3牛顿第二定律

3牛顿第二定律
3牛顿第二定律

桐乡市高级中学2018学年第一学期高一物理(创新班)一课一练(3)

完成时间建议:30分钟

必修I 第四章第三节:牛顿第二定律

班级:学号:姓名:

()1.在牛顿第二定律公式F=k·ma中,比例常数k的数值

A.在任何情况下都等于1

B.k值是由质量、加速度和力的大小决定的

C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1

()2.关于牛顿第二定律,下列说法中正确的是

A.加速度与合外力的关系是瞬时对应关系,即同时产生、同时变化、同时消失

B.加速度的方向总是与合外力的方向相同

C.同一物体的速度变化越大,受到的合外力也一定越大

D.物体的质量与它所受的合外力成正比,与它的加速度成反比

()3.由实验结论可知,当质量不变时物体的加速度与所受外力成正比,则可知无论怎样小的力都可以使物体产生加速度。可当我们用一个力推桌子没有推动,是因为A.这一结论不适用于静止的物体

B.桌子的加速度很小,速度增量很小,眼睛不易觉察到

C.推力小于摩擦力

D.推力、重力、地面的支持力与摩擦力的合力等于零,物体的加速度为零,所以原来静止现在仍静止

()4.对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用的瞬间A.物体立即获得速度

B.物体立即获得加速度

C.物体同时获得速度和加速度

D.由于物体未来得及运动,所以速度和加速度都为零

()5.用力F1单独作用于某一物体上可产生加速度为3m/s2,力F2单独作用于这一物体可产生加速度为1m/s2,若F1、F2同时作用于该物体,可能产生的加速度为A.1 m/s2B.2 m/s2C.3 m/s2D.4 m/s2

()6.如图所示,车厢底板光滑的小车上用两个量程

为20N完全相同的弹簧秤甲和乙系住一个质量为1kg的物块,

当小车在水平地面上做匀速运动时,两弹簧秤的示数均为

10N,当小车做匀加速运动时弹簧秤甲的示数变为8N,这时

小车运动的加速度大小是

A.2 m/s2B.4 m/s2C.6 m/s2D.8m/s2

7.一个放在水平桌面上的物体受到水平方向两个互相垂直的外力的作用(不计摩擦),已知

F1=6N,F2=8N,物体在这两个力的作用下获得的加速度为2.5m/s2,那么这个物体的质量

为kg。

8.一个质量为m=2kg的物体,受到水平面内F1=6N、F2 =5N、F3 =4N三个力的作用处于静止

状态,若将F1撤除,物体的加速度大小为,方向。

α 9

.如图所示,物体的质量10kg 停放在水平面上,它与水平面间μ=0.15,现用水平向右的外力F =20N 拉物体,那么物体的加速度大小为 m/s 2;若在运动过程中某时刻将F 撤掉,则在继续前滑过程中,物体的加速度大小为________ m/s 2 (g 取10m/s 2)

10.用弹簧秤水平拉一质量为0.5kg 木块在水平地面上运动,弹簧秤的读数为0.2N 时恰能匀速运动,当弹簧秤读数为0.4N 时,木块在水平地面上运动的加速度大小为多少?

11.一辆汽车质量为4t 在水平路面上匀速行驶,从某个时刻关闭发动机,经20s 滑行40m 而停止,汽车与地面的动摩擦因数不变。(已知sin37°=0.6,cos37°=0.8)

(1)求汽车所受到的阻力多大?

(2)若这辆汽车受牵引力为1000N 时,能产生多大的加速度?

(3)若牵引力方向变为与水平方向夹角37°,则汽车加速度又为多少?

12.如图所示,质量m=1kg 的球穿在斜杆上,斜杆与水平方向成α=300角,球与杆之间的动摩擦因素μ=3/6,球受竖直向上的拉力F=20N ,则球的加速度大小为多少?

13.如图,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向α角,球与车厢相对静止球的质量为1kg 。(g=10m/s 2。)

(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

F

§4.3 牛顿第二定律参考答案

1.CD

解析: k值是由质量、加速度和力的单位决定的,在国际单位制中,k的数值一定等于1,其他单位之下k不等于1

2.AB

解析:加速度与合外力的关系是瞬时对应关系,即同时产生、同时变化、同时消失,加速度的方向总是与合外力的方向相同

3.D

解析:推力、重力、地面的支持力与摩擦力的合力等于零,物体的加速度为零,所以原来静止现在仍静止

4.B

解析:加速度与力具有瞬时对应关系

5.BCD

解析:加速度也遵循矢量合成原则

6.B

解析:簧秤甲的示数变为8N,簧秤乙的示数变为12N,(弹簧总长度不变),所有合力为4N,加速度为4m/s2.

7.4kg

8.3m/s2,与F1相反

9.0.5m/s2,1.5m/s2

10..0.4m/s2

解析:F-μmg=ma

当F=0.2N时,匀速运动a=0

求得μmg=0.2N

(因为是滑动摩擦,因此f=μmg不变)

那么当F=0.4N时,0.4-0.2=0.5a

解出a=0.4(米每二次方秒)

11.题中说明汽车以某一初速度v0做匀减速运动,时间、位移和末速度都为已知.根据运动情况求力,应先求出加速度,再根据牛顿第二定律求出阻力F1.

(1)为此,选汽车为研究对象.关闭发动机后,它的受力情况如图所示,汽车做匀减速运动,初速为v0,t=20s,位移s=40m,末速v1=0,根据速度公式和位移公式可得

v1=v0-at①

s=v0t-at2②

联立①、②两式代入数据解得

a=0.2m/s2,v0=4m/s

根据牛顿第二定律,车受的阻力为F1=ma=4×103×0.2=800N.μ=0.02

(2)F-μmg=ma,可得a=0.05 m/s2

(3)正交分解可得:Fcos370-μ(mg-Fsin370)=ma a=3×10-3 m/s2

800N,0.05m/s2

12.解:球受重力G、杆的支持力F N、杆的摩擦力F f和竖直向上的拉力四个力的作用(如图

所示),建立直角坐标系,则由牛顿第二定律得

Fsin30°-Gsin30°-F f=ma

Fcos30°-Gcos30°-F N=0

F f=μF N

联立以上各式即可解得a=2.5 m/s2.

13、解:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多

,故应以球为研究对象。球受两个力作用:重力mg和线的拉力F T,由球随车一起沿水平方

向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向。做出平行四边形如图所示:

球所受的合外力为:F合=mgtanα

由牛顿第二定律F合=ma,可求得球的加速度为:a=gtanα

,加速度方向水平向左

车厢可能水平向左做匀加速直线运动,也可能水平向右做匀减速直线运动

(2)由图可得,线对球的拉力大小为:F T=mg/cosα

牛顿第二定律典型分类习题

1.如图3-2-3所示,斜面是光滑的,一个质量是0.2kg 的小球用细绳吊在倾角为53o 的 斜面顶端.斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s 2的加 速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力. 2.如图2所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体A 和斜面间动摩擦因数为μ(μ

1.如图3-2-4所示,m 和M 保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M 和m 间的摩擦力大小是多少? 2、如图3-3-8所示,容器置于倾角为θ的光滑固定斜面上时,容器顶面恰好处于水平状态,容器,顶部有竖直侧壁,有一小球与右端竖直侧壁恰好接触.今让系统从静止开始下滑,容器质量为M ,小球质量为m ,所有摩擦不计.求m 对M 侧壁压力的大小. 3、有5个质量均为m 的相同木块,并列地放在水平地面上,如下图所示。已知木块与地面间的动摩擦因数为μ。当木块1受到水平力F 的作用,5个木块同时向右做匀加速运动,求: (1)匀加速运动的加速度; (2)第4块木块所受合力; (3) 第4木块受到第3块木块作用力的大小. 4.倾角为30°的斜面体置于粗糙的水平地面上,已知斜面体的质量为M=10Kg ,一质量为m=1.0Kg 的木块正沿斜面体的斜面由静止开始加速下滑,木块滑行路程s=1.0m 时,其速度v=1.4m/s ,而斜面体保持静止。求: ⑴求地面对斜面体摩擦力的大小及方向。 ⑵地面对斜面体支持力的大小。 图3-2-4 m M θ 图3-3-8 1 2 3 4 5 F

牛顿第二定律,整体法隔离法经典编辑习题集(新)

相互作用 1.如图所示,横截面为直角三角形的斜劈A ,底面靠在粗糙的竖直墙面上,力F 通过球心水平作用在光滑球B 上,系统处于静止状态.当力F 增大时,系统还保持静止,则下列说法正确的是( ) A .A 所受合外力增大 B .A 对竖直墙壁的压力增大 C .B 对地面的压力一定增大 D .墙面对A 的摩力可能变为零 2.在竖直墙壁间有质量分别是m 和2m 的半圆球A 和圆球B ,其中B 球球面光滑,半球A 与左侧墙壁之间存在摩擦.两球心之间连线与水平方向成30°的夹角,两球恰好不下滑,设最大静摩擦力等于滑动摩擦力,(g 为重力加速度),则半球A 与左侧墙壁之间的动摩擦因数为( ) A. 23 B.3 3 C.43 D.332 3.如图甲所示,在粗糙水平面上静置一个截面为等腰三角形的斜劈A ,其质量为M ,两个底角均为30°.两个完全相同的、质量均为m 的小物块p 和q 恰好能沿两侧面匀速下滑.若现在对两物块同时各施加一个平行于斜劈侧面的恒力F1,F2,且F1>F2,如图乙所示,则在p 和q 下滑的过程中,下列说法正确的是( ) A .斜劈A 仍保持静止 B .斜劈A 受到地面向右的摩擦力作用 C .斜劈A 对地面的压力大小等于(M+2m )g D .斜劈A 对地面的压力大于(M+2m )g 4.如图所示,在质量为m=1kg 的重物上系着一条长30cm 的细绳,细绳的另一端连着一个轻质圆环,圆环套在水平的棒上可以滑动,环与棒间的动摩擦因数μ为0.75,另有一条细绳,在其一端跨过定滑轮,定

滑轮固定在距离圆环50cm的地方,当细绳的端点挂上重物G,而圆环将要开始滑动时,(g取10/ms2)试问: (1)角?多大? (2)长为30cm的细绳的张力是多少: (3)圆环将要开始滑动时,重物G的质量是多少? 4.如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,杆的A端用铰链固定,光滑轻小滑轮在A点正上方,B端吊一重物G,现将绳的一端拴在杆的B端,用拉力F将B端缓缦上拉, 在AB杆达到竖直前(均未断),关于绳子的拉力F和杆受的弹力FN的变化,判断正 确的是() A.F变大B.F变小C.F N变大D.F N变小 5.如图所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前() A.绳子越来越容易断, B.绳子越来越不容易断, C.AB杆越来越容易断,

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与 运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。

牛顿第二定律

牛顿第二定律 导读:本文是关于牛顿第二定律,希望能帮助到您! 教学目标 知识目标 (1)通过演示实验认识加速度与质量和和合外力的定量关系; (2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式; (3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律; (4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系; (5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题. 能力目标 通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.情感目标 培养认真的科学态度,严谨、有序的思维习惯. 教学建议 教材分析 1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;

在力不变的前题下,讨论质量和加速度的关系. 2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式. 3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性. 教法建议 1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小. 2、通过典型例题让学生理解牛顿第二定律的确切含义. 3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式. 教学设计示例 教学重点:牛顿第二定律 教学难点:对牛顿第二定律的理解 示例: 一、加速度、力和质量的关系 介绍研究方法(控制变量法):先研究在质量不变的前题下,

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

知识讲解牛顿第二定律基础

牛顿第二定律 【学习目标】 1.深刻理解牛顿第二定律,把握Fam?的含义. 2.清楚力的单位“牛顿”是怎样确定的. 3.灵活运用F=ma解题. 【要点梳理】 要点一、牛顿第二定律 (1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比. (2)公式:Fam∝或者Fma?,写成等式就是F=kma.. (3)力的单位——牛顿的含义. ①在国际单位制中,力的单位是牛顿,符N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2. ②比例系数k的含义. 根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位. 要点二、对牛顿第二定律的理解 (1)同一性 【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论: ①物体此时受哪些力的作用? ②每一个力是否都产生加速度? ③物体的实际运动情况如何? ④物体为什么会呈现这种运动状态? 【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F. ②由“力是产生加速度的原因”知,每一个力都应产生加速度. ③物体的实际运动是沿力F的方向以a=F/m加速运动. ④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F. 从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性. 因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同. (2)瞬时性

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律各种典型题型

牛顿第二定律 牛顿第二定律 1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。 2.表达式F=ma。 3.“五个”性质 考点一错误!瞬时加速度问题 1.一般思路:分析物体该时的受力情况―→错误!―→错误! 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。 [例] (多选)(2014·南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是() A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ B.B球的受力情况未变,瞬时加速度为零 C.A球的瞬时加速度沿斜面向下,大小为2g sin θ D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零

[例](2013·吉林模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 针对练习:(2014·苏州第三中学质检)如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A的加速度的大小分别为( ) A.错误!,错误!+gB.错误!,错误!+g C.错误!,错误!+g D.错误!,\f(F,3m)+g 4.(2014·宁夏银川一中一模)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B A.都等于错误! B.错误!和0 C.错误!和错误!·错误!?D.错误!·错误!和错误! 考点二错误!动力学的两类基本问题分析 (1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。一个桥梁:物体运动的加速度是联系运动和力的桥梁。 (2)寻找多过程运动问题中各过程间的相互联系。如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

系统牛顿第二定律

系统牛顿第二定律(质点系牛顿第二定律) 主讲:黄冈中学教师郑成 1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=,在木楔的倾角α=30°的斜面上,有一质量m=的物块,由静止开始沿斜面下滑,当滑行至s=时,速度v=s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2) 解法一:(隔离法)先隔离物块m,根据运动学公式得: v2=2as=s2

而N′=N=,f′=f=地=-Nsin30°+fcos30°=- 说明地面对斜面M的静摩擦力f地=,负号表示方向水平向左. 可求出地面对斜面M的支持力N地 N地-f′sin30°-N′cos30°-Mg=0 N地= fsin30°+Ncos30°+Mg=<(M+m)g=110N 因m有沿斜面向下的加速度分量,故整体可看作失重状态 方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny 解法二:系统牛顿第二定律: 把物块m和斜面M当作一个系统,则: x:f地=M×0 +macos30°=水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°= 例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力 解法一:隔离法

牛顿第二定律典型例题

牛顿第二定律典型例题 一、力的瞬时性 1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失. 【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直 线的夹角都是600 ,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度. 练习 1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整 个系统置于水平放置的光滑木坂上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ?重力加速度大小为g ?则有 A. 10a =,2a g = B. 1a g =,2a g = C. 120, m M a a g M +== D. 1a g =,2m M a g M += 2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动 B .物体先向西运动后向东运动 C .物体的加速度先增大后减小 D .物体的速度先增大后减小 3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大? 4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同 图3-1-13 图3-1-2 图3-1-14

牛顿第二定律

. §2 牛顿第二定律 教学目标: 1.理解牛顿第二定律,能够运用牛顿第二定律解决力学问题 2.理解力与运动的关系,会进行相关的判断 3.掌握应用牛顿第二定律分析问题的基本方法和基本技能 教学重点:理解牛顿第二定律 教学难点:力与运动的关系 教学方法:讲练结合,计算机辅助教学 教学过程: 一、牛顿第二定律 1.定律的表述 物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma(其中的F和m、a必须相对应) 点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 2.对定律的理解: (1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零 F?a只表示加速度与合外力的大小关)矢量性:牛顿第二定律公式是矢量式。公式(2m系.矢量式的含义在于加速度的方向与合外力的方向始终一致. (3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言,即F12 / 1 . 与a均是对同一个研究对象而言. (4)相对性;牛顿第二定律只适用于惯性参照系 (5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子3.牛顿第二定律确立了力和运动的关系 牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。 4.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设……+maa+ =m,则有:Fa+ma+mm每个质点的质量为,对应的加速度为a n312i13i2n合对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑∑∑F=ma,……a,将以上各式等号左、右分别相加,其中左边所=Fma,=Fm n221n11n2有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把

高一物理牛顿第二定律典型例题答案及讲解

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大若把其中一个力反向,物体的加速度又为多少【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同. 【例3】沿光滑斜面下滑的物体受到的力是[ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力

【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】[误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将[ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。 【误解二】选(B)。 【误解三】选(D)。 【正确解答】选(C)。 【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。 若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。 【误解一、二】都没有认真分析物体的运动状态及其变化情况,而是简单地把物体受到的摩擦力当作是静摩擦力或滑动摩擦力来处理。事实上,滑块所受摩擦力的性质随着α角增大会发生变

牛顿第二定律

4-3 一、选择题(本大题共6小题,每小题5分,共30分) 1.(多选)(2017·南通高一检测)某物体在粗糙水平面上受一水平恒定拉力F作用由静止开始运动,下列四幅图中,能正确反映该物体运动情况的图象是() 【解析】物体所受合力一定,由F=ma知加速度a恒定,故C错误,D正确;又由v=at知v与t 成正比,A正确;由s=1 2知s与t2成正比,故B错误。 2at 【答案】AD 2.(多选)(2017·成都高一检测)力F1单独作用在物体A上时产生的加速度a1大小为5 m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2 m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a的大小可能是() A.5 m/s2B.2 m/s2C.8 m/s2D.6 m/s2 【解析】设物体A的质量为m,则F1=ma1,F2=ma2,当F1和F2同时作用在物体A上时,合力的大小范围是F1-F2≤F≤F1+F2,即ma1-ma2≤ma≤ma1+ma2,加速度的大小范围为3 m/s2≤a≤7 m/s2,正确选项为A、D。 【答案】AD 3.(多选)如图所示,沿平直轨道运动的火车车厢中有一光滑的水平桌面,桌面上有一弹簧和小球,弹簧左端固定,右端拴着小球,弹簧处于原长状态。现发现弹簧的长度变短,关于弹簧长度变短的原因,以下判断中正确的是() A.火车可能向右运动,速度在增加 B.火车可能向右运动,速度在减小

C.火车可能向左运动,速度在增加 D.火车可能向左运动,速度在减小 【答案】AD 4.(2016·海南高考)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示。已知物体与斜面之间的动摩擦因数为常数,在0~5 s、5~10 s、10~15 s内F的大小分别为F1、F2和F3,则() A.F1F3 C.F1>F3D.F1=F3 【解析】加速下滑过程,有mg sin θ-F1-f=ma,匀速下滑过程,有mg sin θ-F2-f=0,减速下滑时,有F3-mg sin θ+f=ma,故有F1

人教版物理必修一试题第三节牛顿第二定律

第三节牛顿第二定律 1、下列说法正确的是() A.由a=Δv/Δt可知,a与Δv成正比,a与Δt成反比 B.由a=F/m可知,a与F成正比,a与m成反比 C.a、F、Δv的方向总是一致的 D.a、F、v的方向总是一致的 2、F1、F2两力分别作用于同一物体,产生的加速度大小分别为a1=2m/s2和a2=3m/s2,若两力同时作用于该物体,其加速度可能为()A.1m/s2B.3m/s2C.5m/s2D.7m/s2 3、直升机悬停在空中向地面投放装有救灾物资的箱子,设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持水平。在箱子下落过程中,下列说法正确的是()A.箱内物体对箱子底部始终没有压力 B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 4、如图所示,位于光滑固定斜面上的小物块P受到一水平向右的推力F的作用。已知物块P沿 斜面加速下滑。现保持F的方向不变,使其减小,则加速度()A.一定变小 信达

信达 B .一定变大 C .一定不变 D .可能变小,可能变大,也可能不变 5、跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg ,吊板的质量为10kg ,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s 2 .当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为 () A .a=1.0m/s2,F=260N B .a=1.0m/s2,F=330N C .a=3.0m/s2,F=110N D .a=3.0m/s2 ,F=50N 6、从水平地面竖直向上抛出一物体,物体在空中运动后最后又落回地面。在空气对物体的阻力不能忽略的条件下,以下判断正确的是 () A .物体上升的加速度大于下落的加速度 B .物体上升的时间大于下落的时间 C .物体落回地面的速度大于抛出的速度 D .物体在空中经过同一位置时的速度大小相等 7、质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上,已知t =0时质点的速度为零,在图示的t 1、t 2、t 3和t 4各时刻中 () A.t 1时刻质点速度最大 B.t 2时刻质点速度最大 C.t 3时刻质点离出发点最远 D.t 4时刻质点离出发点最远 8、如图所示,质量为m 的木块放在光滑水平桌面上,细绳栓在木块上,并跨过滑轮,试求木块的加速度: (1)用大小为F (F =Mg )的力向下拉绳子 (2)把一质量为M 的重物挂在绳子上 9、固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2 。求: (1)小环的质量m ; m M F /N v /ms -1 5.5 1 F 5 0 2 4 6 t /s 0 2 4 6 t /s

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

牛顿第二定律以专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律经典练习题

牛顿运动定律练习题 1.用2N的水平力拉一个物体沿水平面运动时,物体可获得1m/s2的加速度; 用3N的水平力拉物体沿原地面运动,加速度是2m/s2,那么改用4N的水平力拉物体,物体在原地面上运动的加速度是______m/s2,物体在运动中受滑动摩擦力大小为______N. 2. 一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm,现将重物体向下拉1cm然后放开,则在刚放开的瞬时,重物体的加速度大小为( ). (A)2.5m/s2 (B)7.5m/s2 (C)10m/s2 (D)12.5m/s2 3.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ) (A)物体速度逐渐减小,加速度逐渐减小 (B)物体速度逐渐增大,加速度逐渐减小 (C)物体速度先增大后减小,加速度先增大后减小 (D)物体速度先增大后减小,加速度先减小后增大 4. 物体在水平地面上受到水平推力的作用,在6s内力F的变化和速度v的变化如图所示,则物体的质量为______kg,物体与地面的动摩擦因数为______. 5.质量为20kg的物体若用20N的水平力牵引它,刚好能在水平面上匀速前进.问:若改用50N拉力、沿与水平方向成37°的夹角向斜上方拉它,使物体由静止出发在水平而上前进2.3m,它的速度多大?在前进2.3m时撤去拉力,又经过3s,物体的速度多大(g取10m/s2)?

6. 如图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,小球的速度和所受外力的合力变化情况是( ). (A)合力变小,速度变小 (B)合力变小,速度变大 (C)合力先变小后变大,速度先变大后变小 (D)合力先变大后变小,速度先变小后变大 7.如图,在光滑的水平面上,推力F大小为10N,木块A的质量为3kg,木块B 的质量为2kg,在推力F的作用下,A、B从静止开始一起向右做匀加速直线运动,求: (1)第3秒末,A、B的速度大小; (2)A与B之间的相互作用力的大小。 (3)

相关文档
最新文档