热电厂热负荷的数理统计计算方法

热电厂热负荷的数理统计计算方法
热电厂热负荷的数理统计计算方法

热电厂热负荷的数理统计计算方法(1)

日前,我国北方大中城市已普遍建有热电厂,很多大型工业企业也建有自备热电厂,甚至一些中小型企业也建有以裕压发电形式的小型自备热电站。这些以供热为主、热电联产的热电厂,已成为我国电力事业的一个重要组成部分。

按照热电联产的理论计算结果,利用供热抽汽或背压排汽进行热电联产的发电煤耗率应为O.1 5~0.2kg标准煤/千瓦时,即使再考虑蓟抽汽式汽轮机内凝汽发电的低效率和其它汽

水损失,热电厂的综合发电煤耗率也不应超过O.3.kg标准煤/千瓦时。但是很多热电厂实际运行结果都高于这个指标. 其原因是多方面的,其中非常重要的一条就是热电厂在设计阶段对热电联产的最基本设计参数——最大热负荷及其变化特性估算不准,还有热化系数取值过高,导致热电厂规模偏大,甚至供热机组的设计热负荷值大大高于实际最南热负荷。这样,热电厂只好加大凝汽发电份额或降低设备容量利胃率,对背压式机组的运行往往带来困难。

热电联产有两个显著特点一是热负荷的供需应基本保持适时平衡;二是以热定电。要使热电联产取得较好的节能效果,必须在热电厂设计的前期就应比较准确地计算出它的最大热负荷,总供热量以及绘制出全年热负荷持续时间曲线. 在此基础上再考虑适当的热化系数,列举出若干可行的方案,进行技术经济比较计算,最后确定出最优方案。

目前对栗暖热负荷的测算已有了比较可靠的算法,但对工业热负荷的测算尚无较有效盼方法。以往对热电厂工业热负荷的估算方法有以下几种,

(1)按各个热用户原有供热锅炉的容量来估算,通常是取各个容量之和作为热电厂工业热负荷的设计值;

(2)根据各个热用户自报的热负荷数据,取各用户避大热负荷之和作为热电厂热负荷的最大值;

(3)根据各热用户生产产品的单位热鞠和产量情况,估算热电厂的最大热负荷;

(4 )根据热用户进行过的企业能量平衡测试数据来估算热电厂的最太热负荷;

(5)对各热用户的用热情况作简单的潮试,并通过简单的现场调查来决定热电厂的最大热负荷。

这些估算方法都不够合理,特别是前三种方法误差极大,因此都不能比较准确可靠地估算出热电厂的最大热负荷值,其主要问题是。

1、未考虑各热用户最大热负荷的同时出现率一般来说,各用户的最大热负荷并不在一日内同一时刻出现所以热电厂的最大热负荷并不等于各用户最大热负荷之和,而是小于这个数. 热电厂最大热负荷与各用户最大热负荷之和的比值可定义为用户最大热负荷的同时出现率γ,

γ=

通常,γ< 1。它的大小与热用户的多少、各用户热负荷的波动特性等多方面因素有关。由

于不同热电厂的热用户用热情况不尽相同,所以其T值在O.5~O.9范周内因热电厂而异。因此,试图通过选定值来决定热电厂的最大热负荷还缺乏科学根据。

2、未考虑蒸汽参数的变化对俱热蒸汽量影响

通常,工业锅炉提供:一和蒸汽,丽热电厂供应过热燕汽,且蒸汽压力也有所提高。这样,每公斤蒸汽的放热量增丸相应所需的蒸汽量碱少。其关系如下

式中

上述供汽量关系也可由下式确定:

式中

3、有些调查数据中含有主观因素

有些热用户在申报热负荷量时往往“宁高勿低” 。

为了比较准确地科学地计算出热电厂最大热负荷,本文提出用概率论和数理统计的方法,并辅以计算机手段进行热电厂热负荷的计算并求出最大值. 这就为确定热电厂的最佳热化

系数打下基础。

所需要的原始资料是:各热用户原供热锅炉房在各季节内有代表性的全日供汽和热水负荷曲线(或数据)和供汽参数. 其流量资料可由原锅炉房供汽引出口处的蒸汽流量计记录得到,也可由锅炉给水箱的水流量计记录再扣除锅炉的汽水损失后得到. 其蒸汽和热水的参数可从温度、压力记录得到。

首先要对各甩户的垒日供汽资料进行分析对比,找出各用户全日用热量都比较高的季节,称为公共用热高峰季节. 热电厂的最大热负荷就出现在这个季节内。如果各用户的热负荷高峰不在同一季节内出现则应选热负荷较大的凡个用户的公共用热高峰季节作为全部用户的公用热高峰季节,或者选两个用热高峰季节。

应当注意的是,即使在公共用热高峰季节内,同一个热用户的每日热负荷也并非完全相同愿因是同一热用户的各用热靛备的用热量在各天的同一时刻具有一定的随机性,而且测量仪表受备种随机因素的影响,其观测值(或记录值)也具有一定的随机性. 尽管如此同一用户在每日的同一时刻,其供热量的观测值(或记录值)是符台正态分布的。所以对同一用户要取公共用热高峰季节内若干个全目供热负荷资料作为子样,来估计出母体值的区间。

设在公共用热高峰季节,对一个用户取n个全日供热资料,其中在每日的t时刻用热负荷的测定值为以,则该子样的均值为则该子样的均值为

如果取另外n个全日供热资料,则会算得另外的,这些也服从正态分布N(,m,

),式中m为的母体均值。将其化为标准正态分布(Z; 0, 1),

式中为测量系列的标准误差,

现取z落人某一区间的概率为0.95,即

所以

查正态分布表,即

因而,,

它的含义是在,随机区间内包含母体均值m的概率为0.95(置信度),而不包含m的概率为O.05(危险度)。所以,可以把前每

月t时刻的用热负荷理解为(置信度0.95)。因为是要获得热负荷的最大值,故取

作为t时刻的热负荷值. 又因为只取原区间的上限,故其置信度为0.95+0.os/z=o.975。因此,用D。值作为埘刻的热负荷,可以以0.975的置信度保证其它天在t时刻的热负荷落入此值之内。

我们要对每一个热用户的测量子样都进行上述数理统计针算,并且每月的测点要足够多(通常每小时取一点),最后得到每个热用户垒日用热负荷的数理统计值.

对热电厂来说,它在t时刻的供热量应基奉上等于各用户在同一时刻的用热量之和(因供热系统的蓄热能力不大),即

(7)

这样就可以得到热电厂在公共用热高峰季节全Et供热负荷的数理统计数据。

以上所得的热电厂热负荷与时间对应数据只是一些离散点,为了更详细地计算,需按上述离散点进行插值或曲线拟合. 可以采罱三次样条插值法、线性插值法或多项式曲线拟合。通常采用线性插值法即可得到能满足要求的精确度。

按一定的肘间步长(例如0.1或0.25小时作为步长)得到插值后可在绘图机上绘出热电厂在公共用热高峰季节的全Et供热负荷曲线图; 也可按比较太小的方法,将负荷从大到小排列起来形成全日供热负荷持续时间图。如图l和图2所示。同时也得到热电厂的最大供热负荷值,该值以0.975的置信度,可保证全年各天的最大热负荷值都落八此数值内。

图l 热电厂叠日数理统计热负荷

图2 热电厂全丑数理统计热负荷持续对间

上述算法中,每个用户的测量子样越多。最后算得热电厂晟太热负荷值越准确可靠。但是,如果一座热电广有几十个用户,每个用户取十几个子样,而每个子样又有24个测点,那么按上述方法的计算量是非常犬的。为此编制了RIH 计算程序,只要输八各用户在公共用热高峰内的热负荷数据,则可输出各用户热负荷的数理统计值、热电厂热负荷的数理统计值、蠕值后的热负荷圈、全日持续时间图和热电厂的摄大热负荷值等资料。这些资辩对热电厂设计方案的选择、最佳热化系数的确定都有重要意义。

示倒:某地区欲建一座热电厂向三个热用户供应蒸汽。在公共用热高峰季节内,每个热用户取四天全日用热负荷记录值(每小时取一点)作为子样。这些测值经( 1)式或(2 )式折算后,列入表l,将表l值输入计算机后即输出各种数据。

表1 各热用户全日用汽负荷记录值(t,h)

从表l可见,用户l、2和3的最大用汽负荷的总和,比热电厂总供汽负荷的数理统计最大值要高。表2为热用户各测点平均用汽负荷与数理统计值的对比表(用户1)。表3为热电厂全日供热负荷的数据统计值。表4为热电厂全日供汽负荷插值的部分数据(步长为0.25)。

表2 用户1备测点平均用汽负荷与数理统计值的对比(t,h)

表3 热电厂全日供汽负荷的数理统计数据(t,h )

表4 热电广全日供汽负荷插值的部分数据( t/h)

结论

1、热电厂最大热负荷的计算,一定要考虑各热用户最大热负荷的同时出现率,决不可作简单相加,而且要选用各热用户在公共用热高峰季节的测值.

2、采用数理统计的方法算得的热电厂最大热负荷值,具有较高的准确性和可信度,并且用户的热负荷测量子样越多,其准确性和可信度越高. 在缮究和计算热电厂最佳热化系数和绘制全年热负荷持续时间图时,也应采取这种数理统计的算法。

3、热电厂的热用户越多,各热用户热负荷波动特性差异越大,则热电厂的全日热负荷越平稳,最大热负荷的同时出现率越小。

采暖热负荷的计算方法

采暖热负荷的计算方法((0 目前绝大多数企业为节省时间,采用的热负荷确定方法均为估算法,即用房间面积乘以每平方米的设计热负荷指标。通常为朝南房间为120W/m2,其它房间为120W/m2-150W/m2不等,全凭设计人员的经验和感觉。为了设计效果,尽可能往大值选取。最终导致一些散热器型号选取过大,大马拉小车的现象在目前供暖设计中屡见不鲜,导致用户的初投资增加,整个供暖系统的花费加大。 站在为客户省钱的角度,尽可能规范选取散热器型号,我们的热负荷选择只需在充分满足房间温度的要求下,上下有轻微浮动即可。 以本公司原本设计的锦苑天元坊15幢的某户家庭暖气系统为例。该设计说明中缺少一些关键的技术参数,如:建筑物所处楼层(是否有屋顶),整个建筑物的维护结构资料(外墙,外窗,地面的材质和传热系数),扬州市的气象参数等,导致估算出来的某些房间热负荷太大。以书房为例,书房面积8.2m2,选取的是雅克菲钢制板式散热器,规格型号22K-600-800,热量1399W,算下来单位设计热负荷高达170W/m2,以北方比较成熟的供暖工艺来说,从节能角度出发,某户用热的单位面积热量超过98W/m2就要罚款,由此可见我们的设备选型不太合理,需要改进。 仍以该住宅的书房为例,采用常规的热负荷计算方法,其中维护结构:层高3m,外墙:双面抹灰24空心砖墙,传热系数为1.47W/m2·K,外窗:金属框 经过计算,在保证房间温度18o C的情况下,最东北角的房间热负荷为957W。单位面积平均负荷为116 W/m2,其他房间由于朝向等因素,该值会相应降低。而本设计选择的散热器其单位设计热负荷高达170W/m2,选择稍大,如选择小一号的散热器22K-600-600,热量1061W即可满足要求。 但是这种计算相对复杂,每个房间的外墙,外窗都要计算,如果是底层或者是顶层还需计算地面和顶层的散热量。工作量很大,对于企业设计不太适用。

空调负荷计算公式

1、冷负荷计算 (一)外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2?K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度; τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h; τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 (二)窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。 (a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2?K。工程中用下式计算: CLQτ=KF⊿tτ W 式中K——窗户传热系数,W/m2?K; F——窗户的面积,m2; ⊿tτ——计算时刻的负荷温差,℃。 (b)窗户日射得热形成的冷负荷 日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。此外,还与内外放热系数有关。工程中用下式计算: CLQj?τ= xg xd Cs Cn Jj?τ W

式中xg——窗户的有效面积系数; xd——地点修正系数; Jj?τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2; Cs——窗玻璃的遮挡系数; Cn——窗内遮阳设施的遮阳系数。 (三)外门的冷负荷计算 当房间送风两大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。 (a)外门瞬变传热得形成的冷负荷 计算方法同窗户瞬变传热得形成的冷负荷。 (b)外门日射得热形成的冷负荷 计算方法同窗户日射得热形成的冷负荷,但一层大门一般有遮阳。 (c)热风侵入形成的冷负荷 由于外门开启而渗入的空气量G按下式计算: G=nVmγw kg/h 式中Vm——外门开启一次(包括出入各一次)的空气渗入量(m2/人次?h),按下表3—9选用; n——每小时的人流量(人次/h); γw——室外空气比重(kg/m2)。 表3—9 Vm值(m2/人次?h) 每小时通过 的人数普通门带门斗的门转门 单扇一扇以上单扇一扇以上单扇一扇以上 100 3.0 4.75 2.50 3.50 0.80 1.00 100~700 3.0 4.75 2.50 3.50 0.70 0.90 700~1400 3.0 4.75 2.25 3.50 0.50 0.60

建筑物耗热量指标与热负荷指标

建筑物耗热量指标 按照冬季室内热环境设计标准和设定的计算条件,计算出的单位建筑面积在单位时间 内消耗的需要由采暖设备提供的热量? 建筑物耗热量指标是指在采暖期间平均温度条件下,为保持室内计算温度,单位建筑 面积在单位时间内消耗的、需由室内采暖供给的热量 采暖设计热负荷指标(g) 在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由 锅炉房或其他供热设施供给的热量 采暖设计热负荷指标q计算公式如下: q=Q/Ao ⑴式中Q,Ao分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2),且Q值 应根据建筑物下列散失的获得的热量确定: 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q仁Afk(tn-twn)(2)式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热 量(W八面积(m2)、传热系数[W/ (m2?K )卜温差修正系数及冬季室内计算温度 (C)、 采暖室外(C)。 围护结构附加耗热量,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。 2)加热由门窗隙渗入室内的冷空气的耗热量旧设计规范中的计算公式为: Q2=acp p wnLlm(tn -twn)(3)式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量 (W)、 a表示单位换算系数、 cp表示空气的定压比热容[kJ/(kg?K)]、L表示在基准高度(10m )风压的单独作用一,通过每米门缝进入室内的空气量[m3/(m?h)]、丨表示门窗缝隙的计算长度(m )、tn和twn 与上同、p wn表示采暖室外计算温度下的空气温度(kg/m3 )、m表示综合修正系数。 新设计规范中的计算公式为:Q2=0.28cp p wnL(tn -twn) (4)式中tn和twn、p wn与上同,L表示渗透空气量(m3/h)、其计算公式如下:L=L0lmb

热电厂热负荷的数理统计计算方法

热电厂热负荷的数理统计计算方法(1) 日前,我国北方大中城市已普遍建有热电厂,很多大型工业企业也建有自备热电厂,甚至一些中小型企业也建有以裕压发电形式的小型自备热电站。这些以供热为主、热电联产的热电厂,已成为我国电力事业的一个重要组成部分。 按照热电联产的理论计算结果,利用供热抽汽或背压排汽进行热电联产的发电煤耗率应为O.1 5~0.2kg标准煤/千瓦时,即使再考虑蓟抽汽式汽轮机内凝汽发电的低效率和其它汽 水损失,热电厂的综合发电煤耗率也不应超过O.3.kg标准煤/千瓦时。但是很多热电厂实际运行结果都高于这个指标. 其原因是多方面的,其中非常重要的一条就是热电厂在设计阶段对热电联产的最基本设计参数——最大热负荷及其变化特性估算不准,还有热化系数取值过高,导致热电厂规模偏大,甚至供热机组的设计热负荷值大大高于实际最南热负荷。这样,热电厂只好加大凝汽发电份额或降低设备容量利胃率,对背压式机组的运行往往带来困难。 热电联产有两个显著特点一是热负荷的供需应基本保持适时平衡;二是以热定电。要使热电联产取得较好的节能效果,必须在热电厂设计的前期就应比较准确地计算出它的最大热负荷,总供热量以及绘制出全年热负荷持续时间曲线. 在此基础上再考虑适当的热化系数,列举出若干可行的方案,进行技术经济比较计算,最后确定出最优方案。 目前对栗暖热负荷的测算已有了比较可靠的算法,但对工业热负荷的测算尚无较有效盼方法。以往对热电厂工业热负荷的估算方法有以下几种, (1)按各个热用户原有供热锅炉的容量来估算,通常是取各个容量之和作为热电厂工业热负荷的设计值; (2)根据各个热用户自报的热负荷数据,取各用户避大热负荷之和作为热电厂热负荷的最大值; (3)根据各热用户生产产品的单位热鞠和产量情况,估算热电厂的最大热负荷; (4 )根据热用户进行过的企业能量平衡测试数据来估算热电厂的最太热负荷; (5)对各热用户的用热情况作简单的潮试,并通过简单的现场调查来决定热电厂的最大热负荷。 这些估算方法都不够合理,特别是前三种方法误差极大,因此都不能比较准确可靠地估算出热电厂的最大热负荷值,其主要问题是。 1、未考虑各热用户最大热负荷的同时出现率一般来说,各用户的最大热负荷并不在一日内同一时刻出现所以热电厂的最大热负荷并不等于各用户最大热负荷之和,而是小于这个数. 热电厂最大热负荷与各用户最大热负荷之和的比值可定义为用户最大热负荷的同时出现率γ, γ= 通常,γ< 1。它的大小与热用户的多少、各用户热负荷的波动特性等多方面因素有关。由

负荷计算公式

2.1 围护结构冷负荷计算 2.1.1 屋面和外墙逐时传热形成的冷负荷 在日射和室外气温综合作用下,外墙和屋面的瞬时冷负荷按下式计算: Q c(t)=AK(t′c(t)-t R) t′c (t)=(t c(t)+△t d)ka*kp (2-1) 式中: A:房面、外墙的面积,㎡; K:房面外墙传热系数,W/㎡.℃; t :房顶冷负荷计算温度逐时温度,℃,; c(t) t :室内计算温度,℃; R ka:放热系数修正值; k p:吸收系数修正值。 2.1.2 玻璃幕墙、玻璃外门及外窗瞬时传热形成的冷负荷 在室内外温差作用下,通过外玻璃窗瞬变传热引起的冷负荷可按下式计算: Q c(t)=C W A w K w(t c(t)+△t d-t R) (2-2) 式中: A w:窗口面积,㎡; K w:外玻璃窗传热系数,w/㎡.℃; t :外玻璃窗的冷负荷温度的逐时值,℃; c(t) t :室内计算温度,℃; R C W :窗框修正值。 2.1.3 透过玻璃进入室内日射得热引起的冷负荷 透过玻璃窗进入日射得热形成的逐时冷负荷按下式计算: Q c(t)=C a A w C s C i D j.max C LQ C=C s C i C a (2-3) 式中: C a:有效面积系数; A w:窗口面积,㎡; C s:窗玻璃的遮阳系数; C i:窗内遮阳设施的遮阳系数; D j.max:最大日射得热因数: C LQ:窗玻璃冷负荷系数。 2.1.4 内墙,楼板等室内传热维护结构形成的瞬时冷负荷 1)当空气调节区域与临室的夏季温差是3o C以内时,不予以计算。当空气调节区域与临室的夏季温差大于3o C以内时,这部分冷负荷应按公式(2-4)进行计算: Q=KF△t (2-4) o

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

采暖设计热负荷指标q计算

采暖设计热负荷指标q计算 一、比较准确的计算方法,公式如下: q=Q/A0 式中Q,A0分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2)。 Q=Q1+Q2 1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本耗热量计算公式为 Q1=A×F×K×(tn-twn) 式中Q1、F、K、a、tn、twn分别表示围护结构的基本耗热量(W)、维护结构的面积(m2)、传热系数[W/(m2·K)]、温差修正系数(采暖通风与空气调节设计规范,表4.1.8-1)是根据围护结构与室外空气接触的状况对室内外温差采取的修正系数、冬季室内计算温度(℃)、采暖室外温度(℃)。 围护结构附加耗热量Q2,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。根据采暖通风与空气调节设计规范4.2.6中规定进行修正。2)加热由门窗缝隙渗入室内的冷空气的耗热量,计算公式为: Q2=0.28×cp×ρwn×L×(tn-twn) 式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、tn和twn与上同、Cp表示空气的定压比热容[kJ/(kg·K)] ,温度为250K时,空气的定压比热容cp=1.003kJ/(kg·K),300K时,空气的定压比热容cp=1.005kJ/(kg·K),冬天可按250K时的值算。ρwn表示采暖室外计算温度下的空气密度(kg/m3)、L表示渗透空气量(m3/h)、其计算公式如下: L=L0×l×m×b 式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m·h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数(采暖通风与空气调节设计规范,附录D),b表示门窗缝渗风指数, b=0.56~0.78。 二、概算的方法: 1)体积热指标法:建筑物的供暖设计热负荷可按下式进行概算。 Qn=qv×V×(tn-twn)式中, Qn——建筑物的供暖设计热负荷,W; V——建筑物的外围体积,m3; tn——供暖室内计算温度,℃; twn——供暖室外计算温度,℃; qv——建筑物的供暖体积热指标(W/m3·℃),它表示各类建筑物,在室内外温差为1℃时,每1 m3建筑物外围体积的供暖热负荷。供暖体积热指标qv的大小主要与建筑物的围护结构及外形有关。建筑物围护结构传热系数越大、采光率越大、外部建筑体积越小等qv值将越大。 2)面积热指标法: 建筑物的供暖设计热负荷可按下式进行概算。 Qn=qf×F 式中, Qn——建筑物的供暖设计热负荷,W; F——建筑物的建筑面积,m2; Qf——建筑物的供暖面积热指标,W/m2,它表示每1 m2建筑面积的供暖设计热负荷。 建筑物的供暖热负荷,主要取决于通过垂直围护结构(墙、门、窗等)向外传递热量,它与建筑物的平面尺寸和层高有关,因而不是直接取决于建筑平面面积。用供暖体积热指标表征建筑物供暖热负荷的大小,物理概念清楚;但采用供暖面积热指标法,比体积热指标更易于概算,对于一般民用住宅层高在3m以下工程上可采用面积热指标法进行概算。

负荷计算方法

负荷计算方法 供电设计常采用的电力负荷计算方法有:需用系数法、二项系数法、利用系数法和单位产品电耗法等。需用系数法计算简便,对于任何性质的企业负荷均适用,且计算结果基本上符合实际,尤其对各用电设备容量相差较小,且用电设备数量较多的用电设备组,因此,这种计算方法采用最广泛。二项系数法主要适用于各用电设备容量相差大的场合,如机械加工企业、煤矿井下综合机械化采煤工作面等。利用系数法以平均负荷作为计算的依据,利用概率论分析出最大负荷与平均负荷的关系,这种计算方法目前积累的实用数据不多,且计算步骤较繁琐,故工程应用较少。单位产品电耗法常用于方案设计。 一、设备容量的确定 用电设备铭牌上标出的功率(或称容量)称为用电设备的额定功率P N ,该功率是指用电设备(如电动机)额定的输出功率。 各用电设备,按其工作制分,有长期连续工作制、短时工作制和断续周期工作制三类。因而,在计算负荷时,不能将其额定功率简单地直接相加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P N μ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P N μ=P N (2-9) (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P N μ=P N (2-10) (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。 负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 0100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产 生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条件下,I ∝ 备容量P ∝I 。由式(2-11)可知,同一周期的负荷持续率ε∝t 。因此,P ∝

采暖热负荷详细计算表采暖计算公式

采暖负荷计算书 一、工程信息 项目名称0采暖形式传统形式 地理位置0建筑层数5建筑高度 18 二、基本计算公式 计算原理参照《实用供热空调设计手册》陆耀庆,中国建筑工业出版社1.通过围护结构的基本耗热量计算公式 —基本耗热量 K —传热系数 F —传热面积 —室内空气计算温度—室外供暖计算温度α —温差修正系数 2.附加耗热量计算公式 —考虑各项附加后,某围护的耗热量—某围护的基本耗热量—朝向修正—风力修正 —两面外墙修正—窗墙面积比过大 —房高附加—间歇附加 α )(w n j t t KF Q -=j Q n t w t ) 1)(1)(1(.1j g f m li f ch j Q Q ββββββ++++++=1Q j Q ch βf βli βm βfg βj β

2若C<=-1或m<=0,可不计算冷空气渗透耗热量 3对于大于六层的高层建筑,计算中,若h<10m 时,h=10m , 当无以上及门窗构造相关数据时,可采用换气次数法计算门窗隙缝的冷风渗透耗热量房间类型一面外墙有窗房间 二面外墙有窗房间 三面外墙有窗房间 门厅换气次数k 0.5 0.5-1.0 1.0-1.5 2 门窗隙缝的冷风渗透耗热量:Q 2=0.28*1*1.4*(t n-t w)*k*V 4.外门开启冲入冷风耗热量计算公式 —通过外门冷风侵入耗热量—某围护的基本耗热量 —外门开启外门开启冲入冷风耗热量附加率,参见[2]p128表4.1-12 三、气象参数 室外采暖计算温度℃-22风力附加系数0热压系数0.25风压系数 0.25东/西[朝向修正] 0北/东北/西北[朝向修正]0.1南[朝向修正] -0.23东南/西南[朝向修正] -0.13 kq j Q Q β?=33Q j Q kq β

热电厂供热、供电标煤耗率计算方法说明及分析

小型热电厂供热、供电标煤耗率计算方法介绍及分析 一.前言 热电厂供热及供电标煤耗率计确实是热电企业财务统计、成本计算、审核审计工作的前提。当前各热电企业,在数据交流和上报时可能会发觉一些问题,要紧是计算公式不尽相同,致使同样的原始资料数据,计算结果可能不一致,或者会出现一些不应该有的错误。这种情况使我们无法正确进行财务评价,也无法对热电成本正确性进行评价。 现有关于供热、供电标煤耗率计算要紧取自浙江省标准“热电厂煤耗和厂用电率计算方法”(浙江省标准计量局公布1991年12月20日实施),在这以后,国家已公布了一系列有关文件和计算公式,例如:国家四部委急计基础[2000]1268号文;2001年1月11日三部委公布的“热电联产项目可行性研究技术规定”,最近公布的文件与前述“省标”对某些计算公式不完全相同。现将计算中可能遇到问题及对这些公

式理解提出一些看法,供热电行业有关同仁参考与研究。 二.对供热及供电标准煤耗率计算方法理解: 1.浙江省标准局1991年公布的“热电厂煤耗和厂用电率计算方法”(以下简称“煤耗计算”与同时公布的“小型热电厂成本计算方法”(以下简称“成本计算”)是当时同时公布,又必须同时应用的2个标准,后者的“成本计算”必须应用前者的“煤耗计算”数据,因此,前者是成本计算的前提。 2.对供热标煤耗率br的理解: “煤耗计算”中公式(9)中 br=Br/Qr×103 其中:br 供热标煤耗率 kg/GJ Br 供热耗标煤量 t Qr 对外总供热量 GJ 上式中Br;Qr的计算如下: Br=Bb·αr αr=Qr/Qh 其中: Qh 为锅炉总产汽热量 GJ 其中一部分通过汽轮机或通过减温减压器对外供热,

锅炉热负荷的定义及供暖热负荷的计算方式

锅炉热负荷的定义及供暖热负荷的计算方式 锅炉的热负荷,也就是单位时间内锅炉能产生的热量的大小,相当于一台锅炉的功率。在选购锅炉的时候,得先确定好所需要的锅炉热负荷的大小,再进行锅炉的选购。锅炉热负荷的单位一般有以下几种:千卡(大卡)/小时、吨/小时、千瓦/小时。 几种主要的热量单位 首页我们得了解一下几种热量单位。常用的几种热量单位主要有以下三种: 1、大卡(Kcal):大卡也称为千卡,1千卡的热量等于将1公斤的水温度升高1℃所需要的热量。 2、瓦(W):瓦是瓦特的简称,是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1J/s),即每秒钟转换,使用或耗散的(以焦耳为量度的)能量的速率。通常我们用千瓦来作单位。1瓦=1焦耳(1W=1J/S) 3、1吨:在锅炉热负荷中称的吨,是工程上所用的吨,又指1吨的蒸发量。工程上是指在1小时内产生1吨蒸汽所需要的热量 热量单位的换算方法 这几种热量单拉的换算方法如下所示: 1万大卡/小时≈11.63千瓦 1千瓦=0.086万大卡/小时 1吨蒸发量≈60万大卡/小时1万大卡/小时≈0.0166吨蒸发量 1吨蒸发量≈700千瓦 1千瓦≈0.0014吨蒸发量 1吨蒸发量≈0.7MW 1MW≈1000千瓦 怎么计算取暖热负荷 知道了怎么热量计算单位,那么我们又如何对计算自己的需要多大的供暖热负荷呢? 用这个公式就能计算出所需要的供暖热负荷的大小: Q=q(单位面积热负荷指标)×S供暖面积 其中Q表示供暖热负荷的大小,q代表单位面积热负荷指标,s代表供0暖面积。单位面积热负荷指标:对北京地区居民取暖q一般取60大卡/平方米小时,对新建经济房甚至可以取到45大卡/平方米小时;对办公大楼、商场、宾馆等可以取65~70大卡/平方米小时。 以上是锅炉热负荷的定义及供暖热负荷的计算方式,

冷负荷计算方法

冷负荷计算方法 发布时间:2016-01-30 冷负荷的定义是维持室内空气热湿参数在一定要求范围内时,在单位时间内需要从室内除去的热量,包括显热量和潜热量两部分。 1建筑物结构的蓄热特性决定了冷负荷与得热量之间的关系。瞬时得热中潜热得热和显热得热的对流成分立即构成瞬时冷负荷,而显热得热中的辐射成份则不能立即构成冷负荷,辐射热被室内的物体吸收和储存后,缓慢散发给室内空气。 2、空调负荷为保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷。相反,为了补偿房间失热量需向房间供应的热量称为热负荷。 3、室内冷负荷主要有以下几方面的内容:照明散热、人体散热、室内用电设备散热、透过玻璃窗进入室内日照量、经玻璃窗的温差传热以及维护结构不稳定传热。

外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2·K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。(a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2·K。工程中用下式计算:

负荷计算方法

负荷计算方法 供电设计常采用的电力负荷计算方法有:需用系数法、二项系数法、利用系数法和单位产品电耗法等。需用系数法计算简便,对于任何性质的企业负荷均适用,且计算结果基本上符合实际,尤其对各用电设备容量相差较小,且用电设备数量较多的用电设备组,因此,这种计算方法采用最广泛。二项系数法主要适用于各用电设备容量相差大的场合,如机械加工企业、煤矿井下综合机械化采煤工作面等。利用系数法以平均负荷作为计算的依据,利用概率论分析出最大负荷与平均负荷的关系,这种计算方法目前积累的实用数据不多,且计算步骤较繁琐,故工程应用较少。单位产品电耗法常用于方案设计。 一、设备容量的确定 用电设备铭牌上标出的功率(或称容量)称为用电设备的额定功率P N ,该功率是指用电设备(如电动机)额定的输出功率。 各用电设备,按其工作制分,有长期连续工作制、短时工作制和断续周期工作制三类。因而,在计算负荷时,不能将其额定功率简单地直接相加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P Nμ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P Nμ=P N (2-9) (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P Nμ=P N (2-10) (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。 负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条 件下,I ∝P ∝I 。由式(2-11)可知,同一周期的负荷持 续率ε∝t 。因此,P ∝ε

电气设计中负荷计算方法选择

电气设计中负荷计算方法选择 电力负荷计算方法包括:利用系数法、单位产品耗电量法、需要系数法、二项式系数法。我国一般使用需要系数法和二项式系数法,前者适用于确定全厂计算负荷、车间变电所计算负荷及负荷较稳定的干线计算负荷;后者用于负荷波动较大的干线或支线。在实际设计和实践中.电力负荷计算的有关计算系数和特征参数的选择都会影响电负荷计算结果,使其偏大、偏高。 电力负荷的正确计算非常重要,它是正确选择供电系统中导线、开关电器及变压器等的基础,也是保障供电系统安全可靠运行必不可少的重要一环。在方案设计与初步设计时,其电力负荷计算过小或过大,都会引起严重的后果。如果电力负荷计算过小,就会引起供电线路过热,加速其绝缘的老化;同时,还会过多损耗能量,引起电气线路走火,引发重大事故。而电力负荷计算过大,将会引起变压器容量过剩,以及供电线路截面过大,相应的保护整定值就会定得过高,从而降低了电气设备保护的灵敏度;与此同时,电力负荷计算过大还增加了投资,降低了工程的经济性。 一般说来,当电力负荷值大于实际使用负荷的10%时,变压器容量要增加11%一12%,电线电缆等有色金属的消耗量也要增加巧%一20%,同时还会增加变压器无功功率所造成的有功电力损耗。由此可见,电力负荷计算在供电设计中,特别是在确定变压器容量时所占据的重要位置。故正确地选择计算负荷方法与特征参数,对电气设计具有特别重要的意义。 电力负荷计算方法概述 电力负荷的变化是受多种因素制约的,难以用简单的计算公式来表示。在实际的工程计算工作中,通常采用的方法有需要系数法、利用系数法、二项式系数法、单位产品耗电量法等进行工业企业供电设计中的电力负荷计算。 1.利用系数法 以平均负荷为基础,利用概率论分析出最大负荷与平均负荷的关系。 2.单位产品耗电量法 在初步设计阶段对供电方案作比较时,可根据车间的单位产品耗电定额,产品的年产量和年工作小时数来估算。 3.二项系数法 考虑用电设备数量和大容量设备对计算负荷的影响的经验公式。 由于在一条干线上或一个车间里,当有多组性质不同的用电设备时,应根据其工作性质

热电厂主要能耗指标计算

一、热电厂主要能耗指标计算 绍兴热电专委会陈耀东一、热电厂能耗计算公式符号说明

二、能耗热值单位换算 1、吉焦、千卡、千瓦时(GJ、kcal、kwh) 1kcal==×10-3MJ=×10-6GJ 1kwh=3600KJ==×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Q y=5000kcal/kg=20934KJ/kg 1kg标准煤热值Q y=7000kcal/kg=×103KJ=kg 当原煤热值为5000大卡时,1T原煤=吨标煤,则1T标煤=原煤

3、每GJ蒸汽需要多少标煤: b r=B/Q=1/Q yη=1/η=η 其中:η=ηW×ηg=锅炉效率×管道效率 当ηW=,ηg=时,供热蒸汽标煤耗率b r=×=40kg/GJ 当ηW=,ηg=时,供热蒸汽标煤耗率b r=×=GJ 二、热电厂热电比和总热效率计算 绍兴热电专委会骆稽坤 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦)1万kwh=3600×104KJ=36GJ(吉焦) 3、统一计量单位后的热电比计算公式为: R=(Q r/E g×36)×100% 式中:Q r——供热量GJ E g——供电量万kwh 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为:

R=(16×104/634×36)×100%=701% 二、综合热效率(η0) 1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比” η0=(供热量+供电量)/(供热标煤量+供电标煤量) 2、根据热、能单位换算表 1万kwh=36GJ 1kcal= 1kg标煤热值=7000kcal 1kg标煤热值=7×103×=×103KJ= 3、统一计量单位后的综合热效率计算公式为 η0=[(Q r+36E g)/(B×)]×100% 式中:Q r——供热量GJ E g——供电量万kwh B——总标煤耗量t 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为:

负荷计算方法

负荷计算方法

加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P Nμ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P Nμ=P (2-9) N (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P Nμ=P (2-10) N (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。

负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 0100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条件下,I t ∝而在同电压下,设备容量P ∝I 。由式(2-11)可知,同一周期的负荷持续率ε∝t 。因此,P ε∝即设备容量与负荷持续率的平方根值成反比。假如设备在εN 下的额定容量为P N ,则换算到ε下的设备

建筑物耗热量指标和采暖设计热负荷

热负荷是只室内18C,室外-9C(北京)的条件下,供暖需求量,用这个值去配置供暖设备,相当于在最大条件下的出力,也就是汽车最高时速200公里的能力极限;北京通常每平米50瓦左右。 指标是在整个冬季不断变化的气候环境下,冬季实际总耗能除以时间得出的平均功率,相当于汽车的平均时速,在北京能开到40公里就很不错了。北京冬天室外平均-1.6,室内保证16,这时的规定平米指标20.6瓦 很多人不清楚的是,指标与设备配置??即热负荷没有太大的关系,例如我设备给的很大,像日本鬼子那样不问功能一平米给配200瓦的量,但是温控做的好,实际输出不大,最后指标依然正好。 再往深了说,指标就是约束墙体保温的,只要保温达到要求,指标就能达到,系统浪费它不管,就算室温高了,也折合到标准温度下了,没有影响。 采暖设计热负荷指标(g)indexOfdesignloadforheatingOfbuilding在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量,单位:W/m。 2.1设计规范采暖设计热负荷指标计算方法采暖设计热负荷指标q(W/m2)。采暖设计热负荷指标是指在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房向其它供热设施供给的热量。采暖设计热负荷指标q计算公式如下:q=Q/Ao(1) 式中Q,Ao分别为冬季采暖通风系统的热负荷(W)和建筑面积(m2),且Q值应根据建筑物下列散失的获得的热量确定:1)围护结构的耗热量,包括基本耗热量和附加耗热量,且基本大批量计算公式为Q1=Afk(tn-twn)(2)式中Q1、F、K、a、tn、twn 分别表示围护结构的基本耗热量(W)、面积(m2)、传热系数[W/(m2?K)]、温差修正系数及冬季室内计算温度(℃)、采暖室外(℃)。围护结构附加耗热量,包括朝向附加、风力附加、外门附加和高度附加,各项附加应按其占基本耗热量的百分比确定。2)加热由门窗隙渗入室内的冷空气的耗热量旧设计规范中的计算公式为:Q2=acpρwnLlm(tn-twn) (3)式中Q2表示由门窗缝隙渗入室内的冷空气的耗热量(W)、a表示单位换算系数、cp表示空气的定压比热容[kJ/(kg?K)]、L 表示在基准高度(10m)风压的单独作用一,通过每米门缝进入室内的空气量[m3/(m?h)]、l 表示门窗缝隙的计算长度(m)、tn和twn与上同、ρwn表示采暖室外计算温度下的空气温度(kg/m3)、m表示综合修正系数。新设计规范中的计算公式为:Q2=0.28cpρwnL(tn-twn) (4)式中tn和twn、ρwn与上同,L 表示渗透空气量(m3/h)、其计算公式如下:L=L0lmb (5)式中L0表示在基准高度(10m)风压的单独作用下,通过每米门缝进入室内的空气量[m3/(m?h)] 、l表示门窗缝隙的计算长度(m)、m表示冷风渗透压差综合修正系数,b表示门窗缝渗风指数,b=0.56~0.78。由式(4)和式(5)可知,新设计规范对公式的形式及有关参数的确定上都进行了较大的修订,加热由门窗缝隙渗入室内的冷空气的耗热量的计算将更加合理和精确。3)加热由门、孔沿及相邻房间浸入的冷空气的耗热量;4)建筑内部设备得热;5)通过其他途径散失或获得的热量;2.2节能标准

-热电厂主要能耗指标计算

一、热电厂主要能耗指标计算 一、热电厂能耗计算公式符号说明 二、能耗热值单位换算 1、吉焦、千卡、千瓦时(GJ、kcal、kwh)

1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ 1kwh=3600KJ=3.6MJ=3.6×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Q y=5000kcal/kg=20934KJ/kg 1kg标准煤热值Q y=7000kcal/kg=29.3×103KJ=0.0293GJ/kg 当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤 3、每GJ蒸汽需要多少标煤: b r=B/Q=1/Q yη=1/0.0293η=34.12/η 其中:η=ηW×ηg=锅炉效率×管道效率 当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率b r=34.12/0.89×0.958=40kg/GJ 当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率b r=34.12/0.80×0.994=42.9kg/GJ 二、热电厂热电比和总热效率计算 绍兴热电专委会骆稽坤 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦) 3、统一计量单位后的热电比计算公式为: R=(Q r/E g×36)×100% 式中: Q r——供热量GJ E g——供电量万kwh 4、示例:

电气设计负荷计算方法

电气设计负荷计算 1.设备组设备容量 采用需要系数法时,首先应将用电设备按类型分组,同一类型的用电设备归为一组,并算出该组用电设备的设备容量e P 。 对于长期工作制的用电负荷(如空调机组等),其设备容量就是设备铭牌上所标注的额定功率。 对于断续周期制的用电设备,其设备容量是: 对于照明设备:白炽灯的设备容量按灯泡上标注的额定功率取值;带自感式镇流器的荧光灯和高压汞灯等照明装置,由于自感式镇流器的影响,不仅功率因数很低,在计算设备容量时,还应考虑镇流器上的功率消耗。因此,对采用自感式镇流器的荧光灯装置,其设备容量取灯管额定功率的1.2倍,高压汞灯装置的设备容量取灯泡额定功率的1.1倍。 2.用电设备组的计算负荷 根据用电设备组的设备容量e P ,即可算得设备的计算负荷: 有功计算负荷 e x c P K P = (12-1) 无功计算负荷 ?tg P Q c c = 视在计算负荷 2 2 c c c Q P S +=

或 ? cos c P S = 计算电流 U S I c c 3103 ?= (12-2) 式中 x K ——设备组的需要系数; e P ——设备组设备容量(KW ) ; ? ——用电设备功率因数角; U ——线电压(V ); c I ——计算电流(A )。 上述公式适用计算三相用电设备组的计算负荷,其中式(12-2)计算电流的确定尤为重要,因为计算电流是选择导线截面积和开关容量的重要依据。 对于单相用电设备,可分为两种情况: (1)相负荷 相负荷的额定工作电压为相电压,正常运行时,相负荷接在火线和中性线之间,民用建筑中的大多数单相用电设备和家用电器都属于相负荷。在供配电设计中,应将相负荷尽量均匀地分配到三相之中,按照最大的单相设备乘以3,求得等效的三相设备容量,然后按上述公式求得计算电流(线电流)。 ?m e P P 3= ? m P ——最大负荷相的单相设备容量 (2)线间负荷 线间负荷是指额定工作电压为线电压的单相

相关文档
最新文档