品的组成(选配) 水平1:

糖化白蛋白(0.40~1.00)g/dl 该质控品为血清基质冻干质控品 水平2: 糖化白蛋白(1.01~2.00)g/dl 该质控品为血清基质冻干质控品 校准品、质控品有批特异性,具体靶值见靶值表。 2.1 外观 2.1.1 外包装完整无破损; 2.1.2 试剂1:无色或淡黄色澄清液体; 2.1.3 试剂2:无色或淡黄色澄清液体; 2.1.4 校准品:白色或淡黄色冻干粉,复溶后为浅黄色溶液,无不溶物; 2.1.5 质控品:白色或淡黄色冻干粉,复溶后为浅黄色溶液,无不溶物。 2.2 净含量 净含量不低于标示值。 2.3 试剂空白吸光度 在主波长500~600nm、副波长700nm、37℃条件下,试剂空白吸光度不大于0.5。 2.4 线性 2.4.1 线性范围 [9.0%,69.0%],相关系数r>0.990。 2.4.2 线性偏差 (20.0%,69.0%]线性范围内,相对偏差不超过±10%; [9.0%,20.0%]线性范围内,绝对偏差不超过±2.0%。 2.5 分析灵敏度 检测浓度为3.27g/dl的样本时, 吸光度变化不小于0.02。 2.6 重复性 2.6.1 试剂重复性

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。 [操作步骤] 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定:

取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 [试剂] 1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。 [器材] 1.试管:15×150mm 试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 [操作步骤]

肌红蛋白(Myoglobin)测定试剂盒(电化学发光免疫分析法)产品技术要求lztk

肌红蛋白(Myoglobin)测定试剂盒(电化学发光免疫分析法) 适用范围:本试剂盒用于体外定量测定人体血清样本中肌红蛋白(Myoglobin)的含量。 1.1产品型号/规格: 50人份/盒、100人份/盒。 1.2主要组成 试剂盒由磁分离试剂(M)、试剂a(Ra)、试剂b(Rb)和定标品(Myoglobin-Cal)(选配)组成。组成及含量如下: 2.1 外观 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏; 2.1.2 磁分离试剂摇匀后应为棕色含固体微粒的均匀悬浊液,无明显凝集、无絮状物; 2.1.3 其它液体组分应澄清,无异物,沉淀物或絮状物; 2.1.4 包装标签应清晰、无磨损、易识别。 2.2 空白限 应不大于21.0ng/mL。 2.3 准确度 将已知浓度的Myoglobin样品加入到血清或其它相应基质中,其回收率应在(85%~115%)范围内。 2.4 线性 在[50.0,3000.0]ng/mL范围内,线性相关系数(r)应不小于0.9900。 2.5 精密度 2.5.1 分析内精密度

在试剂盒的线性范围内,浓度为(100.0±20.0ng/mL)和(1000.0±200.0ng/mL)的样品检测结果的变异系数(CV)应不大于8%。 2.5.2 批间精密度 在试剂盒的线性范围内,用3个批号试剂盒分别检测浓度为(100.0±20.0ng/mL)和(1000.0±200.0ng/mL)的样品,检测结果的变异系数(CV)应不大于15%。 2.6 效期末稳定性 本产品效期为15个月,试剂盒在2~8℃下保存至有效期末进行检测,检测结果应符合2.1、2.2、2.3、2.4、2.5.1的要求。 2.7 溯源性 依据GB/T21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求,定标品溯源到罗氏Myoglobin定标液。

实验一 蛋白质浓度的测定实验报告

蛋白质浓度的测定 一.实验原理 考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当他与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm。考马斯亮蓝G250—蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感性。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系。故可用于蛋白质浓度的测定。 二.实验设备与试剂 设备:普通离心机,721型分光光度计 试剂:标准蛋白液(100ug/ml) 三.实验材料 新鲜绿豆芽 四.实验内容 1.标准曲线的制备 取9支干净的试管,按表进行编号并加入试剂。 2.样品蛋白的测定 (1)样品蛋白液制备 准确称取2g新鲜绿豆芽胚轴的部分,研磨成匀浆,离心分离(4000r/min,10min)。取上清液用0.9%nacl定容到10ml。 (2)含量测定 另取两只干净的试管,加入样品液0.1ml,0.9mlnacl和考马斯亮蓝染液4.0ml,混匀。室温静置3min,与波长595nm处比色,读取吸光度。 五.实验结果 1.标准曲线 结果如表所示,并以吸光度为纵坐标,个标准液含量为横坐标做标准曲线。

2.样品蛋白含量的测定 样品蛋白的比色结果如表,根据直线方程求出每支试管中蛋白质含量。 根据公式求出样品绿豆芽蛋白质含量 样品蛋白的体积 蛋白质含量(ug/g鲜重)= 测定时取样的体积 称取样品的重量 六.结果与讨论 结果:绿豆芽蛋白质含量=1233.0ug/g 讨论: 1.试液为混合均与就取样 2.量取溶液时读数有误差 3.读取A值时有读数误差 4.比色杯中的误差

蛋白质浓度测定-Bradford

蛋白质浓度测定—Bradford法 一、实验目的 学会用考马斯亮蓝结合法测定蛋白质浓度。 二、实验原理 考马斯亮蓝能也与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250 的磷酸盐呈棕红色,最大吸收峰在465nm。当它与蛋白质结合形成复合物时呈兰色,其最大 吸收峰改变为595nm。考马斯亮蓝G250在一定蛋白质浓度范围内,蛋白质和染料结合符合 比尔定律,因此可以通过测定染料在595nm处光吸收的增加量得到与其结合的蛋白质量。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液,用g―球蛋白或牛血清清蛋白(BSA),配制成1.0mg/ml和0.1mg/ml的标 准蛋白质溶液。 (2)考马斯亮兰G―250染料试剂:称100mg考马斯亮兰G―250,溶于50ml 95%的乙醇后, 再加入120ml 85%的磷酸,用水稀释至1升。 2. 器材: (1)可见光分光光度计(2)旋涡混合器(3)试管16支 三、操作方法 1.标准曲线制作(按下表0-11管操作,每管做3个平行) 0 10 20 30 40 50 60 70 80 90 100 标准蛋白 含量( g) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 标准蛋白 溶液 (0.1mg/ mL)(mL) 0.1 0.2 0.3 待测蛋白 质溶液 (mL) 2 1.9 1.8 1.7 1.6 1.5 1.4 1. 3 1.2 1.1 1.0 1.9 1.8 1.7 蒸馏水 (mL) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 考马斯亮 蓝试剂

摇匀,1 h内以0号试管为空白对照,在595nm处比色OD595nm 以OD595nm为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。 2. 未知样品蛋白质浓度的测定 测定方法同上(上表11-13管),将未知待测样品做一定的稀释(鸡血清1:100稀释;羊血清1:200稀释;肝匀浆1:100稀释),使其测定值在标准曲线的直线范围内,每管做3 个平行。根据所测定的OD595nm值,在标准曲线上查出其相当于标准蛋白的量计算出未知样品的蛋白质浓度(mg/mL)。 四、实验结果 1.标准曲线的绘制 2.蛋白浓度的计算 鸡血清稀释100倍后0.1mL样品测得OD595nm平均值为0.421 羊血清稀释200倍后0.1mL样品测得OD595nm平均值为0.500 肝匀浆稀释100倍后0.1mL样品测得OD595nm平均值为0.360 再将各所得OD值代入以下公式计算: 蛋白质含量(mg/mL)=(96.28﹡OD﹣9.1704)( μg)﹡稀释倍数/100(μL) 求得各样品浓度如下: 鸡血清=31.36 mg/mL 羊血清=77.94 mg/mL

可溶性蛋白质含量的测定

植物体内可溶性蛋白质含量的测定 植物体内的可溶性蛋白质含量是一个重要的生理生化指标,如在研究每一种酶的作用时常以比活(酶活力单位/毫克蛋白质,unIT/Mg ProTeIn)表示酶活力大小及酶制剂纯度,这就需要测定蛋白质含量。常用的测定方法有LoWry法和考马斯亮蓝G-250染色法,本实验将分别介绍这两种方法。 方法一:LoWry法(劳里法) 【原理】 LoWry法是双缩脲法(BIureT)和福林酚法(FolIn-酚)的结合与发展。其原理是蛋白质溶液用碱性铜溶液处理后,碱性铜试剂与蛋白质中的肽键作用产生双缩脲反应,形成铜—蛋白质的络合盐。再加入酚试剂后,在碱性条件下,这种被作用的蛋白质上的酚类基团极不稳定,很容易还原酚试剂中的磷钨酸和磷钼酸(PHosPHoMolyBdATe &PHosPHoTungsTATe),使之生成磷钨蓝和磷钼蓝的混合物。这种溶液蓝色的深浅与蛋白的含量成正相关,所以可以用于蛋白质含量的测定。LoWry法除使肽链中酪氨酸、色氨酸和半胱氨酸等显色外,还使双缩脲法中肽键的显色效果更强烈,其显色效果比单独使用酚试剂强3~15倍,约是双缩脲法的100倍。由于肽键显色效果增强,从而减少了因蛋白质种类不同引起的偏差。LoWry法适于微量蛋白的测定,对多个样品同时测定较为方便。但对不溶性蛋白和膜结合蛋白必须进行预处理(如加入少量的SDS)。

1.双缩脲法的原理双缩脲(NH2-CO-NH-CO-NH2)在碱性溶液中可与铜离子产生紫红色的络合物,这一反应称为双缩脲反应。因为蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,且颜色深浅与蛋白质的含量的关系在一定范围内符合比尔定律,而与蛋白质的氨基酸组成及分子量无关,所以可用双缩脲法测定蛋白质的含量。 双缩脲反应主要涉及肽键,因此受蛋白质特异性影响较小。且使用试剂价廉易得,操作简便,可测定的范围为1~10Mg蛋白质,适于精度要求不太高的蛋白质含量的测定,能测出的蛋白质含量须在约05Mg以上。双缩脲法的缺点是灵敏度差、所需样品量大。干扰此测定的物质包括在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。 2.福林-酚法的原理该方法是双缩脲法的发展,包括两步反应: (1)在碱性条件下,蛋白质与铜作用生成蛋白质—铜络合物。 (2)此络合物将试剂磷钼酸—磷钨酸(FolIn试剂)还原,混合物深蓝色(磷钼蓝和磷钨蓝混合物),颜色深浅与蛋白质含量成正比。此方法操作简便,灵敏度比双缩脲法高100倍,定量范围为5~100μg蛋白质。FolIn试剂显色反应由酪氨酸、色氨酸、半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物,均有干扰作用。此方法的缺点是有蛋白质的特异性影响,即不同蛋白质因络氨酸、色氨酸含量的不同而使显色强度稍有不同,标准曲线也不是严格的直线形式。

肌红蛋白测定试剂盒说明书

肌红蛋白(MYO)测定试剂盒(化学发光免疫分析法) 说明书 【产品名称】 通用名称:肌红蛋白(MYO)测定试剂盒(化学发光免疫分析法) 英文名称:Myoglobin(CLIA) 【包装规格】 2×30 人份/盒、2×50 人份/盒、2×100 人份/盒 【预期用途】 用于体外定量测定人体血清或(和)血浆中肌红蛋白的含量。 肌红蛋白(MYO)分子量为17.8 kD,由一个多肽链和一个亚铁血红素辅基组成,由人体骨骼肌和心肌细胞合成并贮存,不存在于其它细胞。实验证明由骨骼肌和心肌来源的两种肌红蛋白无免疫学上的差异。肌红蛋白的主要生理功能为携带氧气供细胞呼吸。肌红蛋白是检测急性心肌梗死(AMI) 的早期指标,具有极高的灵敏度但是特异性较差,在AMI 早期心肌细胞受损,由于MYO 的分子量小,可以很快从破损的细胞中释放出来,在AMI 发病1~3 小时后血中浓度迅速上升,6~7 小时达峰值,12 小时内几乎所有AMI 患者MYO 都有升高,升高幅度大于各心肌酶,因此可以作为AMI 的早期诊断标志物。由于MYO 也存在于骨骼肌中,而且仅从肾脏清除,所以急性肌损伤、急性或慢性肾衰竭、严重的充血性心力衰竭、长时间休克及各种原因引起的肌病患者、肌内注射、剧烈的锻炼、某种毒素和药物摄入后,MYO 都会升高。因此,采用血清MYO 水平作为诊断AMI 的早期指标,仅限于没有上述相关疾病的患者。在有急性症状的患者中,4 小时内MYO 水平不升高,AMI 的可能性极低。由于在AMI 后血中MYO 很快从肾脏清除,发病l8~30 小时内可完全恢复到正常水平。故MYO 测定有助于在AMI 病程中观察有无再梗塞或者梗塞再扩展。MYO 频繁出现增高,提示原有心肌梗死仍在延续。另外,在神经肌肉疾病如肌营养不良、肌萎缩和多肌炎时血清MYO 水平亦升高。心脏外科手术患者血清MYO 升高,可以作为判断心肌损伤程度及愈合情况的一项客观指标。 【检验原理】 肌红蛋白测定采用双位点夹心化学发光免疫分析法,其检测原理如下: 第一步:将样本与包被着抗肌红蛋白抗体的超顺磁性微粒(磁珠)以及抗肌红蛋白抗体-碱性磷酸酶标记物添加到反应管中,经过孵育,样本中的肌红蛋白和包被在磁珠上的抗肌红蛋白抗体结合,同时抗肌红蛋白抗体-碱性磷酸酶标记物与样本中肌红蛋白另一位点结合。反应完成后,磁场吸住磁珠,洗去未结合的物质。 第二步:将化学发光底物添加到反应管内,发光底物(3-(2-螺旋金刚烷)-4-甲氧基-4-(3-磷氧酰)-苯基-1,2-二氧环乙烷,AMPPD)被碱性磷酸酶所分解,脱去一个磷酸基,生成不稳定的中间产物,该中间产物通过分子内电子转移产生间氧苯甲酸甲酯阴离子,处于激发态的间氧苯甲酸甲酯阴离子从激发态返回基态时,产生化学发光,再通过光电倍增管对反应中所产生的光子数进行测量。所产生光子数与样本内肌红蛋白的浓度成正比。样本内分析物的量由校准曲线来确定。 【主要组成成分】

BCA蛋白浓度测定试剂盒完整版

BCA蛋白浓度测定试剂盒 说明 23225蛋白质化验试剂盒:为500试管或5000微孔板的检测提供充足的试剂 23227蛋白质化验试剂盒:为250试管或2500微孔板的检测提供充足的试剂 试剂盒组分: BCA 试剂A,1000 mL (No. 23225产品中) 或500mL ( No. 23227产品中),碳酸钠,碳酸氢钠,二喹啉甲酸,酒石酸钠溶于0.1 M氢氧化钠中。 BCA 试剂B , 25 mL, 包括4%硫酸铜 一次性标准白蛋白, 2mg/ mL, 10 × 1 mL 安瓿, 包含2 mg/ mL牛血清白蛋白(BSA) 存在于0.9% 盐和0.05%叠氮化钠中。 储存:以上试剂保持在室温下储存和装运 注意:如果试剂A 或试剂 B 在低温下运输或长期储存时出现沉淀现象,可以通过缓慢加温或轻轻搅拌溶液使沉淀物溶解。当试剂变色或确定微生物污染时请丢球试剂盒。 目录 介绍 (1) 准备标准试剂和工作试剂 (2) 准备试管 (3) 准备微型版 (3) 故障检修 (4) 有关美国热电其他产品 (5) 附加信息 (5) 参考文献 (6) 介绍 美国热电(Thermo)公司的BCA蛋白浓度测定试剂盒是基于二喹啉甲酸(BCA)通过比色检测和定量测定总蛋白的洗涤剂兼容配方。该方法通过碱性介质中的一种蛋白结合了Cu2使其显著减少转变为Cu1 (缩二脲反应)。用一种含二奎琳甲酸的试剂选择性的比色法高敏感的比色杯中的Cu1. 这种测定方法的紫色色反应产物是通过BCA的两个分子和亚铜离子螯合作用形成的。这种水溶性复合物在562nm 处有强吸收峰。在大的活性范围内(20-2000μg / mL)几乎同蛋白浓度增加呈线性关系。BCA 法不是真正的终点的方法;也就是说,最终颜色继续发展。孵化之后, 继续的颜色发展速度是足够慢以允许一起进行测定大量样本。 大分子结构的蛋白质,肽键的数量和存在的四个特定氨基酸(半胱氨酸,胱氨酸,色氨酸和酪氨酸)据说是与BCA形成颜色产物的原因。因此,蛋白浓度的测量通常要参照标准的一个常见的蛋白质如牛血清白蛋白。一系列已知浓度的蛋白质稀释液是为与之相近的未知蛋白质浓度测定准备的。因为每一个未知浓度的测定都需要基于标准曲线。如果需要将一个未知蛋白精确定量,选择一个与未知蛋白特性相似的标准蛋白是可取的。例如,当测定免疫球蛋白时牛血清丙种球蛋白可以被当做标准蛋白。以下给出了两种检测过程: 其中,试管程序需要一个较大的体积(0.1毫升)的蛋白质样品。然而,因为它使用了一个样品比例为1:20的工作试剂(v / v),所以将干扰物质的影响降到最小。在酶处理程序提供了一样品处理酶,需要体积较小(10 -25μL)的蛋白质样品。然而,由于使用了样品比例为1:8的工作试剂(v / v),所以在克服干扰物质浓度时灵活性降低,从而获得的检测水平较低。

蛋白质含量测定方法比较

. 蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。 双缩脲定氮法 双缩脲(NHCONHCONH)是两个分子脲经180℃左右加热,放出一个33分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO形成紫色络合物,称4为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的

缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋1 / 5 . 白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收

相关文档
最新文档