(完整版)离散型随机变量及其分布列测试题
离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28)1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0、6,且各次投篮就是否投中相互独立,则该同学通过测试的概率为( )(A)0、648 (B)0、432 (C)0、36(D)0、3123.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C4.某地区气象台统计,该地区下雨的概率就是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A 、2258B 、21 C 、83D 、435.从4名男生与2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).A 、15B 、25C 、35D 、456.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A 、2101012)85()83(⋅CB 、83)85()83(29911⨯C C 、29911)83()85(⋅CD 、 29911)85()83(⋅C7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( )A 、53 B 、43 C 、21 D 、1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( )A.52 B 、51 C 、92 D 、 739.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张就是奇数的条件下第二张也就是奇数的概率( )A 、52 B 、51 C 、21 D 、 7310、位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都就是21,质点P 移动5次后位于点(2,3)的概率就是( )A 、3)21(B 、525)21(C C 、335)21(CD 、53525)21(C C11、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A)8 (B)15 (C)16 (D)3212、设某项试验的成功率就是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( )A 、0B 、 21C 、 31D 、32解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率; ⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23、(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15、实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)求按比赛规则甲获胜的概率.16、某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱与装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都就是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖、(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列、1--5:CAACD 6-12: BABCB CC13. ⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=14.解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为 ∴X 的分布列为(2)∵得分η=5X +∵X 的可能取值为0,1,2,3、∴η的可能取值为6,9,12,15,取相应值的概率分别为 P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718, P (η=12)=P (X =2)=718,P (η=15)=P (X =3)=19、∴得分η的分布列为15.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为2,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”, 记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++, 又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 16、(1):107。
01离散型随机变量及其分布列(检测+答案)

离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η …表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2, …x i ,…,x n ,X 取每一个值x i (i =1,2, … ,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,1.i P ≥0,i =1,2,…,n ; 211n i i p ==∑.四、常见离散型随机变量的分布列p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N M n C C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列例1:设随机变量X A.1 B.1 C.23 D.12X ,那么X =4表示的随机试验结果是( )A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i 2a(i =1、2、3),则P (x =2)= ( ) A.1 B.1 C.1 D.1 =0.3,那么n =________.2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布解:P (X =0)=1C 25=110,P (X =1)=C 3C 2C 25=35,P (X =2)=C 3C 25=310. 1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此, 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X则q 等于 A .1 B .1±2 C .1-2 D .1+2则k 的值为 A.12B .1C .2D .3若P (ξ2<x )=1112,则实数x 的取值范围是__________.i i =1,2…. 2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率. 例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 4(i =0,1,2,3,4),即例10:1个红球每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η 3 2 1 0P 542 1021 514 121例13:第:31组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm): 若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710. (2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为 ξ 0 1 2 3P 1455 2855 1255 155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立, 因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得 P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0 1 2 3 P 0.1 0.35 0.4 0.15 因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.。
离散型随机变量及其分布列练习题和答案

离散型变量强化1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A ) (B ) (C ) (D )3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A.2258 B.21 C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D. 1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( ) A 52 B.51 C.92 D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( )A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) B. 21 C. 31 D.32 解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛). 试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.。
【高中数学】离散型随机变量及其分布列+练习题

离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η…表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,也用等式P(X =x i )=pi ,i =1,2,…,n 表示X 的分布列.X x 1x 2…x i …x nPp 1P 2…p i …p n三、离散型随机变量分布列的性质:1.i P ≥0,i =1,2,…,n ;211ni i p ==∑.四、常见离散型随机变量的分布列1.两点分布X 01P 1-p p如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N MnNC C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.例1:设随机变量X 的分布列如下:则p 为()X 1234P 161316pA.16B.13C.23D.12解:由16+13+16+p =1,∴p =13.2.抛掷2颗骰子,所得点数之和记为X ,那么X =4表示的随机试验结果是()A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i2a(i =1、2、3),则P (x =2)=()A.19B.16C.13D.14解:由12a +22a +32a =62a =1,得a =3.∴P (x =2)=22×3=13.=0.3,那么n =________.解:1n×3=0.3,∴n =10.例5:从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为X 012P解:P (X =0)=1C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X 是一个离散型随机变量,其分布列为:X -101P 121-2q q 2则q 等于()A .1B .1±22C .1-22D .1+22解:由分布列的性质知1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.ξ123…nP k n k n k n …k n则k 的值为()A.12B .1C .2D .3解:由k n +k n +…+kn=1,∴k =1.ξ-2-10123P112312412112212112若P (ξ2<x )=1112,则实数x 的取值范围是__________.解:由P (ξ2<x )=1112且结合分布列得4<x ≤9.i i =1,2….2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率.例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),即X 01234P170167036701670170例10:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球解:得分ξ的取值为-3,-2,-1,0,1,2,3.ξ=-3时表示取得3个球均为红球,∴P (ξ=-3)=C 33C 311=1165.ξ=-2时表示取得2个红球和1个黑球,∴P (ξ=-2)=C 23C 15C 311=111.ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球.∴P (ξ=-1)=C 23C 13+C 13C 25C 311=1355.ξ=0时表示取得3个黑球或1红、1黑、1白,∴P (ξ=0)=C 35+C 13C 13C 15C 311=13.ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,∴P (ξ=1)=C 13C 25+C 23C 13C 311=1355.ξ=2时表示取得2个白球和1个黑球,∴P (ξ=2)=C 23C 15C 311=111.ξ=3时表示取得3个白球,∴P (ξ=3)=C 33C 311=1165.∴所求概率分布列为:ξ-3-2-10123P116511113551313551111165例11:在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;(2)若胜场次数为X ,求X 的分布列.解:(1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为X 1234P4311831831131解:(1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ0123P5421021514121解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η3210P5421021514121例13:第:31届奥林匹克夏季运动会于2016年8月5日至21日在里约热内卢举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为ξ0123P145528551255155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立,因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0123P0.10.350.40.15因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.离散型随机变量及其分布列训练题1一、选择题1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A. B.C.D.2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A .ξ=4B .ξ=5C .ξ=6D .ξ≤53.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为()A.23B.34C.45D.564.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为()A.1220 B.2755 C.27220 D.21255.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是()A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)二、填空题6.随机变量X 的分布列如下:X -101P a b c 其中a ,b ,c 成等差数列,则P (|X |=1)=______.7.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.三、解答题8.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值;(2)X 的分布列.X 012P0.30.40.5X 012P0.3-0.10.8X1234P0.20.50.3X 012P1727379.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列.10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.1.C2.C3.解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1∴a =54.故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.解析:由超几何分布知P (ξ=2)=n -m A 2mA 3n答案:D6.解析:∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23238.解:(1)由P (X =2)=730知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为X 1234P710730712011209.解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13.3次试验选择了同一套方案且都试验成功的概率P =P (A 1·A 1·A 1+A 2·A 2·A 2)=313⎛⎫ ⎪⎝⎭+313⎛⎫ ⎪⎝⎭=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23),P (X =k )=C k 3313k-⎛⎫ ⎪⎝⎭23k⎛⎫⎪⎝⎭,k =0,1,2,3.X 的分布列为X 0123P127294982710.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2,依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立,所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16.(2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16,P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512.所以ξ的分布列为:ξ0356P 0.20.160.1280.512【参考答案】离散型随机变量及其分布列训练题2一.选择题(共15小题)1.设随机变量ξ的分布列由,则a 的值为()A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么()A .n=3B .n=4C .n=10D .n=93.下列表中能成为随机变量ξ的分布列的是()A .B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值()A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为()A .B .C .D .6.设随机变量X 的概率分布列为X 1234P m则P (|X ﹣3|=1)=()A .B .C .D .7.设随机变量X 的概率分布如右下,则P (X≥0)=()X ﹣101P p A .B .C .D .8.随机变量ξ的分布列为P (ξ=k )=,k=1,2,3,其中c 为常数,则P (ξ≥2)等于()A .B .C .D .9.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为x 012p那么这两人通过考试的概率最小值为()A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为()A .B .C .D .ζ﹣101P 0.30.40.4ζ123P 0.40.7﹣0.1ζ﹣101P0.30.40.3ζ123P0.30.40.4X123P ip11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2B.3C.4D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B.C.D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A.B.C.D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣101P0.5q2则q=.17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=.20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m 个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ012P?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分析选课情况.(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.月收入(百元)赞成人数[15,25)8[25,35)7[35,45)10[45,55)6[55,65)2[65,75)1科目甲科目乙总计第一小组156第二小组246总计391225.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P (X=2)=+,.∴随机变量X 的分布列为∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为:P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1.25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:ξ01234PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0123P (X )X 05101520P。
离散型随机变量的分布列专项测试题

离散型随机变量的分布列专项测试题1.(2015·常熟二模)已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望E (X )=( )A.32 B .2 C.52 D .3思路分析:利用公式n n p x p x p X E +++= 2211x )(求解即可。
解析:E(X)=1×35+2×310+3×110=32.选A小结:n n p x p x p X E +++= 2211x )(为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.同时抛掷两枚质地均匀的硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则E (ξ)=( )A.14 B .12 C.34D .1 思路分析:同时抛掷两枚质地均匀的硬币会出现四种等可能的结果:正正,正反,反正,反反,其中没有正面向上的有一种结果所以概率为14,则有正面向上的概率为34,写出分布列利用公式求期望。
解析:∵P (ξ=0)=14,P (ξ=1)=34, ∴E (ξ)=0×14+1×34=34.答案:C小结:正确理解随机变量表示的意义,搞清随机变量每个取值对应的随机事件和每个随机事件所包含的各种情形并求概率,熟练掌握期望公式。
3.(2015·浙江联考)甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则Eξ为( )A .1B .1.5C .2D .2.5思路分析:ξ可取0,1,2,3。
需注意ξ=0表示所选课程都不相同,为平均分组然后排序的问题。
另外ξ=2所包含的情况较多,可以用间接法。
解析:ξ可取0,1,2,3,P (ξ=0)=C 36C 36C 36=120,P (ξ=1)=C 16C 25C 23C 36C 36=920,P (ξ=3)=C 36C 36C 36=120,P (ξ=2)=920,故Eξ=0×120+1×920+2×920+3×120=1.5.答案:B小结:平均分组问题是排列组合的难点,经常与分布列综合考察,需要认真分析是否有顺序。
(完整版)离散型随机变量综合测试题(附答案)

离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X;④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( ) A.小球滚出的最大距离 B.倒出小球所需的时间C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数[答案] D [解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是( ) A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=5>4,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ) A.2 B.2或1 C.1或0 D.2或1或0 [答案] C[解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故ξ可能取值有两种0,1,故选C. 5.下列变量中,不是离散型随机变量的是( ) A.从2010张已编号的卡片(从1号到2010号)中任取一张,被取出的号数ξ B.连续不断射击,首次命中目标所需要的射击次数η C.某工厂加工的某种钢管内径与规定的内径尺寸之差ξ1 D.从2010张已编号的卡片(从1号到2010号)中任取2张,被取出的卡片的号数之和η1 [答案] C [解析] 离散型随机变量的取值能够一一列出,故A,B,D都是离散型随机变量,而C不是离散型随机变量,所以答案选C. 6.给出下列四个命题:①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.其中正确命题的个数是( ) A.1 B.2 C.3 D.4 [答案] D [解析] 由随机变量的概念知四个命题都正确,故选D. 7.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( ) A.只有X和ξB.只有Y C.只有Y和ξ D.只有ξ [答案] B [解析] 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B. 8.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950Ω~1200Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X. 其中是离散型随机变量的是( ) A.①②B.①③ C.①④ D.①②④ [答案] A [解析] ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量. 9.抛掷一枚均匀骰子一次,随机变量为( ) A.掷骰子的次数 B.骰子出现的点数 C.出现1点或2点的次数 D.以上都不正确 [答案] B 10.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( ) A.第5次击中目标 B.第5次末击中目标 C.前4次未击中目标 D.第4次击中目标 [答案] C [解析] 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C. 二、填空题11.一木箱中装有8个同样大小的篮球,编号为1、2、3、4、5、6、7、8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有______种. [答案] 21 [解析] 从8个球中选出3个球,其中一个的号码为8,另两个球是从1、2、3、4、5、6、7中任取两个球.∴共有C27=21种. 12.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. [答案] {0,1,2,3,4,5} 13.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的最大号码,则ξ=6表示的试验结果是___________________________________________________________ ________________________________________________________________________ _____________. [解析] 从6个球中选出3个球,其中有一个是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. [点评] “ξ=6”表示取出的3个球的最大号码是6,也就是说,从6个球中随机选出3个球,有一个球是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. 14.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为ξ,则随机变量ξ的可能取值共有________种. [答案] 24 [解析] 后三个数字两两不同且都大于5的电话号码共有A34=24(种).三、解答题 15.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为ξ. (1)写出ξ的所有可能取值;(2)写出ξ=1所表示的事件. [解析] (1)ξ可能取的值为0,1,2,3. (2)ξ=1表示的事件为:第一次取得次品,第二次取得正品. 16.写出下列随机变量的可能取值,并说明随机变量的所取值表示的随机试验的结果: (1)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和; (2)某单位的某部电话在单位时间内收到的呼叫次数Y. [解析] (1)设所取卡片的数字之和为ξ,则ξ的可能取值为3,4,…,11,其中ξ=3,表示取出标有1,2的两张卡片,…,ξ=11,表示取出标有5,6的两张卡片. (2)Y 可取0,1,2,…,n,…,Y=i,表示被呼叫i次,其中i=0,1,2,…. 17.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是45,34,23,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果. [解析] X的可能取值为0,1 000,3 000,6 000. X=0,表示第一关就没有通过; X=1 000,表示第一关通过,而第二关没有通过; X=3 000,表示第一、二关通过,而第三关没有通过; X=6 000,表示三关都通过. 18.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ; (2)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋中随机取出3只球,被取出的最大号码数ξ; (3)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对表,他所等待的时间ξ分. [解析] (1)ξ可取0,1,2. ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2. (2)ξ可取3,4,5. ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5. (3)ξ的可能取值为区间[0,59.5]内任何一个值,每一个可能取值表示他所等待的时间.。
高中数学离散型随机变量的分布列综合测试题(附答案)

高中数学离散型随机变量的分布列综合测试题(附答案)第二课时离散型随机变量的分布列2一、选择题1.下列表中可以作为离散型随机变量的分布列是()A.1 0 1P 141214B.0 1 2P -143412C.0 1 2P 152535D.-1 0 1P 141412[答案] D[解析] 本题考查分布列的概念与性质.即的取值应互不相同且P(0,i=1,2,…,n,i=1nP(i)=1.A中的取值出现了重复性;B中P(=0)=-140,C中i=13P(i)=15+25+35=651.2.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为,则下列概率中等于C18C16+C14C16C112C112的是()A.P(=0) B.P(2)C.P(=1) D.P(=2)[答案] C[解析] 即取出白球个数为1的概率.3.已知随机变量X的分布列为:P(X=k)=12k,k=1、2、…,则P(2<X4)=()A.316B.14C.116D.516[答案] A[解析] P(2<X4)=P(X=3)+P(X=4)=123+124=316.4.随机变量的概率分布列为P(=k)=ck(k+1),k=1,2,3,4,其中c是常数,则P12<<52则值为()A.23B.34C.45D.56[答案] D[解析] c12+c23+c34+c45=c1-12+12-13+13-14+14-15=45c=1.c=54.P12<<52=P(=1)+P(=2)=54112+123=56.5.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,表示取出的4个球的总得分;④表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④[答案] B[解析] 依据超几何分布的数学模型及计算公式,或用排除法.6.(2019东营)已知随机变量的分布列为P(=i)=i2a(i=1,2,3),则P(=2)=()A.19B.16C.13D.14[答案] C[解析] 由离散型随机变量分布列的性质知12a+22a+32a =1,62a=1,即a=3,P(=2)=1a=13.7.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是()A.1120B.724C.710D.37[答案] B[解析] P=C37C03C310=724.8.用1、2、3、4、5组成无重复数字的五位数,这些数能被2整除的概率是()A.15B.14C.25D.35[答案] C[解析] P=2A44A55=25.二、填空题9.从装有3个红球、3个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为:0 1 2P[答案] 15 35 1510.随机变量的分布列为:0 1 2 3 4 5P 192157458451529则为奇数的概率为________.[答案] 81511.(2019常州)从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 5612.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量,则P(>1)=________.[答案] 12[解析] 依题意,P(=1)=2P(=2),P(=3)=12P(=2),P(=3)=P(=4),由分布列性质得1=P(=1)+P(=2)+P(=3)+P(=4)4P(=2)=1,P(=2)=14.P(=3)=18.P(>1)=P(=2)+P(=3)+P(=4)=12.三、解答题13.箱中装有50个苹果,其中有40个合格品,10个是次品,从箱子中任意抽取10个苹果,其中的次品数为随机变量,求的分布列.[解析] 可能取的值为0、1、2、...、10.由题意知P(=m) =Cm10C10-m40C1050(m=0、1、2、...、10),的分布列为0 1 ... k (10)P C010C1040C1050C110C940C1050… Ck10C10-k40C1050… C1010C040C105014.设随机变量X的分布列PX=k5=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)35;(3)求P110<X<710.[分析] 分布列有两条重要的性质:Pi0,i=1、2、…;P1+P2+…+Pn=1利用这两条性质可求a的值.(2)(3)由于X的可能取值为15、25、35、45、1.所以满足X35或110710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次试验中相互独立,只要求得满足条件的各概率之和即可.[解析] (1)由a1+a2+a3+a4+a5=1,得a=115. (2)因为分布列为PX=k5=115k (k=1、2、3、4、5)解法一:PX35=PX=35+PX=45+P(X=1)=315+415+515=45;解法二:PX35=1-PX=15+PX=25=1-115+215=45.(3)因为110<X<710,只有X=15、25、35时满足,故P110<X<710=PX=15+PX=25+PX=35=115+215+315=25.15.(2009福建)盒子中装着标有数字1,2,3,4,5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A,则P(A)=C35C12C12C12C310=23.(2)由题意可能的取值为2,3,4,5,P(=2)=C22C12+C12C22C310=130,P(=3)=C24C12+C14C22C310=215,P(=4)=C26C12+C16C22C310=310,P(=5)=C28C12+C18C22C310=815.所以随机变量的概率分布为:2 3 4 5P 13021531081516.(2019福建理,16)设S是不等式x2-x-60的解集,整数m,nS.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设=m2,求的分布列.[解析] 本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.解题思路是先解一元二次不等式,再在此条件下求出所有的整数解.解的组数即为基本事件个数,按照古典概型求概率分布列,注意随机变量的转换.(1)由x2-x-60得-23,即S={x|-23}.由于m,nZ,m,nS且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以=m2的所有不同取值为0,1,4,9.且有P(=0)=16,P(=1)=26=13,P(=4)=26=13,P(=9)=16.故的分布列为:0 1 4 9P 161313。
MS01离散型随机变量及其分布列训练题2

离散型随机变量及其分布列训练题2一.选择题(共15小题) 1.设随机变量ξ的分布列由,则a 的值为( )A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n=3 B .n=4 C .n=10 D .n=93.下列表中能成为随机变量ξ的分布列的是( ) A . B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值( )A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为( )A .B .C .D . 6.设随机变量X 的概率分布列为 X 1 2 3 4 Pmζ ﹣1 0 1 P 0.3 0.4 0.4 ζ 1 2 3 P0.40.7﹣0.1ζ ﹣1 01P 0.3 0.4 0.3ζ 1 2 3P0.3 0.4 0.4X 0 1 2 3 P ip则P(|X﹣3|=1)=()A.B. C.D.7.设随机变量X的概率分布如右下,则P(X≥0)=()X ﹣1 0 1P pA.B.C.D.8.随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,其中c为常数,则P(ξ≥2)等于()A.B.C.D.9.两名学生参加考试,随机变量x代表通过的学生数,其分布列为x 0 1 2p那么这两人通过考试的概率最小值为()A. B.C.D.10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为()A.B. C.D.11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数 B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2 B.3 C.4 D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B. C. D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A. B.C. D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数 B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣1 0 1P 0.5 q2则q= .17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)= .18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)= .20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ0 1 2P ?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分月收入(百元) 赞成人数 [15,25) 8 [25,35) 7 [35,45) 10[45,55) 6 [55,65) 2 [65,75) 1科目甲 科目乙 总计 第一小组 1 5 6 第二小组 24 6 总计3912析选课情况.(1)求选出的4 人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.25.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X 的所有取值可能为0,1,2, 3.,,P (X=2)=+,.∴随机变量X 的分布列为 ∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为: P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P(ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1. 25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=; P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.X12 3 P (X )∴ξ的分布列为: ξ 0 1 2 3 4 PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则 P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0 5 10 15 20 P。
2020年高中数学选修2-3《2.1离散型随机变量及其分布列》测试卷及答案解析

A. B. C. D.
二.填空题(共20小题)
11.某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%,乙产品的一等品率为90%,二等品率为10%,生产一件甲产品,若是一等品则获利润为4万元,若是二等品则亏损1万元,生产一件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元,设生产各种产品相互独立,
ξ
0
1
2
P
0.2
a
b
28.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为 ,第二、第三种产品受欢迎的概率分别为m,n,且不同种产品是否受欢迎相互独立.记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为
ξ
0
1
2
3
P
a
d
则m+n=.
29.随机变量ξ的分布列为P(ξ=k)= ,k=1.2.3,其中c为常数,则P(ξ≥2)=.
①记x(单位:万元)为生产一件甲产品和一件乙产品可获得的总利润,求x的分布列.
②求生产4件甲产品获得的利润不少于10万元的概率.
12.已知随机变量η的分布列如表:
η
1
2
3
4
5
6
P
0.2
x
0.35
0.1
0.15
0.2
则x=;P(η≤3)=.
13.设随机变量X的分布函数为F(x)= ,用Y表示对X的3次独立重复观察中事件{X>20}出现的次数,则P{Y>1}=.
17.已知某一随机变量X的分布列如下:
X
3
b
8
P
离散型随机变量及其分布列(含解析)

离离离离离离离离离离离离一、单选题1. 随机变量X的分布列如下表所示:则P(X≤2)=( )A. 0.1B. 0.2C. 0.3D. 0.42. 已知离散型随机变量X的分布列服从两点分布,且P(X=0)=3−4P(X=1)=a,则a=( )A. 23B. 12C. 13D. 14二、解答题3. 一机床生产了100个汽车零件,其中有40个一等品、50个合格品、10个次品,从中随机地抽出4个零件作为样本.用X表示样本中一等品的个数.(1)若有放回地抽取,求X的分布列;(2)若不放回地抽取,用样本中一等品的比例去估计总体中一等品的比例.①求误差不超过0.2的X的值;②求误差不超过0.2的概率(结果不用计算,用式子表示即可).4. 第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有2的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前3三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为p n,易知p1=1,p2=0.}为等比数列;①试证明:{p n−13②设第n次传球之前球在乙脚下的概率为q n,比较p10与q10的大小.5. 五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.(1)试求选出3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为6n元的奖金.假设顾客每次抽奖中奖,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利⋅的概率都是146. 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.答案和解析1.解:由分布列的性质可得,0.1+m+0.3+2m=1,可得m=0.2,所以P(X ≤2)=P(X =1)+P(X =2)=0.1+0.2=0.3.故选:C .2.解:因为X 的分布列服从两点分布,所以,因为所以,,故选C .3.解:(1)依题意可得,门将每次可以扑到点球的概率为p =13×13=19,门将在前三次扑到点球的个数X 可能的取值为0,1,2,3,易知X∽B(3,19),所以P(X =k)=C 3k×(19)k ×(89)3−k ,k =0,1,2,3,故X 的分布列为: X 0123P512729 6424382431729所以X 的期望E(X)=3×19=13.(2) ①第n 次传球之前球在甲脚下的概率为p n ,则当n ≥2时,第n −1次传球之前球在甲脚下的概率为p n−1, 第n −1次传球之前球不在甲脚下的概率为1−p n−1, 则p n =p n−1×0+(1−p n−1)×12=−12p n−1+12, 即p n −13=−12(p n−1−13),又p 1−13=23, 所以{p n −13}是以23为首项,公比为−12的等比数列. ②由 ①可知p n =23(−12)n−1+13,所以p 10=23(−12)9+13<13, 所以q 10=12(1−p 10)=12[23−23(−12)9]>13,故p 10<q 10.4.解:(1)解:设选出的3种商品中至少有一种是家电为事件A ,从2种服装、3种家电、4种日用品中,选出3种商品,一共有C 93种不同的选法,选出的3种商品中,没有家电的选法有C 63种,所以选出的3种商品中至少有一种是家电的概率为P(A)=1−C 63C 93=1−521=1621;(2)解:设顾客三次抽奖所获得的奖金总额为随机变量ξ,其所有可能取值为0,n ,3n ,6n;(单元:元)ξ=0表示顾客在三次抽奖都没有获奖,所以P(ξ=0)=C 30(14)0(1−14)3=2764, 同理P(ξ=n)=C 31(141(1−14)2=2764,P(ξ=3n)=C 32(14)2(1−14)=964,P(ξ=6n)=C 33(14)3(1−14)0=164;顾客在三次抽奖中所获得的奖金总额的期望值是E(ξ)=0×2764+n ×2764+3n ×964+6n ×164=15n16, 由15n16≤60,解得n ≤64,所以n 最高定为64元,才能使促销方案对商场有利.5.解:(1)P =1−C 62C 102=1−1545=23,即该顾客中奖的概率为23.(2)X 的所有可能值为:0,10,20,50,60. 且P(X =0)=C 62C 102=13,P(X =10)=C 31C 61C 102=25, P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115. 故X 的概率分布列为:6.解:(1)一机床生产了100个汽车零件,其中有40个一等品、50个合格品、10个次品,从中随机地抽出4个零件作为样本.用X 表示样本中一等品的个数.若有放回地抽取,X ~B(4,25),∴P(X =0)=C 40(35)4=81625, P(X =1)=C 41(25)(35)3=216625,P(X =2)=C 42(25)2(35)2=216625, P(X =3)=C 43(25)3(35)=96625,P(X =4)=C 44(25)4=16625,∴X 的分布列为:(2)对于不放回抽取,各次试验结果不独立,X 服从超几何分布,样本中一等品的比例为X4,而总体中一等品的比例为40100=0.4,①|X4−0.4|≤0.2,解得0.8≤X≤2.4,所以X=1或X=2,②P(|X4−0.4|≤0.2)=P(X=1)+P(X=2)=C401C603+C402C602C1004.。
高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列一、单选题1.已知离散型随机变量X 的概率分布列如下:则实数a 等于( ) A .0.6B .0.7C .0.1D .0.42.已知随机变量X 的分布列是则P(X>1)=( ) A .23B .32C .1D .343.随机变量X 的分布列为()15kP X k ==,1k =,2,3,4,5,则(3)P X <=( ) A .15B .13C .12D .234.随机变量X 的分布列如下表所示:则()2P X ≤=( ) A .0.1B .0.2C .0.3D .0.45.若随机变量η的分布列如表:则()1P η≤=( ) A .0.5B .0.2C .0.4D .0.36.从装有2个白球、3个黑球的袋中任取2个小球,下列可以作为随机变量的是( ) A .至多取到1个黑球 B .至少取到1个白球 C .取到白球的个数D .取到的球的个数7.已知离散型随机变量X 的分布列如表:则实数c 等于( ) A .0.2B .0.3C .0.6D .0.78.若随机变量X 的分布列如下表所示,则a 的值为( )A .0.1B .0.2C .0.3D .0.49.设随机变量x 的分布列为()(),2,3,4,51===-kP X m m m m ,其中k 为常数,则()2log 3log P X 3<<80的值为( )A .23B .34C .45D .5610.随机变量X 所有可能取值的集合是{}2,0,3,5-,且()()()1112,3,54212P X P X P X =-=====,则()14P X -<<的值为( )A .13B .12C .23D .3411.若随机变量X 的分布列如下表,则(3)P X ≥=( )A .14B .13C .34D .11212.口袋中有5个球,编号为1,2,3,4,5,从中任意取出3个球,用X 表示取出球的最小号码,则X 的取值为( ) A .1B .1,2C .1,2,3D .1,2,3,4二、填空题13.若随机变量ξ的分布列为则a =__________.14.设随机变量ξ的分布列为()(1)C P k k k ξ==+,1,2,3k =,其中C 为常数,则1522P ξ⎛⎫<<=⎪⎝⎭__________.15.设随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,C 为常数,则()3P X <=____.16.一串5把外形相似的钥匙,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为__________. 三、解答题17.在10件产品中,有8件合格品,2件次品,从这10件产品中任意抽取2件,试求: (1)取到的次品数的分布列; (2)至少取到1件次品的概率.18.某闯关游戏分为初赛和复赛两个阶段,甲、乙两人参加该闯关游戏.初赛分为三关,每关都必须参与,甲通过每关的概率均为23,乙通过每关的概率依次为311,,.423初赛三关至少通过两关才能够参加复赛,否则直接淘汰;在复赛中,甲、乙过关的概率分别为1,314.若初赛和复赛都通过,则闯关成功.甲、乙两人各关通过与否互不影响. (1)求乙在初赛阶段被淘汰的概率;(2)记甲本次闯关游戏通过的关数为X ,求X 的分布列; (3)试通过概率计算,判断甲、乙两人谁更有可能闯关成功.19.在一个不透明的盒中,装有大小,质地相同的两个小球,其中一个是黑色,一个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多2分或取满6次时游戏结束,并且只有当一人比另一人多2分时,得分高者才能获得游戏奖品.(1)求甲获得游戏奖品的概率;(2)设X表示游戏结束时所进行的取球次数,求X的分布列及数学期望.20.某校高二年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成,比赛中每人投篮1次、每个人之间投篮都是相互独立的.已知女生投篮命中的概率均为13,男生投篮命中的概率均为23.(1)求小组共投中2次的概率;(2)若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X表示小组总分,求随机变量X的分布列及数学期望.21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白球与黄球各3个,红球与绿球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:(1)只能一个人摸球;(2)摸出的球不放回;(3)摸球的人先从袋中摸出1球:①若摸出的是绿球,则再从袋子里摸出2个球;②若摸出的不是绿球,则再从袋子里摸出3个球.他的得分为两次摸出的球的记分之和;(4)剩下的球归对方,得分为剩下的球的记分之和.(Ⅰ)若甲第一次摸出了绿球,求甲的得分不低于乙的得分的概率;(Ⅱ)如果乙先摸出了红球,求乙得分X的分布列.22.袋中有4个红球,()14,n n n N ≤≤∈个黑球,若从袋中任取3个球,恰好取出3个红球的概率为435. (1)求n 的值.(2)若从袋中任取3个球,取出一个红球得1分,取出一个黑球得3分,记取出的3个球的总得分为随机变量X ,求随机变量X 的分布列.参考答案1.D 【分析】利用分布列的性质,求a 的值. 【详解】据题意得0.20.30.11a +++=,所以0.4a =. 故选:D 2.A 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案. 【详解】根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=,所以()()()21=233P X P X P X a b >=+==+=,故选:A. 3.A 【分析】根据互斥事件的概率公式计算. 【详解】()()1231(3)121515155P X P X P X <==+==+==, 故选:A . 4.C 【分析】利用分布列的性质求出m 的值,然后由概率的分布列求解概率即可. 【详解】解:由分布列的性质可得,0.10.321m m +++=,可得0.2m =,所以(2)(1)(2)0.10.20.3P X P X P X ==+==+=. 故选:C . 5.C 【分析】利用分布列可求得()1P η≤的值. 【详解】由分布列可得()()()()11010.10.10.20.4P P P P ηηηη≤==-+=+==++=. 故选:C. 6.C 【分析】根据随机变量的定义,判断选项. 【详解】根据随机变量的定义可知,随机变量的结果都可以数量化,不确定的,由实验结果决定,满足条件的只有C ,取到白球的个数,可以是0,1,2. 故选:C 7.B 【分析】根据概率之和等于1,得0.10.240.361c +++=,解方程即可求出结果. 【详解】据题意,得0.10.240.361c +++=,解得0.3c =. 故选:B. 8.B 【分析】由概率和为1可得a 值. 【详解】由题意0.231a a ++=,解得0.2a =. 故选:B . 9.D 【分析】首先利用分布列中概率之和等于1求得k 的值,再计算()()23P X P X =+=即可求解. 【详解】由分布列的性质可知:()()()()23451P X P X P X P X =+=+=+==, 即12324354k k k k+++=⨯⨯⨯,解得:54k =,所以()5228k P X ===,()53624k P X ===, ()541248k P X ===,()152016k P X ===, 所以()()()2555log 3log 238246P X P X P X 3<<80==+==+=, 故选:D. 10.C 【分析】 先求得1(0)6P X ==,再由(14)(0)(3)P X P X P X -<<==+=可得结果. 【详解】依题意可得1111(0)1(2)(3)(5)142126P X P X P X P X ==-=--=-==---=,所以112(14)(0)(3)623P X P X P X -<<==+==+=. 故选:C. 11.A 【分析】分布列中概率之和等于1可得x 的值,再计算(3)(3)(4)3P X P X P X x ≥==+==即可. 【详解】由分布列中概率的性质可知:3621x x x x +++=,可得:112x =, 所以1(3)(3)(4)34P X P X P X x ≥==+=== 故选:A. 12.C 【分析】根据题意写出随机变量的可能取值. 【详解】根据条件可知任意取出3个球,最小号码可能是1,2,3. 故选:C 13.0.25 【分析】根据概率之和等于1,即可求得答案. 【详解】解因为0.20.31,a a +++= 所以0.25a =. 故答案为:0.25. 14.89【分析】根据分布列的性质求出C ,即可解出. 【详解】因为111311223344C C ⎛⎫=⋅++= ⎪⨯⨯⨯⎝⎭.故43C =,所以15228(1)(2)22399P P P ξ⎛⎫<<=+=+= ⎪⎝⎭.故答案为:89.15.89【分析】首先根据概率和为1可得c 的值,再由()()()312P X P X P X <==+=即可得结果. 【详解】随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,∴ 16122c c c ++=,即62 112c c c ++=,解得43c =, ∴()()()41183123269P X P X P X ⎛⎫<==+==+= ⎪⎝⎭,故答案为:89.16.4 【分析】结合题意找出试验次数X 最大的情况即可. 【详解】由题意可知,前4次都打不开锁,最后一把钥匙一定能打开锁, 故试验次数X 的最大可能取值为4. 故答案为:4.17.(1)分布列见解析;(2)1745【分析】(1)记取到的次品数为X ,则X 的可能值为0,1,2,分别计算概率,可得X 的分布列; (2)由(1)根据互斥事件的概率公式可得(1)(2)P P X P X ==+=; 【详解】解:(1)从这10件产品中任意抽取2件,共21045C =种情况;记取到的次品数为X ,取到的次品数X 值可能为0,1,2,其中282102(0845)C P X C ===;121821016(1)45C C P X C ===;222101)5(24C P X C ===;∴取到的次品数X 的分布列为:(2)由(1)得:至少取到1件次品的概率17(1)(2)45P P X P X ==+==. 18.(1)1124;(2)答案见解析;(3)甲更有可能闯关成功. 【分析】(1)乙初赛被淘汰的事件是乙初赛三关都没过的事件与恰过一关的事件和,再利用概率加法公式计算而得;(2)写出X 的可能值,计算出对应的概率即可得解; (3)分别计算出甲、乙闯关成功的概率即可作答. 【详解】(1)若乙初赛三关一关都没有通过或只通过一个,则被淘汰,于是得乙在初赛阶段被淘汰的概率:1121113121121142342342342324P =⋅⋅+⋅⋅+⋅⋅+⋅⋅=; (2)X 的可能取值为0,1,2,3,4,()3110()327P X ===,()1232121()339P X C ==⋅⋅=,()22321282()33327P X C ==⋅⋅⋅=,()322322211283()()3333381P X C ==⋅+⋅⋅⋅=,()32184()3381P X ==⋅=则X 的分布列为:(3)甲闯关成功的概率32232121120()()33333811P C =⋅+⋅⋅⋅=, 乙闯关成功的事件是初赛不被淘汰和复赛过关的事件积,而这两个事件相互独立,其概率22411113(1)496P =-⋅=, 显然有12P P >,所以甲更有可能闯关成功. 19.(1)716;(2)分布列见解析;期望为72.【分析】(1)甲获得游戏奖品有3种情况:①共取球2次,即第1次和第2次甲都取到白球,从而甲获奖的概为1122⨯;②共取球4次,即第4次取到白球,第3次取到白球,第1次和第2次有一次取到白球,从而甲获奖的概为4122⎛⎫⨯ ⎪⎝⎭;③共取球6次,即第6次为白球,第5次取白球,若第4次取白球,则第3次取黑球,第1,2次中有1次取白球;若第4次取黑球,则第3次白球,第1,2次有一次取白球,从而甲获奖的概为6142⎛⎫⨯ ⎪⎝⎭,再由互斥事件的概率公式可得答案;(2)由(1)的求解中可知,X 可能取2,4,6,用(1)的方法先分别求出X 等于2,4的概率,从而可得X 为6的概率,然后列出分布列即可,然后根据期望的概念求出结果即可.【详解】解:(1)设甲获得游戏奖品为事件A ,()641111724212226P A ⎛⎫=⨯+⨯+⨯= ⎪⎛⎫⎪⎝⎭⎝⎭.所以甲获得游戏奖品的概率为716(2)X 的可能取值为2,4,6, ()11122222P X ==⨯⨯=()41142224P X ⎛⎫==⨯⨯= ⎪⎝⎭,()()()161244P X P X P X ==-=-==. X 的分布列为11172462442EX =⨯+⨯+⨯=20.(1)13;(2)分布列见解析;期望为409.【分析】(1)小组投中两次分为两种情况,两次都是女生投中,和一次男生一次女生投中,从而求得概率;(2)根据题意,X 的可能取值为-60,10,20,30,分别求得各取值对应的概率,列出分布列,求得期望. 【详解】解:(1)一个小组共投中2次的概率 2122211212911133333273P C C ⎛⎫⎛⎫⎛⎫=⋅-⋅+⋅-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)X 的可能取值为-60,10,20,30, 2214(60)113327P X ⎛⎫⎛⎫=-=--= ⎪⎪⎝⎭⎝⎭, ()212212111241011133333279P X C ⎛⎫⎛⎫⎛⎫==-+--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2122112191(20)1133333273P X C ⎛⎫⎛⎫⎛⎫==-+-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2212(30)3327P X ⎛⎫===⎪⎝⎭, X 的分布列为所以441212040()(60)102030279327279E X =-⨯+⨯+⨯+⨯==. 21.(Ⅰ)37,(Ⅱ)分布列见解析.【分析】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,由此可求得概率.(Ⅱ)如果乙先摸出了红球,得3分,则还可以从袋子中摸3个球,那么得分情况有:6分,7分,8分,9分,10分,11分.分别计算概率后可得分布列. 【详解】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,所以112163273()7C C C P A C +==; (Ⅱ)如果乙先摸出了红球,则还可以从袋子中摸3个球,得分情况有:6分,7分,8分,9分,10分,11分.33371(6)35C P C ξ===,2133379(7)35C C P C ξ===;1233379(8)35C C P C ξ===;213313374(9)35C C C P C ξ+===;111331379(10)35C C C P C ξ===; 2131373(11)35C C P C ξ===.ξ的分布列如下:22.(1)3;(2)详见解析. 【分析】(1)依题意得3434C 4C 35n +=,解方程可得结果;(2)X 的可能取值为3,5,7,9,求出相应的概率可得结果. 【详解】(1)依题意得3434C 4C 35n +=,又14n ≤≤,所以3n =;(2)X 的可能取值为3,5,7,9,3X =即取出的3个球都是红球,则()3437C 43C 35P X ===; 5X =即取出的3个球中2个红球1个黑球,则()214337C C 185C 35P X ===; 7X =即取出的3个球中1个红球2个黑球,则()124337C C 127C 35P X ===;9X =即取出的3个球都是黑球,则()3337C 19C 35P X ===. 所以,随机变量X 的分布列为。
概率与离散型随机变量的分布列试题

【概率与离散型随机变量的分布列试题】1. 一次投掷两颗骰子,求出现的点数之和为奇数的概率。
2. 一个自动报警器由雷达和计算机两个部分组成,两部分有任何一个失灵,这个报警器就失灵。
若使用100小时后,雷达部分失灵的概率为0.1,计算机失灵的概率为0.3,若两部分失灵与否是的,求这个报警器使用100小时而不失灵的概率。
3. 对同一目标进行3次射击,第1、第2、第3次射击的命中概率分别为0.4、0.5、0.7,求:(1)在这3次射击中,恰好有1次击中目标的概率; (2)在这3次射击中,至少有1次击中目标的概率。
4. 已知A 、B 、C 为三个相互事件,若事件A 发生的概率为21,事件B 发生的概率为32,事件C 发生的概率为43,求下列事件的概率: (1)事件A 、B 、C 都不发生; (2)事件A 、B 、C 不都发生;(3)事件A 发生且B 、C 恰好发生一个5. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,已知每一局甲获胜的概率为0.6,乙获胜的概率为0.4。
(1)赛满3局,甲胜2局的概率是多少?(2)若比赛采用三局二胜制,先赢两局为胜,求甲获胜的概率。
6. 某种项目的射击比赛规则是:开始时在距目标100m 处射击,如果命中记3分,同时停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m 远处,这时命中记2分,同时停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m 远处,若第三次命中则记1分,同时停止射击;若三次都未命中,则记0分,已知射手甲在100m 处击中目标的概率为12,他命中目标的概率与目标的距离的平方成反比,且各次射击都是的。
(1)求射手甲在200m 处命中目标的概率;(2)设射手甲得k 分的概率为P 0,求P 3,P 2,P 1,P 0的值; (3)求射手甲在三次射击中击中目标的概率。
7. 袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取出4个球。
北师大版数学【选修2-3】练习:2.1 离散型随机变量及其分布列(含答案)

第二章 §1一、选择题1.若随机变量X 的分布列如下表所示,则表中a =( )A.12 B.16 C.56 D .0[答案] B[解析] 根据随机变量的分布列的性质可得a =1-12-16-16=16.2.离散型随机变量ξ所有可能值的集合为{-2,0,3,5},且P (ξ=-2)=14,P (ξ=3)=12,P (ξ=5)=112,则P (ξ=0)的值为( )A .0 B.14 C.16 D.18 [答案] C[解析] 根据离散型随机变量分布列的性质有P (ξ=-2)+P (ξ=0)+P (ξ=3)+P (ξ=5)=1,所以14+P (ξ=0)+12+112=1.解得P (ξ=0)=16.3.随机变量ξ的概率分布规律为P (ξ=n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<ξ<52)的值为( )A.23B.34C.45D.56 [答案] D[解析] 因为P (ξ=n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,因为P (12<ξ<52)=P (ξ=1)+P (ξ=2)=54×12+54×16=56.故选D.4.设随机变量ξ的可能取值为5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ>8)=________,P (6<ξ≤14)=________.[答案] 23 23[解析] 因为P (ξ=5)+P (ξ=6)+…+P (ξ=16)=1,且P (ξ=5)=P (ξ=6)=…=P (ξ=16),所以P (ξ=5)=P (ξ=6)=…=P (ξ=16)=112,则P (ξ>8)=P (ξ=9)+P (ξ=10)+…+P (ξ=16)=112×8=23.P (6<ξ≤14)=p (ξ=7)+P (ξ=8)+…+P (ξ=14)=112×8=23.5.设随机变量ξ的分布列为则m =________,η=ξ[答案] 14[解析] 首先由P (ξ=1)+P (ξ=2)+P (ξ=3)+P (ξ=4)=1,得m =14.再由随机变量ξ和η=ξ-3表示的试验结果是相同的,可以求出η=ξ-3对应的概率,列出分布列.三、解答题6.旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条线路. (1)求3个旅游团选择3个不同线路的概率; (2)求选择甲线路的旅游团数的分布列.[解析] (1)3个旅游团选择3条不同线路的概率为A 3443=38.(2)设选择甲线路的旅游团数为ξ,则ξ=0,1,2,3.P (ξ=0)=3343=2764,P (ξ=1)=C 13·3243=2764,P (ξ=2)=C 23·343=964,P (ξ=3)=C 3343=164.所以ξ的分布列为1.已知离散型随机变量X 的分布列为则k 的值为( ) A.12 B .1 C .2 D .3[答案] B[解析] 由分布列的性质可知nkn=1,∴k =1.2.设离散型随机变量X 的分布列P (X =k )=k 15,k =1,2,3,4,5,则P (12<X <52)等于( )A.12 B.19 C.16 D.15[答案] D[解析] P (12<X <52)=P (X =1)+P (X =2)=115+215=15.3.某人练习射击,共有5发子弹,击中目标或子弹打完则停止射击,射击次数为X ,则“X =5”表示的试验结果为( )A .第5次击中目标B .第5次未击中目标C .前4次均未击中目标D .前5次均未击中目标[答案] C[解析] 本题易错选为A ,其实“X =5”只能说明前4次均未击中目标,而第5次射击有可能击中目标,也有可能子弹打完而未击中目标.4.设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,P (ξ=0)等于( )A .0 B.12 C.13 D.23[答案] C[解析] 设ξ的分布列为则“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p ,则成功率为2p . ∴由p +2p =1得p =13.应选C.5.设X 是一个离散型随机变量,则下列不能够成为X 的概率分布列的一组数是( ) A .0,0,0,1,0 B .0.1,0.2,0.3,0.4 C .p,1-p (p 为实数)D.11×2,12×3,…,1(n -1)·n ,1n (n ∈N +) [答案] C[解析] 随机变量的分布列具有两个性质:①非负性;②概率之和为1.可以根据这两个性质解决.A 、B 显然满足性质,适合.C 中,设p =3,显然1-p =-2<0不满足非负性.D 中有11×2+12×3+…+1(n -1)·n +1n=1-12+12-13+…+1n -1-1n +1n =1,故选C.[点评] 在处理随机变量分布列的有关问题时,应充分利用分布列的性质求解. 二、填空题6.已知离散型随机变量X 的概率分布列如下:则m 的值为________[答案] 0.1[解析] 由分布列的性质(2),可得m +0.3+32m +0.45=1,解得m =0.1.[点评] 根据概率分布求参数的值(范围),是离散型随机变量的分布列的性质的重要应用之一,主要是根据分布列的性质列出方程,通过解方程求出参数即可.7.设随机变量ξ的分布列为P (ξ=k )=ck (k +1)(c 为常数),k =1,2,3,则P (0.5<ξ<2.5)=________.[答案] 89[解析] 由P (ξ=1)+P (ξ=2)+P (ξ=3)=1,得c =43,P (0.5<ξ<2.5)=1-P (ξ=3)=1-433×4=89. 三、解答题8.设随机变量X 的分布列为P (X =k5)=ak ,(k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)P (110<X <710).[分析] 分布列有两条重要的性质:P i ≥0,i =1,2,…;P 1+P 2+…+P n =1利用这两条性质可求a 的值.(2)(3)由于X 的可能取值为15、25、35、45、1.所以满足X ≥35或110<X <710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次实验中没有联系,只要求得满足条件各概率之和即可.[解析] (1)由a ·1+a ·2+a ·3+a ·4+a ·5=1得a =115.(2)因为分布列为P (X =k 5)=115k (k =1、2、3、4、5)解法一:P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.解法二:P (X ≥35)=1-[P (X =15)+P (X =25)]=1-[115+215]=45.(3)因为110<X <710,只有X =15、25、35时满足,故P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25. [点评] 随机变量并不一定要取整数值.它的取值一般来源于实际问题,且有其特定的含义,因此,可以是R 中的任意值.但这并不意味着可以取任何值.它只能取分布列中的值.而随机变量取某值时,其所表示的某一实验发生的概率值,必须符合性质.9.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0的实根的个数(重根按一个计),求X 的分布列.[分析] 用随机变量X 表示方程x 2+bx +c =0的实根的个数,易知X 有0,1,2三个可能取值,随机变量对应的随机事件可用Δ=b 2-4c 与0的大小表示.[解析] 由题意,X 的可能取值为0,1,2.随机试验的所有可能结果构成的集合为{(b ,c )|b ,c =1,2,…,6},元素总个数为36.X =0对应的结果构成的集合为{(b ,c )|b 2-4c <0,b ,c =1,2,…,6},元素个数为17; X =1对应的结果构成的集合为{(b ,c )|b 2-4c =0,b ,c =1,2,…,6},元素个数为2; X =2对应的结果构成的集合为{(b ,c )|b 2-4c >0,b ,c =1,2,…,6},元素个数为17. 由此可知,P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为[点评] 验的所有基本事件数以及随机事件所包含的基本事件数.比如方程实根个数为1,则Δ=0,利用它找到骰子之间的关系.10.(2014·福州模拟)某学院为了调查本校学生2014年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0,1,2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:。
数学选修2-3离散型随机变量及其分布列练习题含答案

数学选修2-3离散型随机变量及其分布列练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 已知离散型随机变量X的分布列如右表,则常数q的值为()A.−1B.1C.13D.122. (1)某机场候机室中一天的游客数量为ξ;(2)某寻呼台一天内收到的寻呼次数为ξ;(3)某水文站观察到一天中长江水位为ξ;(4)某立交桥一天经过的车辆数为ξ,则()不是离散型随机变量.A.(1)中的ξB.(2)中的ξC.(3)中的ξD.(4)中的ξ3.设随机变量X的概率分布列如下:则P(X<4)=( )A.0.15B.0.3C.0.65D.0.54. 已知随机变量X的分布列如图,则p的值为()A.1 4B.12C.34D.15. 随机变量X的分布列如下,则m等于()A.1 3B.12C.16D.146. 设随机变量ξ的分布列为P(ξ=k)=m(23)k,k=1,2,3,则m的值是()A.17 36B.2738C.1719D.27197. 随机变量ξ的分布列为P(ξ=k)=ck(1+k),k=1,2,3,其中c为常数,则P(ξ≥2)等于()A.89B.23C.13D.298. 一个袋中有形状大小完全相同的3个白球和4个红球,从中任意摸出两个球,用0表示两个球都是白球,用1表示两个球不全是白球,则满足条件X的分布列为.A.B.C.9. 已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则()A.a=0.3,b=0.2B.a=0.2,b=0.3C.a=0.4,b=0.1D.a=0.1,b=0.410. 已知离散型随机变量X的分布列为则X的数学期望E(x)=()A.3 2B.2C.52D.311. 设随机变量X的概率分布列为则P(|X−3|=1)=()A.7 12B.512C.14D.1612. 备注:试题题型错误。
A.PB.13C.aD.b若E(X)=1,则E(aX+b)=13. 已知离散型随机变量X的分布列为14. 已知随机变量ξ的分布列为:则m=________.15.设离散型随机变量X的概率分布如下:则a的值为________.16. 已知随机变量X的分布列为:.17. 某市对该市小微企业资金短缺情况统计如下表:(1)试估计该市小微企业资金缺额的平均值;(2)某银行为更好的支持小微企业健康发展,从其第一批注资的A行业4家小微企业和B行业的3家小微企业中随机选取4家小微企业,进行跟踪调研.设选取的4家小微企业中是B行业的小微企业的个数为随机变量ξ,求ξ的分布列.18. 某射手每次射击击中目标的概率是2,且各次射击的结果互不影响.3假设这名射手射击5次,求恰有2次击中目标的概率;假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.19. 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中:①摸出3个白球的概率;②获奖的概率;(2)求在2次游戏中获奖次数X的分布列.20. 某市9月份空气质量为:9天良、12天轻度污染、6天中度污染、3天重度污染.若9月份的重度污染都发生在一个星期内,且这个星期只有一天是轻度污染,其余三天空气质量好坏是随机的,求评级为良的天数X的分布列.21. 将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.22. 某校对数学、物理两科进行学业水平考前辅导,辅导后进行测试,按照成绩(满分均为100分)划分为合格(成绩大于或等于70分)和不合格(成绩小于70分).现随机抽取两科各100名学生的成绩统计如下:(1)试分别估计该校学生数学、物理合格的概率;(2)设数学合格一人可以赢得4小时机器人操作时间,不合格一人则减少1小时机器人操作时间;物理合格一人可以赢得5小时机器人操作时间,不合格一人则减少2小时机器人操作时间.在(1)的前提下,(I)记X为数学一人和物理一人共同赢得的机器人操作时间(单位:小时)总和,求随机变量X的分布列和数学期望;(II)随机抽取4名学生,求这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率.参考答案与试题解析数学选修2-3离散型随机变量及其分布列练习题含答案一、选择题(本题共计 12 小题,每题 3 分,共计36分)1.【答案】D【考点】离散型随机变量及其分布列【解析】利用概率的基本性质即可得出.【解答】解:由概率的规范性可得:12+q2+q2=1,化为2q2+q−1=0,又q≥0,解得q=12.故选D.2.【答案】C【考点】离散型随机变量及其分布列【解析】根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,分析题干的四个变量可得,(1)(2)(4)中的ξ,都可以一一列举,是离散型随机变量;(3)中的ξ,水文站观察到一天中长江水位即ξ的值是连续的,无法按一定次序一一列出,不符合定义,不是离散型随机变量;即可得答案.【解答】解:根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出;分析题干的四个变量可得(1)中的ξ,符合定义,是离散型随机变量;(2)中的ξ,符合定义,是离散型随机变量;(3)中的ξ,水文站观察到一天中长江水位即ξ的值是连续的,无法按一定次序一一列出,不符合定义,不是离散型随机变量;(4)中的ξ,符合定义,是离散型随机变量;故选C.3.【答案】D【考点】离散型随机变量及其分布列【解析】此题暂无解析【解答】解:由题意知:P(X<4)=0.3+0.2=0.5.4.【答案】B【考点】离散型随机变量及其分布列【解析】利用概率的性质,建立方程,即可求得p的值.【解答】解:由题意,14+p+14=1∴p=12故选B.5.【答案】D【考点】离散型随机变量及其分布列【解析】此题暂无解析【解答】由概率和为1,求解得m=14.6.【答案】B【考点】离散型随机变量及其分布列【解析】先根据所给的随机变量ξ的分布列,写出各个变量对应的概率,然后根据分布列中各个概率之和是1,把所有的概率表示出来相加等于1,得到关于m的方程,解方程求得m 的值.【解答】解:∵随机变量ξ的分布列为P(ξ=k)=m(23)k,k=1,2,3∴P(ξ=1)=2m3,P(ξ=2)=4m9,P(ξ=3)=8m27,∵2m3+4m9+8m27=1,∴m=2738,故选B.7.【答案】C离散型随机变量及其分布列 【解析】先根据分布列中所有的概率和为1求出参数c ,再判断出满足 条件的ξ≥2的值,代入分布列求出值. 【解答】解:根据分布列中所有的概率和为1,得c1×2+c2×3+c3×4=1, 解得c =43∴ P(ξ=k)=431k(1+k)∴ P(ξ≥2)=P(ξ=2)+P(ξ=3)=43(12×3+13×4)=13故选C . 8.【答案】 A【考点】离散型随机变量及其分布列 【解析】先计算P(x =0),即从7个球中任意摸出两个球,取到两个白球的概率,利用古典概型概率的计算方法,先求总的基本事件数,再求所研究事件包含的基本事件数,即可得其概率,最后利用排除法即可得正确选项 【解答】解:从7个球中任意摸出两个球,共有c 72=21种取法摸出的俩个球都是白球,共有c 32=3种取法 故P(x =0)=321=17故选A 9. 【答案】 A【考点】离散型随机变量及其分布列 【解析】利用概率的和为1,以及期望求出a 、b ,即可. 【解答】解:由表格可知:0.4+a +b +0.1=1, 又EX =6,可得:2+6a +7b +0.8=6, 解得b =0.2,a =0.3, 故选:A . 10.【答案】 A【考点】离散型随机变量及其分布列 【解析】在离散型随机变量X的分布列中,随机变量各个取值的概率和等于1,本题可利用该性质求a,再利用期望计算公式求期望.【解答】解:因为a=1−35−110=310,所以E(x)=1×35+2×310+3×110=32,故选:A.11.【答案】B【考点】离散型随机变量及其分布列【解析】利用概率分布的定义得出:13+m+14+16=1,求出m,得出分布列,判断P(|X−3|=1)=P(4)+P(2),求解即可.【解答】解:根据概率分布的定义得出:13+m+14+16=1.得m=14,随机变量X的概率分布列为∴P(|X−3|=1)=P(4)+P(2)=512故选:B.12.【答案】A【考点】离散型随机变量及其分布列【解析】本题考查期望的算法和超几何分布等.【解答】解:由题可得:E(x)=a+2b=1a+b=2 3∴ a=13b=13E(ax+b)=aE(x)+b=13×1+13=23故答案为23.故选A.二、填空题(本题共计 4 小题,每题 3 分,共计12分)13.【答案】1−√2 2【考点】离散型随机变量及其分布列【解析】由分布列的性质可得0.5+1−2q+q2=1,解得q的值.【解答】解:由分布列的性质可得0.5+1−2q+q2=1,解得q=1+√22(舍去),或q=1−√22.故答案为:1−√22.14.【答案】13【考点】离散型随机变量及其分布列【解析】欲求出m值,只要利用分布列的性质:概率之和为1,列式14+13+m+112=1,即可求得.【解答】解:由分布列性质得:1 4+13+m+112=1,∴m=13.故答案为:13.15.【答案】13【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的分布列的性质求解.【解答】解:由离散型随机变量ξ的分布列,知:1 6+13+16+a=1,解得a=13.故答案为:13.16.【答案】512【考点】离散型随机变量及其分布列【解析】根据随机变量取各个值的概率之和等于1,求得m的值,再根据本题即求X=3和X=4的概率之和,利用X的分布列求得X=3和X=4的概率之和.【解答】解:根据概率分布列的性质可得13+m+14+16=1,解得m=14.故有P(|X−3|=1)=P(X=2,或X=4)=14+16=512,故答案为512.三、解答题(本题共计 6 小题,每题 10 分,共计60分)17.【答案】(1)解:由统计表得:该市小微企业资金缺额的平均值x¯=10×0.05+30×0.1+50×0.35+70×0.3+90×0.2=60(万元).−−−−−4分(2)由题设ξ的所有可能取值为0,1,2,3,P(ξ=0)=C44C74=135,P(ξ=1)=C43C31C74=1235,P(ξ=2)=C42C32C74=1835,P(ξ=3)=C41C33C74=435,所以ξ的分布列为−−−−−−13分.【考点】离散型随机变量及其分布列【解析】(1)利用统计表中的数据,结合平均数计算公式能求了该市小微企业资金缺额的平均值.(2)由题设知ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列.【解答】(1)解:由统计表得:该市小微企业资金缺额的平均值x ¯=10×0.05+30×0.1+50×0.35+70×0.3+90×0.2=60(万元).−−−−−4分(2)由题设ξ的所有可能取值为0,1,2,3, P(ξ=0)=C 44C 74=135,P(ξ=1)=C 43C 31C 74=1235,P(ξ=2)=C 42C 32C 74=1835, P(ξ=3)=C 41C 33C 74=435,所以ξ的分布列为−−−−−−13分.18. 【答案】解 设X 为射手在5次射击中击中目标的次数,则X ∼B (5,23).在5次射击中,恰有2次击中目标的概率为P (X =2)=C 52×(23)2×(1−23)3=40243. 设“第i 次射击击中目标”为事件A i (i =1,2,3). 由题意可知,ξ的所有可能取值为0,1,2,3,6. P (ξ=0)=P (A 1¯A 2¯A 3¯)=(13)3=127;P(ξ=1)=P(A 1A 2¯A 3¯)+P(A 1¯A 2A 3¯)+P(A 1¯A 2¯A 3)=23×(13)2+13×23×13+(13)2×23=29;P (ξ=2)=P (A 1A 2¯A 3)=23×13×23=427;P(ξ=3)=P(A 1A 2A 3¯)+P(A 1¯A 2A 3)=(23)2×13+13×(23)2=827; P (ξ=6)=P (A 1A 2A 3)=(23)3=827. 所以ξ的分布列是注意:解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 53(23)3×(13)2=80243这一错误结果.【考点】离散型随机变量及其分布列 【解析】 此题暂无解析 【解答】 略 略 19.【答案】解:(1)①设“在1次游戏中摸到i 个白球”为事件A i (i =0, 1, 2, 3), 则P(A 3)=C 32⋅C 21C 52⋅C 32=15;②设“在一次游戏中获奖”为事件B ,则B =A 2∪A 3,又P(A 2)=C 32C 52⋅C 22C 32+C 31⋅C 21C 52⋅C 21C 32=12,且A 2、A 3互斥,所以P(B)=P(A 2)+P(A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2. P(X =0)=(1−710)2=9100,P(X =1)=C 21710(1−710)=2150, P(X =2)=(710)2=49100,所以X 的分布列是:离散型随机变量及其分布列 【解析】(2)确定在3次游戏中获奖次数X 的取值是0、1、2、3,求出相应的概率,即可写出分布列. 【解答】解:(1)①设“在1次游戏中摸到i 个白球”为事件A i (i =0, 1, 2, 3),则P(A 3)=C 32⋅C 21C 52⋅C 32=15;②设“在一次游戏中获奖”为事件B ,则B =A 2∪A 3, 又P(A 2)=C 32C 52⋅C 22C 32+C 31⋅C 21C 52⋅C 21C 32=12,且A 2、A 3互斥,所以P(B)=P(A 2)+P(A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P(X =0)=(1−710)2=9100,P(X =1)=C 21710(1−710)=2150,P(X =2)=(710)2=49100,所以X 的分布列是:【答案】解:把30天的天气看成是30个可能事件,由题意已经去掉了15个可能事件(3天重度可能,12天轻度污染可能)所以要解决原题,即从剩下的15种天气可能中(包含9个“良”的可能以及其余6个“非良”的可能)随机取出3个,求为“良”的个数X 的分布列问题. 易知X 的所有可能取值为:0,1,2,3, 则P(X =0)=C 63C 153=491;P(X =1)=C 62C 91C 153=2791; P(X =2)=C 61C 92C 153=216455;P(x =3)=C 93C 153=84455.故X 的分布列为:.【考点】离散型随机变量及其分布列 【解析】虽然是一共有30个各种天气可能结果,但由题意已经先把3种重度污染结果去掉,再去掉12种轻度污染结果,然后从剩下的15种天气结果随机选出三种,求选到的为“良”的可能数X 的分布列的问题,此时就剩15种天气结果,由研究的问题可以看成两种情况:9个“良”的可能,6个“非良”的可能,则借助于组合数公式,容易算出当良的个数分别为0,1,2,3时的概率,则分布列迎刃而解. 【解答】解:把30天的天气看成是30个可能事件,由题意已经去掉了15个可能事件(3天重度可能,12天轻度污染可能)所以要解决原题,即从剩下的15种天气可能中(包含9个“良”的可能以及其余6个“非良”的可能)随机取出3个,求为“良”的个数X 的分布列问题. 易知X 的所有可能取值为:0,1,2,3, 则P(X =0)=C 63C 153=491;P(X =1)=C 62C 91C 153=2791; P(X =2)=C 61C 92C 153=216455;P(x =3)=C 93C 153=84455.故X 的分布列为:.21.【答案】解:由题意知变量ξ的可能取值是1,2,3, P(ξ=1)=C 3134=127, P(ξ=2)=C 32(2C 41+C 42)34=1427,P(ξ=3)=C 42A 3334=1227,∴ ξ的分布列是【考点】离散型随机变量及其分布列 【解析】根据题意得到变量的可能取值是1,2,3,结合变量对应的事件根据等可能事件的概率公式写出变量对应的概率,写出分布列. 【解答】解:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C 3134=127, P(ξ=2)=C 32(2C 41+C 42)34=1427,P(ξ=3)=C 42A 3334=1227,∴ ξ的分布列是22. 【答案】解:(1)数学合格率p 1=40+32+8100=45, (1)物理合格率p 2=40+29+6100=34. (2)(2)(I)随机事件X 的取值为9,4,2,−3, P(X =9)=45×34=35,….3 P(X =4)=(1−45)×34=320,…4 P(X =2)=45×(1−34)=15,…5 P(X =−3)=(1−45)×(1−34)=120, (6)X 的分布列:EX =9×35+4×320+2×15+(−3)×120=254. (8)(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,解得n ≥3,故n =3或n =4, (10)∴ 这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率:p =C 43(34)3(1−34)+C 44(34)4=189256. (12)【考点】离散型随机变量及其分布列 【解析】(1)由等可能事件概率计算公式能求出数学合格率和物理合格率.(2)(I)随机事件X 的取值为9,4,2,−3,分别求出相应的概率,由此能求出X 的分布列和EX .(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,由此能求出这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率. 【解答】解:(1)数学合格率p 1=40+32+8100=45, (1)物理合格率p 2=40+29+6100=34. (2)(2)(I)随机事件X 的取值为9,4,2,−3, P(X =9)=45×34=35, (3)P(X =4)=(1−45)×34=320,…4 P(X =2)=45×(1−34)=15, (5)P(X =−3)=(1−45)×(1−34)=120,…6 X 的分布列:EX =9×35+4×320+2×15+(−3)×120=254. (8)(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,解得n ≥3,故n =3或n =4, (10)∴ 这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率:p =C 43(34)3(1−34)+C 44(34)4=189256. (12)。
高考数学离散型随机变量及其分布列、均值与方差习题WORD版

11.2 离散型随机变量及其分布列、均值与方差基础篇 固本夯基考点 离散型随机变量及其分布列、均值与方差1.(2022届浙江百校开学联考,7)若某随机事件的概率分布列满足P(X=i)=a ·i10(i=1,2,3,4),则D(X)=( )A.3B.10C.9D.1 答案 D2.(2020课标Ⅲ理,3,5分)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i=14p i =1,则下面四种情形中,对应样本的标准差最大的一组是( )A.p 1=p 4=0.1,p 2=p 3=0.4B.p 1=p 4=0.4,p 2=p 3=0.1C.p 1=p 4=0.2,p 2=p 3=0.3D.p 1=p 4=0.3,p 2=p 3=0.2 答案 B3.(多选)(2021湖南三湘名校联盟联考(五),10)在一个袋中装有质地大小一样的6个黑球,4个白球,现从中任取4个球,设取出的4个球中白球的个数为X,则下列结论正确的是( ) A.P(X=2)=37B.随机变量X 服从二项分布C.随机变量X 服从超几何分布D.E(X)=85 答案 ACD4.(2020浙江,16,6分)盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P(ξ=0)= ,E(ξ)= . 答案13;1 5.(2021浙江嘉兴测试,14)已知盒中装有n(n>1)个红球和3个黄球,从中任取2个球(取到每个球是等可能的),随机变量X 表示取到黄球的个数,且X 的分布列为则n= ;E(X)= . 答案 3;16.(2022届河北开学摸底,18)甲、乙、丙三台机床同时生产一种零件,在10天中,甲、乙机床每天生产的次品数如下表所示:(1)若从这10天中随机选取1天,设甲机床这天生产的次品数为X,求X 的分布列;(2)已知丙机床这10天生产次品数的平均数为1.4,方差为1.84.以平均数和方差为依据,若要从这三台机床中淘汰一台,你应该怎么选择?这三台机床你认为哪台性能最好? 解析 (1)依题意得X 的可能取值为0,1,2,3, P(X=0)=P(X=2)=310=0.3, P(X=1)=P(X=3)=210=0.2, 故X 的分布列为(2)x 甲=110×(0+1+0+2+2+3+3+1+2+0)=1.4, x 乙=110×(2+4+1+1+0+2+1+1+0+1)=1.3, s 甲2=110×[3×(0-1.4)2+2×(1-1.4)2+3×(2-1.4)2+2×(3-1.4)2]=1.24, s 乙2=110×[2×(0-1.3)2+5×(1-1.3)2+2×(2-1.3)2+(4-1.3)2]=1.21. 因为x 甲=x 丙>x 乙,s 丙2>s 甲2>s 乙2,所以次品数的平均数最小的是乙机床,稳定性最好的也是乙机床,稳定性最差的是丙机床,故应淘汰丙机床,乙机床的性能最好.7.(2022届长沙雅礼中学月考,20)为迎接2022年北京冬奥会,推广滑雪运动.某滑雪场开展滑雪促销活动.该滑雪场的收费标准是滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14、16;1小时以上且不超过2小时离开的概率分别为12、23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列. 解析 (1)两人所付费用相同,相同的费用可能为0元、40元、80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=(1−14−12)×1-16-23=124. 则两人所付费用相同的概率为P=P 1+P 2+P 3=124+13+124=512. (2)ξ(单位:元)的可能取值为0、40、80、120、160, 则P(ξ=0)=14×16=124,P(ξ=40)=14×23+16×12=14,P(ξ=80)=14×16+12×23+16×14=512,P(ξ=120)=12×16+23×14=14,P(ξ=160)=14×16=124. 所以,随机变量ξ的分布列为8.(2017山东理,18,12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX. 解析 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M,则P(M)=C 84C 105=518.(2)由题意知X 可取的值为0,1,2,3,4,则P(X=0)=C 65C 105=142,P(X=1)=C 64C 41C 105=521,P(X=2)=C 63C 42C 105=1021,P(X=3)=C 62C 43C 105=521,P(X=4)=C 61C 44C 105=142.因此X 的分布列为X 的数学期望是EX=0+1×521+2×1021+3×521+4×142=2.综合篇 知能转换考法 求离散型随机变量的期望与方差的方法1.(2021上海崇明二模,9)已知等差数列{x n }的公差d>0,随机变量ξ等可能地取值x 1,x 2,x 3,…,x 9,则方差D(ξ)= . 答案203d 22.(2021浙江绍兴一模,15)袋中装有质地大小相同的1个白球和2个黑球,现分两步从中摸球:第一步,从袋中随机摸取2个球后全部放回袋中(若摸得白球,则涂成黑球;若摸得黑球,则不改变颜色);第二步,从袋中随机摸取2个球,记第二步所摸取的2个球中白球的个数为ξ,则P(ξ=0)= ;E(ξ)= . 答案79;293.(2021浙江,15,6分)袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m-n= ,E(ξ)= . 答案 1;894.(2022届广东深圳六校联考一,20)甲乙两队进行篮球比赛,约定赛制如下:谁先赢四场则最终获胜,已知每场比赛甲赢的概率为23,输的概率为13. (1)求甲最终获胜的概率;(2)记最终比赛场次为X,求随机变量X 的分布列及数学期望.解析 (1)根据赛制,至少需要进行四场比赛,至多需要进行七场比赛.设甲最终获胜的概率为P.∵甲四场比赛获胜的概率为(23)4=1681,甲五场比赛获胜的概率为C 43(23)3·13·23=64243, 甲六场比赛获胜的概率为C 53(23)3·(13)2·23=160729, 甲七场比赛获胜的概率为C 63(23)3·(13)3·23=3202 187, ∴P=1681+64243+160729+3202 187=432+576+480+3202 187=1 8082 187. ∴甲最终获胜的概率为1 8082 187. (2)X 的可能取值为4,5,6,7.P(X=4)=(23)4+(13)4=1781,P(X=5)=C 43(23)413+C 43(13)423=827, P(X=6)=C 53(23)4(13)2+C 53(13)4(23)2=200729, P(X=7)=C 63(23)4(13)3+C 63(13)4(23)3=160729, 随机变量X 的分布列为∴E(X)=4×1781+5×827+6×200729+7×160729=4 012729. 5.(2022届湖南天壹名校联盟摸底,21)有甲、乙两个袋子,甲袋中有2个白球2个红球,乙袋中有2个白球2个红球,从甲袋中随机取出一球与乙袋中随机取出一球进行交换. (1)一次交换后,求乙袋中红球与白球个数不变的概率;(2)二次交换后,记X 为乙袋中红球的个数,求随机变量X 的分布列与数学期望.解析 (1)甲乙两袋交换的均是红球,则概率为C 21C 41·C 21C 41=14,甲乙两袋交换的均是白球,则概率为C 21C 41·C 21C 41=14,所以乙袋中红球与白球个数不变的概率为14+14=12.(2)X 的可能取值为0,1,2,3,4,由(1)得,一次交换后,乙袋中有2个白球2个红球的概率为12,乙袋中有1个白球3个红球的概率为C 21C 41·C 21C 41=14,乙袋中有3个白球1个红球的概率为C 21C 41·C 21C 41=14,则P(X=0)=14×C 11C 41·C 11C 41=164,P(X=1)=14×(C 11C 41·C 31C 41+C 31C 41·C 11C 41)+12×C 21C 41·C 21C 41=732,P(X=2)=14×C 31C 41·C 31C 41+14×C 31C 41·C 31C 41+12×(C 21C 41·C 21C 41+C 21C 41·C 21C 41)=1732,P(X=3)=14×(C 11C 41·C 31C 41+C 31C 41·C 11C 41)+12×C 21C 41·C 21C 41=732,P(X=4)=14×C 11C 41·C 11C 41=164,所以随机变量X 的分布列为所以E(X)=0×164+1×732+2×1732+3×732+4×164=2. 6.(2022届山东平邑一中收心考,21)第七次全国人口普查是指中国在2020年开展的全国人口普查,普查标准时点是2020年11月1日零时,彻查人口出生变动情况以及房屋情况.为了普及全国人口普查的相关知识,某社区利用网络举办社区线上全国人口普查知识答题比赛,社区组委会先组织了A 、B 、C 、D 四个小组进行全国人口普查知识网上答卷预选比赛,最终每个小组的第一名进入最后的决赛;其中甲、乙两人参加了A 组的小组预赛,结果两人得分相同,为了决出进入决赛的名额,该社区组委会设计了一个决赛方案:①甲、乙两人各自从5个人口普查问题中随机抽取3个.已知这5个人口普查问题中,甲能正确回答其中的3个,而乙能正确回答每个问题的概率均为12,甲、乙两人对每个人口普查问题的回答是相互独立、互不影响;②答对题目个数多的人获胜,若两人答对题目数相同,则由乙再从剩下的2个题中选一个作答,答对则判乙胜,答错则判甲胜.(1)求甲、乙两人共答对2个人口普查问题的概率;(每答对一次算答对一个问题) (2)记X 为乙答对人口普查问题的个数,求X 的分布列和数学期望.解析 (1)甲、乙两人共答对2个人口普查问题包括:①甲答对2个,乙答对0个,此时概率为C 32C 21C 53×(12)3=340;②甲答对1个,乙答对1个,乙再从剩下的2个题中选一个作答乙答错, 此时概率为C 31C 22C 53×C 31×12×(12)2×12=9160, 所以甲、乙两人共答对2个人口普查问题的概率为340+9160=21160. (2)由题意可知X 所有可能的取值为0,1,2,3,4, P(X=0)=C 30×(12)3=18, P(X=1)=C 31C 22C 53×C 31×12×(12)2×12+C 32C 21+C 33C 53×C 31×12×(12)2=51160, P(X=2)=C 31C 22C 53×C 31×12×(12)2×12+C 32C 21C 53×C 32×(12)2×12×12+C 31C 22+C 33C 53×C 32×(12)2×12=51160,P(X=3)=C 33C 53×C 33×(12)3×12+C 32C 21C 53×C 32×(12)2×12×12+C 31C 22+C 32C 21C 53×C 33×(12)3=37160,P(X=4)=C 33C 53×C 33×(12)3×12=1160, 所以X 的分布列为所以E(X)=0×18+1×51160+2×51160+3×37160+4×1160=6740. 7.(2022届山东潍坊10月摸底,21)某旅行社推出北京环球影城两日游活动,第一期报名游客达到200人,旅行社对这些游客的年龄进行统计,将数据分成以下6组:[15,20)、[20,25)、[25,30)、[30,35)、[35,40)、[40,45],绘制成如图所示的频率分布直方图.(1)求年龄在[25,30)的游客人数;(2)为了解游客对环球影城中的孙悟空主题IP 公园的喜爱程度是否和年龄相关,在年龄小于25岁和年龄不小于35岁的游客中用分层随机抽样的方法抽取9人进行调查,在抽取的这9人中再随机抽取3人,设抽取的3人中年龄不小于35岁的游客人数为X,求X 的分布列和数学期望;(3)旅游公司为答谢游客推出赠送旅游优惠券活动,方案如下:首先每位游客从1到150这150个自然数中选一个数作为x,然后把x 代入函数y=x+20√150−x +150,得到的函数值作为该游客的优惠券金额,问游客甲选择什么数字才能使优惠券金额最大?解析 (1)由(0.03+0.05+a+0.035+0.03+0.01)×5=1, 解得a=0.045,又200×0.045×5=45(人), 所以年龄在[25,30)的游客人数为45.(2)由题意,年龄在[15,25)的游客有(0.03+0.05)×5×200=80(人), 年龄不小于35岁的游客有(0.03+0.01)×5×200=40人, 故抽取的9人中,有6人年龄小于25岁,3人年龄不小于35岁,所以X 的所有可能取值为0,1,2,3,P(X=0)=C 63C 93=521,P(X=1)=C 62C 31C 93=1528,P(X=2)=C 61C 32C 93=314,P(X=3)=C 33C 93=184,所以X 的分布列为所以E(X)=0×521+1×1528+2×314+3×184=1. (3)y=x+20√150−x +150,x ∈[1,150],x ∈N. 令√150−x =t,得x=150-t 2,则y=150-t 2+20t+150=-t 2+20t-100+100+300 =-(t-10)2+400.所以当t=10时,y 取得最大值400,此时x=150-102=50,所以游客甲选择数字50才能使优惠券金额最大.8.(2021八省联考,19)一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X,求X的分布列及数学期望.解析记事件A,B,C分别表示部件1,2,3需要调整.由已知得P(A)=0.1,P(B)=0.2,P(C)=0.3.(1)解法一:∵各部件的状态相互独立,∴部件1,2中至少有一个需要调整即事件AB+A B+A B发生,又∵AB,A B,A B两两互斥,且P(AB)=P(A)P(B)=0.1×0.2=0.02,P(A B)=(1-P(A))P(B)=0.9×0.2=0.18,P(A B)=P(A)·(1-P(B))=0.1×0.8=0.08,∴P(AB+A B+A B)=P(AB)+P(A B)+P(A B)=0.02+0.18+0.08=0.28.解法二:部件1,2中至少有一个需要调整的对立事件为部件1,2均不需要调整,即事件A B,∵P(AB)=(1-P(A))(1-P(B))=0.9×0.8=0.72,∴1-P(A B)=1-0.72=0.28.(2)X的所有可能取值为0,1,2,3.P(X=3)=P(ABC)=P(A)P(B)P(C)=0.1×0.2×0.3=0.006.P(X=2)=P(A BC+A B C+AB C)=P(A)·P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.9×0.2×0.3+0.1×0.8×0.3+0.1×0.2×0.7=0.092.P(X=1)=P(A B C+A B C+A B C)=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398.P(X=0)=P(A B C)=0.9×0.8×0.7=0.504.∴X的分布列为∴E(X)=0×0.504+1×0.398+2×0.092+3×0.006=0.6.9.(2021百校联盟质量监测)为了增加超市的销售量,营销人员采取了相应的推销手段,每位顾客消费达到100元可以获得相应的积分,每花费100积分可以参与超市的抽奖游戏,游戏规则如下:抽奖箱中放有2张奖券,3张白券,每次任取两张券,每个人有放回地抽取三次,即完成一轮抽奖游戏;若摸出的结果是“2张奖券”三次,则获得10 100积分,若摸出的结果是“2张奖券”一次或两次,则获得300积分,若摸出“2张奖券”的次数为零,则获得0积分;获得的积分扣除花费的100积分,则为该顾客所得的最终积分,最终积分若达到一定的标准,可以兑换电饭锅、洗衣机等生活用品.(1)求一轮抽奖游戏中,甲摸出“2张奖券”的次数为零的概率;(2)记一轮抽奖游戏中,甲摸出“2张奖券”的次数为X,求X 的分布列以及数学期望;(3)试用概率与统计的相关知识,从数学期望的角度进行分析,多次参与抽奖游戏后,甲的最终积分情况.解析 (1)每次抽取,摸出“2张奖券”的概率P=C 22C 52=110,故一轮游戏中,甲摸出“2张奖券”(记为事件A)的次数为零的概率P(A)=(910)3=7291 000.(2)依题意,X 的可能取值为0,1,2,3, 故P(X=0)=P(A)=7291 000,P(X=1)=C 31·110·(1−110)2=2431 000,P(X=2)=C 32·(110)2·(1−110)=271 000,P(X=3)=(110)3=11 000, 故X 的分布列为故E(X)=0×7291 000+1×2431 000+2×271 000+3×11 000=310. (3)记一轮抽奖游戏后,甲的最终积分为Y 分,Y 的所有可能取值为-100,200,10 000,则Y 的分布列为故E(Y)=−72 900+54 000+10 0001 000=-8.9,可知一轮游戏过后,甲的最终积分的期望为负数,故多次参与抽奖活动后,可以估计甲的最终积分会越来越少.10.(2022届辽宁名校联盟联考,21)随着我国人民收入的逐步增加,国家税务总局综合考虑人民群众消费支出水平增长等各方面因素,规定从2019年1月1日起,我国实施个税新政,实施的个税新政主要内容包括:①个税起征点为5 000元;②每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;③专项附加扣除包括住房贷款利息或住房租金(以下简称住房)、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如表:随机抽取某市1 000名同一收入层级的无亲属关系的男性互联网从业者(以下互联网从业者都是指无亲属关系的男性)的相关资料,经统计分析,预计他们2022年的人均月收入为30 000元,统计资料还表明,他们均符合住房专项附加扣除,同时他们每人至多只有一个符合子女教育专项附加扣除的孩子,并且他们之中既不符合子女教育专项附加扣除又不符合赡养老人专项附加扣除、符合子女教育专项附加扣除但不符合赡养老人专项附加扣除、符合赡养老人专项附加扣除但不符合子女教育专项附加扣除、既符合子女教育专项附加扣除又符合赡养老人专项附加扣除的人数之比是2∶1∶1∶1,此外,他们均不符合其他专项附加扣除,新个税政策下该市的专项附加扣除标准为住房1 000元/月,子女教育每孩1 000元/月,赡养老人2 000元/月等. 假设该市该收入层级的互联网从业者都独自享受专项附加扣除,将预估的该市该收入层级的互联网从业者人均收入视为其个人月收入.根据样本估计总体的思想,解决下列问题.(1)按新个税方案,设该市该收入层级的互联网从业者2022年月缴个税为X 元,求X 的分布列和数学期望; (2)根据新旧个税方案,估计从2022年1月开始,至少经过几个月,该市该收入层级的互联网从业者利用各月少缴的个税之和就能购买一台价值29 400元的某品牌智慧屏巨幕电视.解析 (1)既不符合子女教育专项附加扣除又不符合赡养老人专项附加扣除的人群每月应纳税所得额(含税)为30 000-5 000-1 000=24 000元,月缴个税为3 000×0.03+9 000×0.1+12 000×0.2=3 390元;符合子女教育专项附加扣除但不符合赡养老人专项附加扣除的人群每月应纳税所得额(含税)为30 000-5 000-1 000-1 000=23 000元,月缴个税为3 000×0.03+9 000×0.1+11 000×0.2=3 190元;符合赡养老人专项附加扣除但不符合子女教育专项附加扣除的人群每月应纳税所得额(含税)为30 000-5 000-1 000-2 000=22 000元,月缴个税为3 000×0.03+9 000×0.1+10 000×0.2=2 990元;既符合子女教育专项附加扣除又符合赡养老人专项附加扣除的人群每月应纳税所得额(含税)为30 000-5 000-1 000-1 000-2 000=21 000元,月缴个税为3 000×0.03+9 000×0.1+9 000×0.2=2 790元.所以X(单位:元)的可能取值为3 390,3 190,2 990,2 790. 依题意,上述同类人群的人数之比是2∶1∶1∶1,所以P(X=3 390)=25,P(X=3 190)=15,P(X=2 990)=15,P(X=2 790)=15.所以X 的分布列为所以E(X)=3 390×25+3 190×15+2 990×15+2 790×15=3 150.(2)在旧个税方案政策下,该收入层级的互联网从业者2022年每月应纳税所得额(含税)为30 000-3 500=26 500元.月缴个税为1 500×0.03+3 000×0.1+4 500×0.2+17 500×0.25=5 620元.由(1)知在新个税方案政策下,该收入层级的互联网从业者2022年月缴个税为3 150元.所以该收入层级的互联网从业者每月少缴的个税为5 620-3 150=2 470元.设经过x 个月,该收入层级的互联网从业者每月少缴的个税的总和超过29 400元.则2 470x>29 400.因为x ∈N,所以x ≥12.所以至少经过12个月,该收入层级的互联网从业者利用各月少缴的个税之和就能购买一台价值为29 400元的某品牌智慧屏巨幕电视.应用篇知行合一应用利用均值、方差进行决策1.(2022届河北沧州十五校摸底,20)在我国,11月9日的月日数恰好与火警电话号码119相同,而且这一天前后,正值风干物燥、火灾多发之际,全国各地都在紧锣密鼓地开展冬季防火工作.为增加全民的消防安全意识,从1992年起,公安部将每年的11月9日定为全国的“消防日”.为切实提高中学生消防安全知识,增强应对火灾的能力,某市特举办以“消防安全进万家,平安相伴你我他”为主题的知识竞赛,甲、乙同学将代表学校参加.为取得好成绩,二人在消防知识题库中各随机选取50题练习,每题答对得5分,答错得0分,练习结果甲得200分,乙得150分.若以二人练习中答题正确的频率作为竞赛答题正确的概率,回答下列问题.(1)竞赛第一环节,要求甲、乙二人各选两题作答,每题答对得5分,答错不得分,求甲、乙二人得分和的概率分布列和期望;(2)第二环节中,要求二人自选两道题或四道题作答,要求一半及一半以上正确才能过关,那么甲、乙二人怎样选择,各自过关的可能性较大?解析(1)由已知得,甲答题正确的概率为0.8,乙答题正确的概率为0.6,设甲、乙二人得分和的随机变量为X,则X的可能取值为0,5,10,15,20,P(X=0)=(0.2)2×(0.4)2=0.006 4,P(X=5)=C21×0.2×0.8×(0.4)2+C21×0.4×0.6×(0.2)2=0.070 4,P(X=10)=(0.2)2×(0.6)2+(0.8)2×(0.4)2+C21×0.2×0.8×C21×0.4×0.6=0.270 4,P(X=15)=C21×0.2×0.8×(0.6)2+C21×0.4×0.6×(0.8)2=0.422 4,P(X=20)=(0.8)2×(0.6)2=0.230 4,所以X的分布列为E(X)=0×0.006 4+5×0.070 4+10×0.270 4+15×0.422 4+20×0.230 4=14.(2)甲选两道题时,过关率为1-(0.2)2=0.96,甲选四道题时,过关率为1-(0.2)4-C41×0.8×(0.2)3=0.972 8,∴甲选四道题.乙选两道题时,过关率为1-(0.4)2=0.84,乙选四道题时,过关率为1-(0.4)4-C41×0.6×(0.4)3=0.820 8,∴乙选两道题.2.(2022届福建南平联考,20)某地区位于甲、乙两条河流的交汇处,夏季多雨,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.2(假设两河流发生洪水与否互不影响),今年夏季该地区某工地有许多大型设备,为保护设备,有以下3种方案.方案一:不采取措施,当一条河流发生洪水时,设备将受损,损失30 000元.当两河流同时发生洪水时,设备将受损,损失60 000元.方案二:修建保护围墙,建设费为4 000元,但围墙只能抵御一条河流发生的洪水,当两河流同时发生洪水时,设备将受损,损失60 000元.方案三:修建保护大坝,建设费为9 000元,能够抵御住两河流同时发生洪水.(1)求今年甲、乙两河流至少有一条发生洪水的概率;(2)试比较哪一种方案更好,说明理由.解析(1)甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.2,则甲、乙两条河流均不发生洪水的概率为(1-0.25)×(1-0.2)=0.6,所以今年甲、乙两河流至少有一条发生洪水的概率为1-0.6=0.4.(2)方案一:设损失费为X.X的可能取值为30 000,60 000,0,P(X=30 000)=0.25×0.8+0.75×0.2=0.35,P(X=60 000)=0.25×0.2=0.05,P(X=0)=(1-0.25)×(1-0.2)=0.6,所以E(X)=30 000×0.35+60 000×0.05+0×0.6=13 500(元).方案二:修建保护围墙,需要花费4 000元,但围墙只能抵御一条河流发生的洪水,当两河流同时发生洪水时,设备将受损,损失60 000元,两条河流都发生洪水的概率P=0.25×0.2=0.05,所以该方案中的花费为4 000+60 000×0.05=7 000元.方案三:修建保护大坝,建设费为9 000元,设备不会受损,方案中的花费为9 000元.所以方案二最好.3.(2021新高考Ⅰ,18,12分)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.解析(1)由题易知X的所有可能取值为0,20,100,P(X=0)=1-0.8=0.2,P(X=20)=0.8×(1-0.6)=0.32,P(X=100)=0.8×0.6=0.48,所以X的分布列为(2)由(1)可知E(X)=0×0.2+20×0.32+100×0.48=54.4.假设小明先回答B类问题,其累计得分为Y,则Y的所有可能取值为0,80,100,P(Y=0)=1-0.6=0.4,P(Y=80)=0.6×(1-0.8)=0.12,P(Y=100)=0.6×0.8=0.48,所以Y的分布列为所以E(Y)=0×0.4+80×0.12+100×0.48=57.6,所以E(Y)>E(X),所以小明应选择先回答B类问题.创新篇守正出奇创新分布列与其他知识的综合1.(2019浙江,7,4分)设0<a<1,随机变量X的分布列是则当a 在(0,1)内增大时,( ) A.D(X)增大 B.D(X)减小 C.D(X)先增大后减小 D.D(X)先减小后增大 答案 D2.(2017浙江,8,4分)已知随机变量ξi 满足P(ξi =1)=p i ,P(ξi =0)=1-p i ,i=1,2.若0<p 1<p 2<12,则( ) A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2) 答案 A3.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n,且P(X=i)=p i >0(i=1,2,…,n),∑i=1np i =1,定义X 的信息熵H(X)=-∑i=1np i log 2p i .( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p 1的增大而增大C.若p i =1n(i=1,2,…,n),则H(X)随着n 的增大而增大D.若n=2m,随机变量Y 所有可能的取值为1,2,…,m,且P(Y=j)=p j +p 2m+1-j (j=1,2,…,m),则H(X)≤H(Y) 答案 AC4.(2022届湖北恩施州质量监测,21)某企业创新形式推进党史学习教育走深走实,举行两轮制的党史知识竞赛初赛,每部门派出两个小组参赛,两轮都通过的小组才具备参与决赛的资格,该企业某部门派出甲、乙两个小组,若第一轮比赛时两组通过的概率分别是45,23,第二轮比赛时两组通过的概率分别是34,35,两轮比赛过程相互独立.(1)若将该部门获得决赛资格的小组数记为X,求X 的分布列与数学期望;(2)比赛规定:参与决赛的小组由4人组成,每人必须答题且只答题一次(与答题顺序无关),若4人全部答对就给予奖金,若没有全部答对但至少2人答对就被评为“优秀小组”.该部门对通过初赛的某一小组进行党史知识培训,使得每个成员答对每题的概率均为p(0<p<1)且相互独立,设该参赛小组被评为“优秀小组”的概率为f(p),当p=p 0时, f(p)最大,试求p 0的值.解析 (1)设甲、乙两个小组两轮初赛都通过分别为事件A 1,A 2,则P(A 1)=45×34=35,P(A 2)=23×35=25. 由题意知X 的可能取值为0,1,2,P(X=0)=(1−35)×(1−25)=625, P(X=1)=(1−35)×25+35×(1−25)=1325,P(X=2)=35×25=625, 所以X 的分布列为E(X)=0×625+1×1325+2×625=1. (2)由题意知小组中2人答对的概率为C 42p 2(1-p)2,3人答对的概率为C 43p 3(1-p),则f(p)=6(1-p)2p 2+4(1-p)p 3=2p 4-8p 3+6p 2.f '(p)=8p 3-24p 2+12p=4p(2p 2-6p+3),令f '(p)=0,得p 1=0(舍),p 2=3−√32,p 3=3+√32(舍),所以在0,3−√32上, f(p)单调递增,在3−√32,1上, f(p)单调递减,故p 0=3−√32时, f(p)最大. 5.(2022届山东广饶一中10月月考,20)为落实立德树人根本任务,坚持五育并举全面推进素质教育,某学校举行了乒乓球比赛,其中参加男子乒乓球决赛的12名队员来自3个不同校区,三个校区的队员人数分别是3,4,5.本次决赛的比赛赛制采取单循环方式,即每名队员进行11场比赛(每场比赛都采取5局3胜制),最后根据积分选出最后的冠军.积分规则如下:比赛中以3∶0或3∶1取胜的队员积3分,失败的队员积0分,而在比赛中以3∶2取胜的队员积2分,失败的队员积1分,已知第10轮张三对抗李四,设每局比赛张三取胜的概率均为p(0<p<1).(1)比赛结束后冠亚军恰好来自不同校区的概率是多少? (2)第10轮比赛中,记张三以3∶1取胜的概率为f(p). ①求出f(p)的最大值点p 0;②若以p 0作为p 的值,这轮比赛张三所得积分为X,求X 的分布列及期望.解析 (1)比赛结束后冠亚军恰好来自不同校区的概率P=C 31C 41+C 41C 51+C 31C 51C 122=4766.(2)①f(p)=C 32p 3(1-p)=3p 3(1-p),f '(p)=3[3p 2(1-p)+p 3×(-1)]=3p 2(3-4p),令f '(p)=0,得p=0(舍)或p=34, 当p ∈(0,34)时, f '(p)>0, f(p)在(0,34)上单调递增, 当p ∈(34,1)时, f '(p)<0, f(p)在(34,1)上单调递增, 所以f(p)的最大值点p 0=34. ②X 的可能取值为0,1,2,3. P(X=0)=(1−34)3+C 3134(1−34)3=13256, P(X=1)=C 42(34)2(1−34)3=27512, P(X=2)=C 42(34)2(1−34)234=81512,P(X=3)=(34)3+C 32(34)2(1−34)34=189256. 所以X 的分布列为X 的期望为E(X)=0×13256+1×27512+2×81512+3×189256=1 323512.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A. X 取每一个可能值的概率都是非负数;B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D . X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξA.4.06.01⨯-k B.76.024.01⨯-k C.6.04.01⨯-k D.24.076.01⨯-k3、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6 C . 10 D. 无法确定4、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点 D . 一枚是3点,一枚是1点或两枚都是2点5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的6. 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3 B .5 C.6 D.107.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C .127 D.65 8.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( )A.21B.91C. 61D.51 9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.41004901C C -B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .10.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是: A.5)21( B .525)21(C C.335)21(C D.53525)21(C C11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是A. 0.216B.0.36C.0.432 D .0.648 5.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A .40243 B .1027C .516 D .1024312.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率)(B A P 等于: A9160 B 21 C 185 D 2169113.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是:A .95B .94 C .2111 D .2110 14.从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是A .2个球不都是红球的概率 B. 2个球都是红球的概率C .至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 15.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是101,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为: A .1001 B .2507 C .2501 D .10001 16. .已知随机变量ξ的分布列为:若12)(2=<x P ξ,则实数x 的取值范围是( )A.94≤<xB.94<≤xC.94≥<x x 或D.94>≤x x 或17. 12.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A.2101012)85()83(⋅C B .83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C18. 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )(A )175 (B ) 275 (C )375 (D )475二、填空题:19.若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____20. 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)21.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1⨯;③他至少击中目标1次的概率是410.1-.其中正确结论的序号是 ①③ __(写出所有正确结论的序号). 22.对有n (n ≥4)个元素的总体{}1,2,,n 进行抽样,先将总体分成两个子总体{}1,2,,m 和{}1,2,,m m n ++ (m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;4()m n m -三、解答题:23、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.24.一个口袋中装有n 个红球(5n ≥且n N ∈)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用n 表示一次摸奖中奖的概率p ;(Ⅱ)若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时,P 最大?24.(Ⅰ)一次摸奖从5n +个球中任选两个,有25n C +种,它们等可能,其中两球不同色有115n C C 种,一次摸奖中奖的概率10(5)(4)np n n =++.(Ⅱ)若5n =,一次摸奖中奖的概率59p =,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是:123380(1)(1)243P C p p =⋅⋅-=. (Ⅲ)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)(1)363P P C p p p p p ==⋅⋅-=-+,01p <<,2'91233(1)(31)P p p p p =-+=--,知在1(0,)3上P 为增函数,在1(,1)3上P 为减函数,当13p =时P 取得最大值.又101(5)(4)3n p n n ==++,解得20n =.25. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.•(1)X 的分布列为P (X=k )=·,k=0,1,2,3,4,5,6.(2)Y 的概率分布为:Y 0 1 2 3P·· ·Y 4 5 6P··(3)0.912 解析:(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故X~B(6,), 2分所以X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6. 5分(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.其中:{Y=k}(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.P(Y=k)=·(k=0,1,2,3,4,5),而{Y=6}表示一路没有遇上红灯,故其概率为P(Y=6)=.8分因此Y的概率分布为:Y 0 1 2 3P···Y 4 5 6P··12分(3)这名学生在途中至少遇到一次红灯的事件为 {X≥1}={X=1或X=2或…或X=6}, 14分 所以其概率为P (X≥1)==1-=≈0.912. 16分20.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X .22.甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、B3、C4、D5、C6、B7、C8、B二、填空题: 18、 20三、解答题:18、解:设黄球的个数为n ,由题意知 绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2 ... P21 4181 161 ... n 21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为: X 1 2 P3414。