化学水处理调试方案

化学水处理调试方案
化学水处理调试方案

二氧化硅:<0.02mg/I

PH值8.8~9.3

硬度:=0 UmOI/L

根据《电力建设施工及验收技术规范》(电厂化学)DL/T5190.4-2004;《工业管道工程施工及验收规范金属管道篇》GB50235-97;《现场设备,工业管道焊接工程施工及验收规范》GB50236-98;及南钢电厂施工说明书规定,逐一对设备,系统进行检查验收后,可进行水处理整套试运调试,调试完毕出水达到电力部颁布水质标准。

2、调试前应具备下列条件:

2.1 所有罐体、箱体、交换器、脱碳器、酸、碱贮存罐,各类水泵、风机、无油润滑空压机、酸、碱计量箱、安装完毕并连接成系统,具备运行条件。

2.2 酸碱中和池,地沟施工完毕并作防腐验收,具备中和排放条件。

2.3 离子交换树脂,过滤材料、酸、碱、盐按计划备足并运到现场,工作电源、水源应有保证。

2.4 衬胶设备电火花检查无破损。

2.5 工作场地清洁整齐,道路畅通,照明充足。

2.6 监视和测量仪表校验调整完毕。

3、设备的检查、验收

化学水处理系统调试前必须按“电力建设施工及验收技术规范(火力发电厂化学)”的要求进行检查和验收,若发现设备有缺陷,应消除或更换以保证调试工作顺利进行。3.1 对各类容器,交换器、酸碱系统的内部结构,防腐质量进行检查,并符合“电建规电厂化学篇”第九章规定。

3.2 检查交换器安装的垂直度,内部结构的水平度,进出水装置是否松动,破损,法兰结合面是否严密尼龙或金属网套是否牢固,若发现问题,应更换或加固。

3.3 阀门、管道的安装、走向,接口应符合设计标准。

3.4 所有电机、风机、水泵,空压机按规定进行单体试运转,若发现振动过大,运转异常和温升过高的现象应及时处理。

3.5 再生系统的空压机及空气系统进行试运转,将空气管道彻底吹扫干净,避免油渍污染树脂。

3.6 承压设备经水压试验合格后方可填料,试压用清水,要求系统严密,无渗漏现象,

一般以工作压力的1.25倍进行水压试验,一般容器作灌水试验。试压中发现的设备、管道、阀门渗漏应予处理。高位酸碱储罐至计量箱之间的管道试验压力为

0.2MPa,除盐水泵出口及以后的管道试验压力为1.85MPa,压缩空气管道试验压

力为1.0MPa,其余部分的管道试验压力为0.75MPa。

4、填料的处理、填装

4.1 多介质过滤器、活性碳过滤器填料填装:

4.1.1 在滤料装填前,需检查设备内部是否有杂物,如有杂物应清理干净。4.1.2 按要求在设备内部做好各滤层高度的尺寸线。

4.1.3 按滤料填装先后的顺序填装滤料。在每装完不同的滤层后,应将滤料铺平,并检查是否达到需求的高度线。

4.1.4 在装填过程中,严禁将滤料的包装袋掉入设备中,如发现滤料中有其它杂物,应立即清除。

4.1.5 滤料安装完成后应及时将设备人孔封闭。

4.1.6 多介质过滤器滤料的安装高度:(按填装先后顺序排列)

4.1.6.1 砥石:φ16~32高出配水系统孔眼100mm

4.1.6.2 砥石:φ8~16H=100mm

4.1.6.3 重质矿石:φ4~8H=50mm

4.1.6.4 重质矿石:φ2~4H=50mmφ8~16H=100mm

4.1.6.5 重质矿石:φ1~2H=50mm

4.1.6.6 重质矿石:φ0.5~1H=50mm

4.1.6.7 重质矿石:φ0.25~0.5H=50mm

4.1.6.8 石英砂:φ0.5~0.8H=230mm

4.1.6.9 无烟煤:φ0.8~1.6H=530mm

4.1.7 活性炭过滤器滤料的安装高度

4.1.7.1 砥石:φ16~32高出配水系统孔眼100mm

4.1.7.2 砥石:φ8~16H=100mm

4.1.7.3 砥石:φ4~8H=100mm

4.1.7.4 重质矿石:φ2~4H=100mm

4.1.7.5 石英砂:φ1~2H=250mm

4.1.7.6 活性炭:H=1800mm

4.2 阴、阳、混合离子交换器的树脂填装:

4.2.1 树脂填装前,首先检查离子交换器内部的中排和出水排水帽,如中排管和排水帽在运输过程中或其它原因造成的松动,应立即紧固。

4.2.2 按树脂的先后顺序填装树脂,在树脂填装后,应将树脂铺平,并检查树脂的填装高度是否达到需求的高度线。

4.2.3 在填装过程中,严禁将树脂的包装袋掉入设备中。

4.2.4 树脂填装结束后,应向设备内加水,使树脂完全浸泡在水中,并将设备所有阀门关闭,防止水流失。

4.2.5 阴、阳、混合离子交换器树脂填装的安装高度:(按填装先后顺序排列)4.2.5.1 阳离子:

阳树脂:H=2000mm

压树脂层白球:H=200mm

阴离子:

阳树脂:H=2000mm

压树脂层白球:H=200mm

混合离子:

阴树脂:H=500mm

阳树脂:H=1000mm

石英砂的予处理

石英砂应符合设计要求:石英砂在铺装前要用15%~20%的HC1处理一昼夜,经浸泡处理后的石英砂应符合下列要求:

1、全固形物的增加量不超过20mg/1

2、二氧化硅的增加量不超过1~2mg/1

3、纯度:SiO2≥99%

4、化学稳定性试验合格。

4.3 新树脂的处理

新树脂在使用前必须进行预处理,这是因为新树脂中常常含有少量低聚物和未参加聚合反应的物质,另外,还可能吸附某些金属离子,如铁、铝等,如果不去除这些物质,

就会在使用初期污染出水,而引起炉水的耗氧量以C1离子的升高,同时也会影响树脂的交换容量,所以新树脂在使用前应进行预处理。

4.3.1 阳树脂的预处理过程:

用饱和食盐水溶液浸泡18~20小时,清洗排出水无黄色,用2%~4%NaOH溶液浸泡4~8小时,清洗至中性,用5%的HC1浸泡4~8小时。洗清至中性,待用。

4.3.2 阴树脂的预处理过程:

用饱和食盐水溶液浸泡18~20小时,清洗排出水无黄色,用5%的HC1浸泡4~8小时,清洗至中性,用2%~4%NaOH溶液浸泡4~8小时,洗清至中性,待用。

当树脂无失水现象时,可省去饱和食盐水浸泡步聚。

5、阳离子交换器调试

离子交换树脂在使用前应核对制造厂家,名称型号、规格和性能,如发现质量不符合规定时,禁止使用。

每台阳离子交换器内装阳树脂2.0米,压脂层0.2米,树脂牌号001×7。

先用约2倍树脂体积的2%NaOH+10NaC1溶液,以2米/时左右的流速通过树脂层,全部通入后,将液面放至树脂层面以上0.2~0.3米处,浸泡24小时,放尽盐液。用清水冲洗流速不大于10米/小时,冲洗至出水清澈。C1<200ppm止,冲洗合格后,制取软化水供配制NaOH和下步水冲洗用。

向交换器内注入2倍树脂体积的2%NaOH溶液,按上述方式通入,浸泡24小时放尽碱液,用软化水冲洗到碱度<50mg/1停止冲洗。

碱处理完后,向交换器内注入约2倍树脂体积的5%HC1,操作方法同上。放尽酸液,用软化水冲洗(正洗),正洗终点硬度≈0,Na+<100ppb。

正洗合格后,制取阳订出水,用作阴床的冲洗及配药用。

6、阴离子交换器的调试

每台阴离子交换器内装阴树脂层高2.0米,压脂层0.2米,树脂牌号201×7。

先用2倍树脂体积的2%NaOH+10%NaC1溶液以2米/小时左右的流速通入树脂层,全部通入后,将液面放至树脂层面以上0.2~0.3米处,浸泡24小时,放尽盐液。用阳床出水冲洗流速不大于10米/小时,冲洗至出水清澈,C1<300ppm止,停止水冲洗。

用2倍树脂体积的5%HC1溶液,以2米/时左右的流速通过树脂层,全部通入后液面需高于树脂层上0.2~0.3米处,浸泡24小时,放尽酸液。用阳床出水冲洗,出水终点

酸度<30epm时,停止冲洗。

用2倍树脂体积的2%NaOH溶液,按上述方法通入交换器内,入尽碱液。用阳床出水冲洗,流速10米/时,出水终点电导率<5us/cm,SiO2<100ppb。

阳床出水须经过除CO2器的水。

上述树脂预处理并作再生。

化学水处理系统操作运行,按南钢电厂化学运行规程实施。

水处理系统调试期间,逐步投入在线化学监测仪表。

7、混床除盐工艺

经一级除盐处理的水质虽已较好,但还不能满足许多情况下的要求,为此产生了二级除盐甚至三级除盐,这显然会增加设备的台数和系统的复杂性,后来有了混合床才解决了这个问题。

7.1 工作原理

在混床中,水经过混匀的阴、阳离子交换树脂层进行除盐,失效后,先把它们分离并分别再生成OH和H型,然后再混合均匀。混床可以看作是许多阴、阳树脂交错排列而组成的多级式复床,其阴、阳离子交换几乎是同时进行的。经H+交换产生的H+和经OH交换产生的OH可以互相中和,因此交换反应进行得十分彻底,出水水质很好。

混床中树脂失效后,应先将两种树脂分离,然后分别进行再生和清洗。分离一般采用反洗分离法,即利用阳树脂的湿真密度比阴树脂的在,使阳树脂处于下层,阴树脂处于上层。再生清洗后,再将两种树脂混合均匀,又可以投入制水运行。

对水质要求高时,混床所用的必须是强酸性和强碱性树脂。

7.2 体内再生混床的结构

按再生方式,混床分体内再生和体外再生两种,在此我们介绍体内再生。

其主要装置用:上部进水装置、下部配水装置,以及为了将阴、阳树脂分开再生,在阴、阳树脂层分界处设置的中间排水装置(用体外再生时无此装置)。

为了便于混床中阴、阳树脂分层,两种树脂的湿真密度差应大于15%,有时还可采用增加二者粒度差的办法确定。

确定混床中阴、阳树脂比例的原则是使阴、阳树脂同时失效,以获得最高的利北,由于不同的树脂的工作交换容量不同,进水水质条件和对出水水质要求的差异,应根据具体情装饰品确定阴、阳树脂的比例。

7.3 混床的运行

7.3.1 反洗分层

将失效后的阴、阳树脂彻底分开,以便分别再生,是混床运行的关键。分层大都采用反洗法,即借反洗的水流使树脂层悬浮起来,达到一定的膨胀率,利用两种树脂的密度差,达到阴在上、阳在下的分层状态。反洗开始时,流速宜小,待树脂曾松动后,逐渐加大流速至10m/h左右,使整个树脂层的膨胀率为50%-70%之间,维持10~15钟一般可以达到较好分离效果。新的H型和OH型树脂有时有相互粘结的现象(抱团),使得分层困难,为了分层容易,可先通过NaOH溶液破坏抱团现象,同时还可使阳树脂转为Na 型,将阴树脂再生成OH型,从而加大了阳、阴树脂的湿真密度差,对于分层很有利。(开反洗进水阀、反洗排水阀,启动反洗泵,先大流量将树脂托起,时间约15min)7.3.2 体内再生

根据进酸、进碱和冲洗步骤的不同,可分为两步法和同时再生法。

所谓两步法是指酸、碱再生液不同时进入,它又分为碱液先流经阴、阳树脂层的两步法和碱、酸先后通过阴、阳树脂的两步法。

同时再生法在再生时,由混床上、下同时送入碱、酸液,并接着进清洗水,使之分别经阴、阳树脂层后,由中排管同时排出。再生的时间长短取决于阴树脂的再生时间。

为了避免酸、碱对出水的污染,设计时,应注意酸、碱与出水的隔离,例如在连接混合床的出水管的酸溶液输送管上设置两个阀门,并且最好在两个阀门间加一个小的排空阀。(进酸碱:开进碱阀、进酸阀、中间排水阀、计量箱出酸阀、计量箱出碱阀、碱喷射器进水阀、酸喷射器进水阀,启动再生泵,调整流量、流速、浓度,约25min;置换:关出酸、碱阀,保持进再生液时流量,约40min。)

7.3.3 阴、阳树脂的混合

树脂经再生的洗涤后,在投入运行前必须重新混合均匀,通常从底通入0.1~0.2Mpa 的压缩空气来使之混合均匀,所用空气应经过净化除油,以免污染树脂。根据实际测定可知,树脂混合后,经常是上部阴树脂偏多,下部阴树脂偏多,这是因为混合后排水不及时或排水速度不够,在树脂有沉降过程中,又重新分层的结果。因此,为了保证树脂分层效果,除了采用压缩空气搅拌外,还需有足够大的排水速度,迫使树脂迅速沉降,避免树脂重新分离。树脂沉降过程时,若采用顶部进水,对加速沉降也有一定好处。(开进气阀、排气阀,时间约5min。树脂稳定:开进水阀、排气阀、正洗排水阀约2min)

7.3.4 正洗

混合后的树脂层,还要用一级除盐水以10-20m/H的流速正洗,直至出水合格,即SiO2含量小于20ug/L,电导率小于0.2us/cm,方可制水。正洗初期,如排水浑浊,可排入地沟,待排水变清后,可加收利用。(开进水阀,正洗排水阀)

7.3.5 制水

混合床制水可以采用高流速,对凝胶型树脂可取40-60m/h,对大孔型树脂流速可高达100m/h以上。

8、再生系统的调整试验

8.1 启动再生泵进行水冲洗再生系统,冲洗干净后,酸、碱计量箱进水至满刻度,进行抽吸试验。

8.2 对再生系统中的喷射器进行调整试验,待抽吸量可以满足运行要求后,计量箱方可进再生液。

8.3 调整进水流量、喷射器进口门,测试再生液浓度。

8.4 在浓度范围内确定进再生液时间。

8.5 校核计量及测量仪器仪表。

9、空气系统的调整试验

9.1 启运空压机,吹扫空气系统。

9.2 启动空压机,整个空气系统做稳压试验。

9.3 向交换器内进气,维持压力1.0Kg/cm2稳定不变。

调节再生液流量,使其符合设计要求。

10、加氨系统调整试验

10.1 启动除盐水泵、冲洗加药箱。

10.2 将除盐水放至刻度,开启氨瓶,将药稀释至所需溶浓度。

10.3 启动加药泵、调整调节器,加药量,PH表电导表,使期出水PH9~10 除CO2器多面空心塑料球在填装前,须用2-3%HC1浸泡1小时,再用清水冲净后装入除CO2器内。

11、安全措施:

11.1 参加调试运行人员必须熟悉“电业安全工作规程”规定和“电建施工及验收技术规范”并严格按章执行。

11.2 运行人员进岗前应熟悉设备及化学运行规程,按本方案正确操作运行,处理事故。11.3 安装维修人员应熟悉本方案,并指定专人负责安全事宜,无关人员不得进入现场。11.4 工作人员配备耐酸胶鞋,防护眼镜,橡胶围腰,耐酸手套,工作服、口罩、毛巾、肥皂。

11.5 工作场地备足水源、水缸、当酸碱灼伤时立即用清水冲洗。调试期间,不得进行电、火焊作业。

11.6 电气设备及控制系统未经许可,不准随意启动,严格执行《送、停电制度》。11.7 现场工作人员必须听从指挥,为防止误操作设备操作时须有一人监护,所有系统、阀门编号挂牌。

11.8 现场设备,材料堆放整齐,所有材料专人运送,专人保管,严禁阴、阳树脂混放。

化学水处理工艺系统图略

化学水处理系统调试试运药品:

1、食盐NaC1 2吨

2、盐酸HC1 28~30% 20吨

3、氢氧化钠NaOH 38~40% 20吨

12、化学水处理调试分析药及仪器:(略)

化水设备一览表:

13、组织措施:

为使调试工作顺利进行,现场成立调试小组,组织协调调试工作。小组机构及职责如下:组长:李建华

副组长:刘包荪

成员:徐火金李栋王福东袁先美朱修国王书才熊达金郑幼芳

职责:1、负责审查生产准备情况,领导有关人员进行整套设备启动前的准备工作,以及启动试运的指挥工作。

2、负责化学水处理系统的全部调试运工作。电厂负责调试工作的设备操作,

化验分析,水处理材料、药品供应。安装单位负责设备试压检漏、过滤材料、树脂的填装、试运中的设备检修、消缺工作。调试单位负责调试方案的技术指导与实施。

3、负责组织有关单位按照有关规程,对设备质量、施工安装质量、调试质量的

检查记录;调试方案、调试报告、验收报告等技术资料的审查和移交,并办理验收签证。

电化学水处理技术

电化学水处理技术的研究进展及方向 标签:脱色剂废水脱色纺织印染废时间:2010-06-13 15:05:35 点击:243 回帖:0 上一篇:油田污水电化处理技术的目的和意下一篇:丙烯酸漆耐侯丙烯酸防腐涂料生产 电化学水处理技术的研究进展及方向1电化学水处理技术的研究进展在科学技术发展的进程中,电化学在电解、电镀、化学电源、电分析、金属腐蚀与防护等领域都占据着重要的地位。但随着科学技术的进步,电化学的应用范围已经扩大到环境保护、电子、能源、材料、化工、冶金和化学合成等领域。这使电化学获得了新的更有意义的生命力。电化学正在逐步变成独立于化学以外的一门新学科。由此可见,现代电化学是一门交叉学科,也是应用前景非常明显的学科。近年来,电化学方法作为一种环境友好技术,在环境污染治理方面越来越受到人们的重视特别是在废水中生物难降解有机物去除方面,电化学发挥了不可低估的作用。污水处理的电化学方法主要有微电解、电化学氧化与还原、电气浮与电凝聚电渗析等方法。根据研究表明:这些方法在处理实际废水的过程发挥着很好的作用,而且电化学水处理技术因其具有多功能性、高度的灵活性、易于自动化、无二次污染等其它水处理技术无法比拟的优点,正成为国内外水处理技术研究的热点课题,尤其对那些难以生化降解、对人类健康危害极大的“三致”(致癌、致畸、致突变)有机污染物的去除具有很高的效率,并且又能节省大量的能源。因而,电化学水处理技术近年来已成为世界水处理技术相当活跃的研究领域,受到国内外的广泛关注。而在电化学水处理技术中,微电解以及电化学氧化一直是科学工作者研究的重点内容。人们主要是通过反应机理研究和应用研究两个方面对电化学水处理技术开展研究的。其中微电解是在酸性条件下,利用铁与碳形成铁碳原电池对污染物进行氧化还原,使污染物降解为生物易于降解的物质,降低毒性,从而提高废水的可生化性。在应用方面,通过研究发现:反应时间、pH值、铁碳比以及反应器的种类等因素都影响着微电解的处理效果。在机理方面,研究认为:在反应过程中,酸性条件产生的Fe3+, Fe2+和活性氢[H〕与污染物发生氧化还原反应从而使污染物得到降解。电化学氧化是利用具有高析氧电位以及良好催化性能的材料作为阳极,在外加电压下,氧化废水中的污染物,使污染物降解的技术。在应用方面,通过研究发现:电化学氧化技术适合用于染料废水、垃圾渗滤液、农药废水、炼油废水等高浓度高毒性难于生物降解的废水的预处理。其中电流密度、电极材料的种类、反应时间、pH值、电解质以及电化学反应器的形式等因素都影响废水的处理效果。电极材料的种类尤其是阳极材料一直是科学工作者的研究的热点问题,目前关于电极的研究大多集中于钦基涂层电极,主要有:钦基二氧化锰电极 (Ti/Mn02 )、钛基二氧化铅电极(Ti/Pb02)以及钌系涂层钛电极(Ti/Ru02 )、锡锑涂层钛电极( TiJSn02+Sb203 )、铱系涂层钛电极(TilIr02)等金属氧化物涂层钛电极。其中又以钛基二氧化铅电极(Ti/Pb02)以及锡锑涂层钛电极(Ti/Sn02+Sb203)为代表,它们具有析氧电位较高、催化性能良好、机械强度高不易变形等特点。这两种电极一般分别采用电沉积法味口提拉法制备。电极方面的研究主要集中改进制备方法,加入添加剂以改善电极的性能,提高处理效果,延长使用寿命和降低能耗。在电极槽方面有两维电极槽和复极性三维电极槽。两维电极槽即传统阴阳两电极的普通电极槽。针对帄東二维电极面体比(area-volume ratio)较小,单位槽体处理量小,电流效率低等缺点,在20世纪60年代末期提出了三维电极的概念,并进行了应用与机理的研究。三维电极是一种新型电化学反应器,也叫床电极。它是在传统的二维电解槽电极间装填粒状或其他碎屑状工作电极材料并使装填工作电极材料表面带电,成为新的一极(第三极),在工作电极材料表面能发生电化学反应。三维电极,按粒子极性可分为单极性和复极性;按粒子材料填充方式可分为固定方式与流动方式在机理方面,研究表明:电化学氧化有直接氧化和间接氧化两类。其中电化学直接氧化是污染物直接被电极氧化,有些污染物能够被直接矿化。而电化学间接氧化是在电解质溶液中生成[-OH]等强氧化剂将污染物氧化,转化为低毒性易于生物降解的有机物,提高了废水的可生化性。国内外针对电化学氧化水处理技术的工艺条件、影响因素作了大量的研究,但在反应机理、动力学模型等理论内容的研究上还相对不足,有机物降解中间产物和活性物种的鉴定也不充分,许多机理研究还停留在假设和理论推测阶段,具有一定片面性,而且主要针对苯系物质,研究对象比较单一。2电化学水处理技

污水处理设备安装施工组织方案

No: 宁炼60万吨/年重催联合装置污水汽提区 设备安装施工方案 批准 会签:审定 安质部门审核 编制 施工单位二○一工程处 中国化学工程第三建设公司

二○○○年三月九日 目录 1.工程概况 2.编制依据 3.安装前的准备工作 4.施工程序 5.设备安装 6.设备试压 7.进度计划 8.劳动力计划 9.安全质量保证措施

1.工程概况 宁夏炼油厂30T/h污水汽提装置静设备安装共43台 ,泵类11台.我处在该工程中负责38台静设备及11台泵的安装工作,其中静设备包括4台空冷器、11台换热器、16台容器及 7 台其它设备安装,共113.4T(详见后附“设备规格表”)。 2.编制依据 2.1.施工设计图纸B8604-42/I-安-1/(HGJ209-83); 2.2.《中低压化工设备施工及验收规范》(HGJ20-83); 2.3.《化工机器工程施工及验收规范》(HGJ203-83); 2.4.《化工工程建设起重施工规范》(HGJ207-83)。 2.5.《化工工程建设起重施工规范》(HGJ201-83)。 3.安装前的准备工作 3.1.基础准备 土建交付的基础,应标有清晰的纵横向轴线、标高基准点,各预埋件、预留孔洞、地脚螺检孔的中心位置应标志清楚,且应提交中间交接证书;有标高、中心线及各部位尺寸的实际记录,其中主要尺寸允许偏差为下表所示: 单位(mm)

基础复检合格后,对地脚螺栓两侧放置垫铁部位,打出深度约10-20mm凹窝,基础其余表面应打出麻面,深度约10mm,每平方分米3-5点。 3.2.技术准备: 要求甲方供全套有关的设备图纸资料,如平面图、基础图、装配图、系统图、本体工艺配管图及安装、使用说明书等。同时要求甲方提供有关产品质量合格证书等。最后将审批后方案进行技术交底,组织施工。 3.3.主要的工具材料准备: 3.3.1.施工用的量具准备: 3.3.2.主要配备工具准备: 各种规格套筒扳手、呆扳手、活扳手各1套,砂轮机2台,手锤2把。

污水处理调试方案(1)

调试方

案 一、工程概述 近年来由于各行各业的发展迅猛发展,人民生活的逐步提高,各类生活垃圾也逐渐增多,与此同时也带来了一系列的环境问题。因垃圾填埋产生大量垃圾废水,垃圾冲洗废水具有有机物浓度高、NH3-N浓度高、重金属含量高这样的特种废水,且有悬浮物含量多、恶臭熏天等特点。为此根据环境保护法的有关规定,

所有的废水必须处理达标后,方可达到排放或回用的目的(消防或回浇)。 根据该废水的水质特性和业主的具体条件和要求,现拟采用双级生物化学为主的处理工艺(A2/O+MBR+NF),其主要特点是引进了微生物固定及其控制技术、优势菌群的培养及驯化技术。与常规工艺相比,具有适应性强、处理效率高、运行效果稳定、运行费用低等特点,可确保处理后出水稳定达标排放,并最大限度地减少工程投资,降低运行费用。处理后的出水完全达到国家一级A类排放标准,可用于消防、填埋场回浇、洗车、绿化用水或向自然水体直接排放。 1.1 污水处理站设计规模及进、出水水质 1.1.1 设计规模 污水处理站建设规模为200m3/d。 1.1.2 设计进、出水质 1.1. 2.1 进水水质 本工程设计的水质参数如下:填埋初期,5年内

填埋中后期,5年以后 1.1. 2.2设计出水水质指标 控制污染物排放浓度限值备注色度(稀释倍数)≤40

1.2 工艺流程及流程简介 1. 2.1 污水处理工艺流程方框图 浮渣 剩余污泥

1.2.2 工艺特点及流程简介 该工艺在厌氧—好氧除磷工艺(A2/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,以达到硝化脱氮的目的。A2/O法可同步除磷脱氮机制由两部分组成:一是除磷,污水中的磷在厌氧状态下 (DO<0.3mg/L),释放出聚磷菌,在好氧状况下又将其更多吸收,以剩余污泥的形式排出系统。二是脱氮,缺氧段要控制DO<0.5 mg/L,由于兼氧脱氮菌的作用,利用水中BOD作为内呼吸源(有机碳源),将来自好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气逸入大气,达到脱氮的目的。 首段厌氧池,原污水中的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中BOD浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中NH3-N浓度下降,但NO3-N含量没有变化。

工业废水处理系统调试方案说明

潞安余吾热电有限责任 公司2×135MW 机组工程 西北电力建设调试施工 研究所调试措施 LA1CH0705 共13 页 潞安余吾热电厂2×135MW 机组工程工业废水处理系统调试方案 西北电力建设调试施工研究所 发行时间二○○七年元月 潞安余吾热电有限责任公司2×135MW 机组工程工业废水处理系统调试方案 1 方案名称:潞安余吾热电有限责任公司2×135MW 机组工程 工业废水处理系统调试方案 方案编号:LA1CH0705 出方案日期:2007 年01 月保管年限:长期 密级:一般试验负责人:袁选民 试验地点:余吾热电厂 参加试验人员:力江、封帆等 参加试验单位:西北电力调试施工研究所、中煤建筑安装工程公司第69 处、余吾热电厂、建通电力工程建设监理公司 试验日期:2007 年01 月打印份数:份 编写:封帆立江审核:袁选民 批准:雪飞 潞安余吾热电有限责任公司2×135MW 机组工程工业废水处理系统调试方案 2 目录 1.编制目的 2.编制依据 3.调试质量目标 4.系统及主要设备技术规 5.调试围 6.调试前应具备的条件

7.调试工作程序 8.工业废水处理系统调试步骤 9.组织分工 10.安全注意事项 11.附件 潞安余吾热电有限责任公司2×135MW 机组工程工业废水处理系统调试方案 3 1.编制目的 1.1 为了指导及规工业废水系统的调试工作,保证调试过程能有效安全地 进行,制定本措施。 1.2 检查电气、热工保护联锁和信号装置,确认其动作可靠。 1.3 检查设备的运行情况,检验系统的性能,发现并消除可能存在的缺陷。 2.编制依据 2.1《火力发电厂基本建设工程启动及竣工验收规程》 2.2《火电工程调整试运质量检验及评定标准》(1996 年版) 2.3《火电工程启动调试工作规定》(1996 年版) 2.4《电力建设施工及验收技术规》水处理及制氢装置篇(1988 年版) 2.5 设计图纸及设备设明书 2.6《污水综合排放标准》(GB8978-1996) 3.调试质量目标 符合部颁《火电工程调整试运质量检验及评定标准(1996 年版)》中有 关污水系统各项质量标准要求,全部检验项目合格率100%,优良率90%以上,满足机组整套启动要求。 4.系统及主要设备技术规 4.1 系统简介 余吾热电位于省市屯留县余吾乡境潞安矿业集团屯留工业 矿区西侧,本期工程新建2×135MW 超高压、一次中间再热、直接空冷、抽凝式汽轮发电机组,配2×480t/h 循环流化床锅炉。 本期工程设置集中工业废水处理系统以处理全厂工业废水。经常性废水 有:锅炉补给水处理系统的再生酸碱废水及凝结水处理系统的废水、水汽取样排水、主厂房地面排水;非经常性废水有:机组的启动排水、空气预热器冲洗废水和锅炉化学清洗废水;此外还有含油废水。 工业废水处理系统出力50m3/h,含油废水处理系统出力为10m3/h,出水 潞安余吾热电有限责任公司2×135MW 机组工程工业废水处理系统调试方案 4 需达到生活杂用水水质要求,并达到GB8978?1996《污水综合排放标准》第二类污染物最高允许排放浓度的一级标准,其主要指标如下: pH 值 6.5~9 悬浮物 mg/L ≤10 生物耗氧量(BOD5) mg/L ≤10

化学水处理技术操作规

化学水处理技术操作规程

汽水质量标准

第一章汽水汽水质量标准与化验方法 一、 给水化验方法 1、硬度:(EDTA 法): 取100毫升透明水样于250毫升三角瓶中加 入2%的(氨—氯化铵缓冲溶液)⑴3—5毫升,再加入酸性铬兰⑵K3~ 5滴,用L ⑶特利隆(EDTA )标准液滴定到由红色变成紫红色为终点。 计算: 硬度(微摩尔/升) =100 1000100001.0EDTA ???毫升数 耗 当水样为100ml ,微量滴定管lml=100小格,则此硬度等于耗EDTA 的小格数。 注意事项: a 、滴定时应慢慢加入EDTA ,并剧烈摇动。 b 、水样温度须控制在30℃左右,防止假终点。 c 、为防止Cu 2+及其他离子干扰需加Na 2S ⑷两滴。 d 、本法须在氨性溶液PH=10~来滴定。 2、小碱度的化验方法:取100毫升蒸汽样水注入250毫升三角瓶中,放在电炉上加热沸腾5~7分钟(余水样余原有的2/3)时取下置于 冷却水槽中冷至恒温,加入混合指示剂⑷5滴,用L 2 1H 2SO 4⑸滴定至紫 灰色。 小碱度(μmol/L ) =10001000)(422 1???水样毫升耗酸毫升SO H C 注意事项: a 、一定要遵守加热时间和冷却要求,否则影响结果。

b 、在做蒸汽小碱度时,禁止盐酸瓶及倒酸影响化验结果。 c 、混合指示剂规定每周至少更换一次。 d 、蒸汽煮沸时间,不应少于5分钟。但也不应过长,否则影响蒸汽 碱度结果。 4、Cl -化验方法:取样水100ml250ml 三角瓶中,加p =5%铬酸钾⑹指 示剂1ml ,以1mg Cl -/ml 的AgNO 3⑺滴定至浅棕红色为终点。 计算方法: Cl -(mg /L) =(耗AgNO 3毫升数/100)×1000 注意事项: a 、若水样呈碱性,必须先用L ⑽酸中和, b 、若水样中呈有酸性必级用L 碱⑾中和, c 、溶液温度越高铬酸银溶得越多,结果不准确,故必须将其冷却至 室温再化验。测定炉水时必须将其先冷却后再化验。 酚酞碱度:取滤清的水样100ml 于250ml 三角瓶中,加2~3滴1%酚 酞⑸以L 2 1H 2SO 4⑹滴定至由红色为转为无色为终点。 计算方法: 一、 炉水化验方法 1、总碱度:取100毫升蒸汽样水注入250毫升三角瓶中,置于冷却 水槽中冷至恒温,水样中加2~3滴1%甲基橙⑻(用~L 21H 2SO 4滴定) 至由橙黄色为转为橙红色为终点。 碱度(毫摩尔/升) =1000422 1??水样体积耗酸毫升SO H C

水处理项目施工方案

技术部分

第一章工程概况 第二章编制依据和原则 第三章施工组织机构及人员配备 第四章施工机械设备配置方案 第五章主要分部分项的施工工艺方法 第六章保证安全、质量、工期的技术措施第七章冬、雨季施工措施 第八章现场文明施工、环境保护措施 第九章工程竣工验收、回访、回修

一、工程概况 1、位置、地形 肥城市污水处理厂位于肥城市新城以西约三公里处,泰临路南侧,康汇河北侧。本工程招标范围为土建工程缺氧池60×24×6.5(立方米)一座。 2、工程特点 本工程工期紧,但我公司本着使工程早竣工并投入使用的精神,将以优秀的管理水平和一流的施工技术来缩短工期。任务重,该工程地形复杂,挖填方量大,任务相对重。难度大,根据上述特点,我公司组织施工过程中,将克服各种不利条件,以饱满的精神,拼搏、求实的工作作风,创一流的管理水平,一流的工程质量,一流的工程速度,以优良工程为目标,顺利完成工段的建设任务。 二、编制依据和原则 1、编制依据 (1)设计图纸 (2)国家现行建筑工程施工验收规范及验评标准。 (3)现场条件及同类工程施工经验。 (4)肥城市污水处理厂招标文件中技术规范及工程量清单 (5)企业标准 2、编制原则 (1)加强施工过程中的质量控制,在确保工程质量等级达到优良。 (2)科学、合理的安排施工顺序及施工进度,保证工程顺利完工。

(3)合理规划施工平面,搞好文明施工,树立企业良好形象。 (4)结合同类工程施工经验,重点阐述主要分部、分项工程施工工艺及方法、保证安全、质量、工期、文明施工的技术措施。 三、施工组织机构及人员配备 1、施工组织机构 根据业主和有关文件对本工程的施工要求,以及工程规模、工期、质量等方面的要求,我单位将为本工程的施工组成一套高效、精干、强有力的领导机构和装备先进、施工水平过硬的队伍。 本工程项目部设项目经理1人,项目副经理1人,经理部内设工程管理部、财务部、办公室等职能部门,其结构形式如下面框图。 项目主管 项目经理项目副经理 工动综 程质财力合 管检务材办 理部部料公 部部室 项目经理部是施工队伍的核心,其职能是按照业主和合同条款的要求,圆满地履行施工合同,即指挥施工机械和人员在业主规定的工

水处理调试方案

目 录 1 编制目的 (1) 2 编制依据 (1) 3 调试对象及范围 (1) 4 调试前应具备的条件 (3) 5 调试步骤、作业程序 (4) 6 组织分工 (9) 7 调试用仪器(设备) (11) 8 环境、职业健康风险因素控制 (11)

1 编制目的 通过对达尔凯阳光(哈尔滨)热电有限公司4×220t/h炉和2×50MW机组扩建工程锅炉补给水处理设备的调试,使锅炉补给水处理设备能够达到设计要求,为全厂的安全、经济运行提供合格的锅炉补给水。 2 编制依据 2.1 《火力发电厂化学设计技术规程》DL/T5068-2006; 2.2 《电力建设施工质量验收及评价规程》DL/T5210.6-2009; 2.3 《火力发电建设工程启动试运及验收规程》DL/T5437-2009; 2.4 黑龙江省电力勘察设计研究院设计说明及相关设计图; 2.5 锅炉补给水设备运行操作手册。 3 调试对象及范围 3.1 系统概述 达尔凯(阳光)热电厂锅炉补给水水源为自来水,主要处理工艺如下: 来水→原水泵→空隙调节型纤维过滤器→保安过滤器→高压泵→反渗透→脱气塔→中间水箱→泵→阴阳混合离子交换器→除盐水箱 3.2 主要设备参数 序号 设备名称 规格、型号 数量/单位 1 生水箱 V=500m31台 2 生水泵 KQW100/170型 Q=60~120m3/h H=40~30m 2台 3 孔隙调节型纤维 过滤器 MPCF-100型 DN1500 出力:100m3/h 2台 4 反冲洗水泵 KQW100/125型 Q=100m3/h H=20m 1台

5 保安过滤器 过滤精度:5μm 出力:50m3/h 2台 6 高压泵 CR64-6-1型 Q=50m3/h P=1.4MPa 2台 7 反渗透装置 出力:35m3/h 2套 8 反渗透冲洗水泵 KCZ65/160A型 Q=60~120m3/h H=37~28m 1台 9 除二氧化碳风机 Q=1464~2196m3/h P=1270~800Pa 2台 10 除二氧化碳器 填料层高:1.0m 2套 11 中间水泵 KCZ65/160A型 Q=60~120m3/h H=37~28m 2台 12 阴阳混合离子交 换器 树脂层高:阳树脂=0.5m 阴树脂=1.0m 2台 13 除盐水箱 V=300m32台 14 除盐水泵 KCZ50/315A型 Q=30~80m3/h H=142~135m 3台 15 再生水泵 KCZ50/200M型 Q=30~60m3/h H=50~35MPa 1台 16 树脂捕捉器 进出口:DN150 PN1.0 2台 17 卸(倒)酸泵 TPXF65-25-20型 Q=25m3/h P=0.2MPa 2台 18 卸(倒)碱泵 TPX65-25-20型 Q=25m3/h P=0.2MPa 1台 19 酸计量箱 V=1.0m31台 20 酸喷射器 Q=14m3/h 1台 21 碱计量箱 V=1.0m31台 22 碱喷射器 Q=14m3/h 1台 23 罗茨鼓风机 BE125H型 Q=10m3/分 P=0.06MPa 1台

电厂化学水处理技术发展与应用

电厂化学水处理技术发展与应用 发表时间:2017-10-20T11:59:18.583Z 来源:《防护工程》2017年第15期作者:王延风 [导读] 并且注意加强原有设施的利用率和使用效率,降低能耗节约成本,更应注重整个处理过程中的环保性,走可持续路线。 摘要:电厂是能源行业的重要部门,对居民的日常生产、生活都具有较大的影响。从现有的工作来看,电厂化学水处理技术虽然在某些方面表现的较为出色,但并没有创造出理想的价值。在人口不断增加和社会不断发展的今天,依靠固有的技术,是很难取得较大发展的。在今后的技术研究和应用中,需进一步贴合实际,根据不同地区的实际要求,进一步优化技术。在此,本文主要对电厂化学水处理技术的发展与应用进行讨论。 关键词:电厂;化学水处理;发展技术;应用 1、当今电化学处理技术的发展特点 1.1设备集中化布置 传统电厂化学水处理系统包括净水的预处理、锅炉补给水的处理、凝结水精的处理、汽水取样的监测分析、加药的、综合水泵房、循环水的加氯、废水的及污的水处理等系统。它存在占地的面积较大、生产的岗位较分散、管理的不便等等诸如此类的问题。现在,为了优化水处理整体流程,设备布置也发生了变化,其以紧凑、立体、集中构型来代替平面、松散、点状构型。节约占地面积、厂房空间,提高设备的综合利用率,并且方便运行的管理。 1.2生产集中化控制 传统的生产控制采用了模拟盘,而现在的趋势是集中化控制,即将电厂中所有化学水处理的子系统合为一套控制系统,取消了模拟盘,采用了PCL、上位机2级控制结构,并且利用PLC对各个系统中设备进行数据采集、控制,上位机、PCL之间通过数据通信接口进行了通信。各个子系统以局域网总线形式集中的联接在化学主控制室上位机上,从而实现化学水处理系统集中监视、操作、自动控制。 1.3方式以环保和节能为导向 21世纪环保观念已深入大家心中,随着环境保护意识的不断提高,减少水处理过程中产生的污染,尽量不使用或者少量的使用化学品已经成为一个趋势。绿色的水处理概念已经广泛的被大家接受。“少排放、零排放”、“少清洗、零清洗”也就成为了锅炉水的发展方向。而对于耗水量大的电厂来说,在我国水资源紧缺的现状下,合理的利用资源和提高水的使用重复率已经变成其关键的任务之一。重复率体现着对水的循环使用,串级使用,水的回收等方面的实现。“零排放”在电厂中已有部分实现,也就是说仅从水体中取出水但不向水体及环境排放废水。 1.4工艺多元化 传统电厂水处理工艺以混凝过滤、离子交换、磷酸铵盐处理等为主。当前,电厂的水处理技术出现多元化的特点。随化工材料的技术不断进步与发展,膜处理技术也开始广泛应用在水质处理当中,离子的交换树脂种类、使用的条件、范围也有了较大进展,粉末树脂在凝结水的处理中也同样发挥着积极作用。 1.5检测方法方式趋科学化 随着技术的发展,化学检测、诊断技术进一步的得到了发展、应用,其方式也日趋科学化。化学诊断实现从事后分析到事前防范转变,实现从手工分析到在线诊断转变,实现从微量分析到痕量分析转变。所有的转变,为预防事故发生、保证机组安全稳定运行提供有力保障。 2、电厂化学水处理技术的发展创新 2.1电厂化学水处理中膜技术的应用 与传统的化学水处理技术工艺相比,近几年才开始被采用的膜分离技术具有更加多的优点。膜处理技术是当前世界上最为高端先进的处理技术,在提高用水的品质上有着强大的优势。在传统的化学水处理过程当中,存在着很多的方法手段,比如电厂锅炉补给水的处理,一般情况下,都有过滤—软化—分离等一系列过程。其中,在电厂传统的化学水处理过程中,为了应付其中一道道复杂的工艺和处理难度,电厂需要投入大量劳动力、大量的占地面积和比较高的资金成本。然而,更主要的是,对于电厂化学水处理过程中所排放酸碱废液,国家规定了标准,而传统技术并不能达到当前绿色环保的标准要求。然而,在使用膜分离技术时,电厂化学水处理的整个过程中都不会排放一点酸碱废液,大大地减少了环境污染,切实体现了当代人的绿色环保理念。同时,采用膜分离技术还具有使用分离的设备少、结构简单、占地面积小、劳动强度小和实现自动化控制等优点,而将该技术应用于电厂化学水处理的过程中也实现了耗能低、效率高、生产的水品质量高的最终目的。 2.2化学水处理系统中的FCS技术应用 当前电厂化学水处理系统设备在运行时处于一种分散的状态,比如自动加药、汽水取样和监控常规测点等设备,不仅分布散而且数量还很多。而FCS技术则完全可以解决这一弊端,因为它的全分散性、全数字化、可相互操作性和全开放性的技术特点,与当前电厂水处理系统的设备分散性现状极为适合。在电厂化学水处理系统中,FCS技术的应用实现了低成本和性能全数字化,极大地减少了劳动力的投入。所以,改造或者建设这样一个能够将自动加药、远程遥控、即时监控和集合信息上传到MIS系统集为一体的化学水处理的综合全自动化平台,已经成为无法阻挡的电厂化学水处理技术的发展方向和趋势潮流。在理论上,这个系统是分解了原有的操控系统后,经过重新构建而形成的。改良后的系统在很多方面都有很明显的效果,可促使每一控制点的控制精准度大幅提高,这是此系统最为突出的一个特点,也由于这一点,系统整体的自动化水平和系统的硬件设备的管理水平都得到了提升,不仅人为的干扰因素大幅度地减少了,机组凝结水系统运行全自动化目标也得到了实现。同时,生产成本也有了很大的降低。此外,在系统改造完成后还提高了它的可靠性,连自动运行的速度也都有明显的提升。 3、关于电厂化学水处理技术应用的要点 3.1电厂水处理技术——锅炉补给水 在使用传统的水系统时,电厂经常使用混凝的方式进行锅炉补给水处理。如今,在变频技术出现后,电厂锅炉补给水系统发生了结构

中水处理施工方案

中水处理工程 XX工程公司

XX坐落在XX风景区内,由于其供水水源依靠地表水,而XX景区地带主要为岩面,蓄水能力差,现有水库(池)等容积无法满足枯水期供水要求。水资源问题一直困扰和制约着它的发展,加之改扩建后XX增加了50多个房间,更加剧了水资源的供需矛盾。同时原污水处理设施已不能满足现有负荷要求,且因年久失修已停止运行,污水处理设施需进行彻底改造,趁本次污水处理改造工程实施的同时增加中水处理回用工程,在不增加给水量的情况下解决了该宾馆的供水矛盾。 1 现有给水系统 XX现主要利用XX分部三索上站贮水池贮水做水源,容量3000m3,其它零星小水池合计1000m3,共计约4000m3。其供水是利用泵将水送至主楼后山坡的蓄水池内(约100m3),再通过重力流管道送至各用水点,主要用水点有玉屏楼主楼餐厅、XX宾馆、XX别墅(待建)及旅游公厕用水。 2 用水量分析 玉屏楼用水主要分为三大部分:沐浴、盥洗用水,餐饮用水及冲厕用水。根据有关统计资料,本工程中建筑物各部分常用水量及所占百分比见表1。 表1 常用水量 根据表1可知日常总用水量为109.5m3/d。其中沐浴、盥洗用水50.09m3/d,餐饮及冲厕等用水59.41m3/d。中水处理以沐浴,盥洗排水为原水,处理能力需达到 40.09m3/d,考虑不可预见水量,取3.0m3/h(两班制),污水处理能力取5.0m3/h(两班制)。

3 污水处理 污水处理出水执行 GB 8978-1996《污水综合排放标准》一级标准。污水处理工艺流程如下: 4 中水处理 中水经处理后,水质需达到《生活杂用水水质标准》。中水[1]处理工艺流程如下: 中水处理全过程采用PLC系统自动控制。 5 水量平衡 玉屏楼中水及污水处理水量平衡见图1。

化学水处理系统调试方案

***工程 化学补给水处理系统调试方案 ** 二〇一五年十二月

化学补给水处理系统调试方案 批准: 审核: 编写: 工程名称:***项目 建设单位:***有限责任公司

总包单位:*****工程有限责任公司监理单位:***建设监理部 安装单位:****工程公司 设计单位:****工程技术有限公司调试单位:

目录 1 概述 (1) 2 水处理系统工艺流程 (1) 3 调试目的 (1) 4 系统及设备主要技术规范 (2) 5 调试依据及标准 (5) 6 调试应具备的条件及检查内容 (5) 7 多介质过滤器的启动调试 (6) 8 反渗透系统的启动调试 (6) 10 除碳器的启动 (8) 11 混床的启动调整 (9) 12 水处理系统的移交 (12) 13 组织分工及安全措施 (12)

1 概述 本工程原水水源为水库水,源水被引入电厂后,进行混凝澄清、过滤处理,处理后出水(Ca2+(mg/L) 30~200,总铁:0.5<mg/L;锰:0.1<mg/L;悬浮物:5<mg/L 总硬度(以碳酸钙计)(mg/L)≤450 12 总碱度(以碳酸钙计)(mg/L)≤500)用于厂区工业用水和生活用水的水源。 化学补给水处理系统水源为厂区工业用水(目前调试计划用自来水),系统中设计安装了1台出力为22m3/h的全自动超滤系统,1套出力为17m3/h的全自动反渗透系统,1台出力为15m3/h的全自动EDI系统,以及配套的酸碱再生系统、盘式过滤器系统、加药系统、废水中和处理系统和原水加热系统。 在满足设计制水能力的情况下,系统出水指标达到如下规定标准: a) 超滤出水:污染指数(SDI)≤4,浊度<1.0NTU,余氯<0.1mg/L; b) 反渗透系统的出水水质:SiO2<100μg/L,DD<10μS/cm; <20μg/L,DD<0.15μS/cm c) EDI系统的出水水质:SiO 2 2 水处理系统工艺流程 2.1 设计水质 原水为水库水,其水质为:pH = 6.2,总铁 = 21.50 mg/L,锰 = 1.05 mg/L,悬浮物 = 16 mg/L,二氧化硅 = 38 mg/L。 2.2 系统工艺流程 杀菌剂 UF超滤系统—→UF产水箱 反洗水泵 器—→中间水箱(RO RO增压泵—→保安过滤器—→高压水泵—→反渗透装置—→除CO 2 浓水箱冲洗水泵 产水箱—→EDI增压水泵—→EDI保安过滤器—→EDI装置—→除盐水箱—→除盐水泵 加氨系统 3 调试目的 3.1 检验工艺和程控系统的合理性,检查设备及安装质量。 3.2 通过调试,为系统的正常运行、反洗、再生等操作提供必要的参考数据,系统能够

污水处理站调试方案计划

(此文档为Word格式,下载后可以任意编辑修改!)(文件备案编号:) 污水处理站调试方案 工程名称: 编制单位: 编制人: 审核人: 批准人: 编制日期:年月日

污水处理站调试方案 本废水处理工程采用缺氧-好氧为主的工艺流程,本工程的调试主要为生化部分。 一、调试目的及内容 调试的目的是确定系统最佳运行条件,培养和驯化出成熟的专属活性污泥,并达到较好的出水效果,使出水达标。 相关内容:检测各项工艺设备开机、关机、连续运行等各种工况下的使用情况,检查各反应池、管线、电气、自控、公用设施等运行状况。 二、调试及运行的基础 2.1电源的保证 污水处理的电源是由甲方提供,应保证电压的供应在±5%的范围内,频率±1%的范围内,总谐波电压启变率为4%。 2.2原水水质水量的保证 本设计是根据业主提供的水质、水量指标进行的,业主应保证进入本污水处理站的水量水质符合技术方案的设计条件,以保证出水达到国家要求的排水标准。 2.3其它设施服务 业主提供以下各项设施: ?项目所处地附近公路供进厂公路接入; ?水、电、气和物料的充足供应; ?现场人员的配合和学习; ?调试人员的食宿。 2.4依据的法律、法规及标准 承包人在调试及运行期内严格按国家、行业和当地政府的规程、规范、标准及设备随机技术资料、使用说明书等进行项目的调试及试运行。 采用的主要规范和标准:

《室外排水设计规范》GBJ14-87(1997年版) 《地表水环境质量标准》CHZB1-1999 《污水综合排放标准》GB8978-1996 《建筑结构荷载规范》GBJ9-87 《混凝土结构设计规范》GBJ10-89 《建筑地基基础设计规范》GBJ-89 《建筑结构可靠度设计统一标准》GBJ68-84 《城市污水处理厂污水、污泥排放标准》CJ3025-93 《工业企业采暖、通风及空气调节设计标准》TJ19-75 《给水排水工种结构设计规范》GBJ69-84 《污水泵站设计规程》DBJ08-23-91 《污水泵站设计规程》DBJ11-99 《低压配电装置及线路设计规范》GBJ54-83 《建筑给水排水设计规范》GBJ15-88 以及承包人和业主达成的其它安全和技术协议。 承包人将根据国家相关法律、法规、规程标准结合实际情况制定污水处理厂运行规程、规范和其它安全及质量管理办法、操作手册,并报经甲方或其委托机构审定、批准后严格执行。 三、调试前的准备工作 3.1人员准备 1.施工方人员准备 调试工程师(项目负责人) 2.建设方人员准备(对建设方日常操作维护人员的培训) 为配合施工方的生物调试及对操作人员的培训,建设方需在生化站调试初期安排操作人员到场,人员初期安排3~4人到场进行培训学习并配合施工方的调试工作,到场时间不晚于我方调试人员进场时间。 3.2试车方案的确定 在试车前,承包人将拟制定调试及运行方案,并详细说明项目调试试运行阶段详细的进度计划。调试试运行阶段的划分,阶段目标、程序、测试内容、测试方法。对调试中可能出现的故障的预防及排除措施,单机无负荷试车质量评定表,单机带负荷试车质量评定表,无负荷联动试车评定报告,带荷联动试车评定报告,

污水处理生化调试技术方案

污水处理生化调试技术方案 一污泥的培养 方法有同步与异步培养与接种,同步是培奍与驯化同时进行或交替进行,异步是先培后驯化,接种是利用类似污水的剩余污泥接种。 活性污泥可用糞便水经曝气培养而得,因为粪便污水中,细菌种类多,本身含有的营养丰富,细菌易于繁殖。?通常为了缩短培菌周期,我们会选择接种培养。?先说粪便水培菌?具体步骤:?将经过过滤的粪便水投入曝气池,再用生活污水或河水稀释,至BOD约为300-400,进行连续曝气。这样过二,三天后,为补充微生物的营养物质和排除由微生物产生的代谢产物,应进行换水,换水根据操作情况分为间断和连续操作。?1.间断操作:?当第一次加料曝气并出现模糊的活性污泥绒絮后,就可停止曝气,使混合液静止沉淀,经1-1.5小时后排放上清液,把排放的上清液约占总体积的60-70%。?然后再加生活污水和粪便水,这时的粪便水可视曝气池内的污泥量来调整,这样一直下去,直至SV达到30%。一般需2周,水温低时时间要延长。 在每次换水时,从停止曝气,沉淀到重新曝气的总时间要控制在2小时之内为宜?成熟的污泥应具有良好的混凝,沉降性能,污泥内有大量的菌胶菌和终生?纤毛类原生动物,如钟虫,等枝虫,盖纤虫等,并可使污水的生化需氧量去除率达90%左右 2.连续操作:?在第一次加料出现绒絮后,就不断地往曝气池投加生活污水或河水,添加粪便水的控制原则与间断投配相同。往曝气池的投加的水量,应保证池内的水量能每天更换一次,随着培奍的进展,逐渐加大水量使在培养后期达到每天更换二次。在曝气池出水进入二次沉淀池后不久(0.5-1)就开始回流污泥,污泥的回流量为曝气池进水量的50%?驯化的方法:可在进水中逐渐增加被处理的污水的比例,或提高浓度,使生物逐渐适应新的环境开始时,被处理污水的加入量可用曝气池设计负荷的20-30%,达到较好的处理效率后,再继续增加,每次以增加设计负荷的10-20%为宜,每次增加负荷后,须等生物适应巩固后再继续增加,直至满负荷为止。?如果被处理工业污水中,缺氮和磷以及其它营养物时,可根据BOD:N:P为100:5:1的比例来调整。?个人认为在此阶段,必要的超赿管路要具备,工艺没设计的可用消防管代替。 而且各种分析要跟上去,和种参数需及时测定,特别是镜检,因为有经验的人可能通过镜检和数据就可以很好的完成任务,另外良好的心理素质也比较重要,有些现象要果断处理,有些则需等侍再认定上面是异步法,同步就是在污泥培养过程中,不断加入工业污水,使污泥在增长过程中逐渐适应工业污水的环境,这样虽可缩短培养和驯化的时间,但在这一过程中发生的问题,又缺实践经验则难以判断问题出在哪一个环节上。 若有条件,就是接种培养,这样可缩短时间,若是相似的污水的污泥,更可提高驯化效果。 二、试运行

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

某污水处理厂自控系统调试方案

1、综述 某污水处理厂(一期)自控及仪表系统待各工艺、电气和自控仪表系统安装结束,检验无误,满足设计要求后,逐级分层和分区的原则进行调试。分层:就是从现场工艺设备单体调试→现场PLC控制柜调试→厂区中控室上位机调试,逐级自下而上进行调试;分区:就是从各现场六个PLC分站(PLC100、1-RTU、2-RTU1、2-RTU2、2-RTU3、4-RTU)分别进行调试,在上述调试工作完成,并符合设计文件,技术资料要求,单体设备调试合格的基础上进行系统联动调试。 2、自控系统调试范围 2.1调试工作包括: PLC控制柜的电气调试;对各受控设备的信号校验;PLC控制柜与各独立工艺设备系统通讯调试,PLC控制逻辑编程软件组态调试;厂区光纤以太网通讯联网调试;中控室上位机监控操作软件调试、数据服务器、WEB服务器调试等;共计调试19套仪表,58台(套)设备及脱水机、鼓风机、消毒池PLC系统通讯联调。 2.2调试按照以下区域进行: 1、预处理系统(粗格栅、细格栅、电动闸门、旋流沉砂系统、进水流量、 液位计、PH计仪表调试)计4套仪表、10台工艺设备。 2、生物反应系统(生化池水下搅拌器、曝气系统空气调节阀、进泥污泥泵、 DO\MLSS在线分析仪表)计8套仪表、24台工艺设备。 3、污泥泵站及污泥脱水系统(剩余污泥泵、回流污泥泵、剩余污泥流量) 计2套仪表、14台工艺设备。 4、紫外消毒池系统(电动闸门、深井泵、出水流量、PH计、COD、NH3、在 线分析仪表)计3套仪表、3台工艺设备。 5、变配电间控制系统(电力监控系统、二沉池刮泥机、进水提升泵)计2 套仪表、7台工艺设备。 6、与脱水机系统、鼓风机系统、消毒系统的通讯联调。 3、调试目的、要求 3.1系统调试对凡属自控仪表系统范围的受控设备、工艺链路、网络通讯均进行 联动调试;通过调试使自控仪表系统达到设计要求。 3.2各受控设备通过调试达到就地手动、PLC中控室远控能够正常运行。 3.3污水处理过程控制能够满足工艺设计的要求和生产实际的需要。 3.4受控设备的单体调试运行时间为12小时(根据设计文件、设备技术资料要

工业污水处理厂调试方案

江苏***有限公司 化工废水处理工程调试大纲 ***环境工程研究所 南京***工程有限公司 2015年11月5日

目录 一、项目概况 二、调试的前期工作准备 三、调试工作目标与时间进度安排 3.1、调试目标 3.2、调试进度安排 四、调试期间分析监测指标及要求 五、各阶段调试步骤 5.1、活性污泥a、b池调试步骤; 5.2、缺氧水解池调试步骤; 5.3、PACT池调试步骤 5.4、整体负荷提升进度控制(非常重要); 六、调试工作注意事项

一、项目概况 江苏***有限公司废水处理设施土建、工艺和电器安装已经基本结束,目前即将进入整个废水处理系统的生化调试和菌种培养驯化工作。由于废水生化处理的核心是利用高效微生物对废水中的有机污染物进行降解,实现降低废水中的COD浓度,因此整个调试过程的最终目标是在整个生化系统内培养驯化出降解能力强、性能稳定、沉降效果好的微生物种群,从而实现废水达标排放。 由于农药化工生产过程中产品变化快,生产周期短,因此在后续生化处理过程中进水水质的波动不可避免,这对于微生物降解过程是非常不利的。此外作为农药化工企业今后的产品更替也是不可避免的,因此,江苏***有限公司废水处理设施采用耐冲击性能相对比较好的好氧-缺氧-好氧工艺,同时在一段好氧工艺中设置了大流量回流系统,降低整个系统在COD降解过程中的浓度梯度,通过牺牲部分效率的方式提高整个降解系统的稳定性。同时,我们在后道好氧处理中增加了PACT工艺,这种工艺可以在进水冲击情况下避免出现高效菌种的大量流失,从而提高整个生化系统的耐冲击能力。 由于采用的生化处理工艺具有较广的污染物适应性,对于今后可能出现的新产品废水,在采用合适的预处理工艺调整废水水质和特殊

相关文档
最新文档