第三讲:牛顿运动定律 练习—2021届高中物理一轮复习

第三讲:牛顿运动定律 练习—2021届高中物理一轮复习
第三讲:牛顿运动定律 练习—2021届高中物理一轮复习

牛顿运动定律练习

一、单选题(本题共7小题,6分一题,共42分)

1.伽利略设计了著名的理想斜面实验,将事实和逻辑推理联系起来反映了深刻的自然规律,下面给出了理想斜面实验的五个事件,请正确的对其排序:由A点静止释放的小球,()

① 不能滚到另一斜面与A等高的C点

① 若没有摩擦时,小球能滚到另一斜面的与A等高的C点

① 若减小摩擦时,小球能滚到另一斜面的更接近与A等高的C点

① 若没有摩擦时,减小斜面BC的倾角,小球能滚到另一斜面的与A等高位置

① 若没有摩擦时,减小斜面的倾角,直至水平,小球将沿水平面一直运动下去

A.事实①→事实①→推论①→推论①→推论①

B.事实①→推论①→事实①→推论①→推论①

C.事实①→事实①→推论①→推论①→推论①

D.事实①→事实①→推论①→推论①→推论①

2.下图是某同学站在压力传感器上做下蹲-起立的动作时传感器记录的压力随时间变化的图线,纵坐标为压力,横坐标为时间.由图线可知,该同学的体重约为650N,除此以外,还可以得到以下信息()

A.1s时人处在下蹲的最低点

B.2s时人处于下蹲静止状态

C.该同学做了2次下蹲-起立的动作

D .下蹲过程中人始终处于失重状态

3.以前人们盖房子打地基叫打夯,夯锤的结构如图所示。参加打夯的共有5人,四个人分别握住夯锤的一个把手,一个人负责喊号,喊号人一声号子,四个人同时向上用力将夯锤提起,号音一落四人同时松手,夯锤落至地面将地基砸实。某次打夯时,设夯锤的质量为m ,将夯锤提起时,每个人都对夯锤施加竖直向上的力,大小均为2

mg ,力持续的时间为t ,然后松手,夯锤落地时将地面砸出一个凹痕。不计空气阻力,则( ) A .在上升过程中,夯锤一定处于超重状态

B .在下落过程中,夯锤一定处于超重状态

C .松手时夯锤的速度大小12

v gt = D .夯锤上升的最大高度2m h gt =

4.如图所示,,,,A B C D 四个小球质量分别为,4,2,3m m m m ,用细线连着,在A 和C 之间细线上还串接有一段轻弹簧,悬挂在光滑定滑轮的两边并处于静止状态。弹簧的形变在弹性限度内,重力加速度大小为g ,则下列说法正确的是( )

A .剪断,C D 间细线的一瞬间,小球C 的加速度大小为3g

B .剪断,

C

D 间细线的一瞬间,小球A 和B 的加速度大小均为g

C .剪断,A B 间细线的一瞬间,小球C 的加速度大小为零

D .剪断C 球上方细线的一瞬间,小球A 和B 的加速度大小均为零

5.一足够长的木板B 静置于光滑水平面上,如图甲所示,其上放置小滑块A ,木板B 受到随时间t 变化的水平拉力F 作用,木板加速度a 随力F 变化的a﹣F 图象如图乙所示,g

取10m/s 2,下判定错误的是( )

A .木板

B 的质量为1kg

B .当F =10N 时木板B 加速度为4m/s 2

C .滑块A 的质量为4kg

D .当F =10N 时滑块A 的加速度为2m/s 2

6.如图所示为粮袋的传送装置,已知A 、B 间长度为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常

工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从

A 到

B 的运动,以下说法正确的是(设最大静摩擦力等于滑动

摩擦力)( )

A .粮袋到达

B 点的速度与v 相比较,可能大,也可能相等或小

B .粮袋开始运动的加速度为g (sin θ ? μcos θ),若L 足够大,则粮袋最后将以速度v 做匀速运动

C .若μ ≥ tan θ,则粮袋从A 到B 一定一直做加速运动

D .不论μ大小如何,粮袋从A 到B 一直做匀加速运动,且a ≥ g sin θ

7.如图所示,在同一竖直线上有A 、B 两点,相距为h ,B 点离地高度为H .现从A 、B 两点分别向P 点安放两个光滑的固定斜面AP 和BP ,并让两个小物块(可看成质点)从两斜面的A 、B 点同时由静止滑下,发现两小物块同时到达P 点,则( )

A .OP 间距离为()H H h +

B .OP 间距离为

2

H h + C .两小物块运动到P 点速度相同

D 2() H h

g

二、多选题(共6小题,8分一题,共48分,选对得8分选不全得4分,错选、不选得0分)

8.伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。下列说法正确的是( )

A.物体抵抗运动状态变化的性质是惯性

B.行星在圆周轨道上保持匀速率运动的性质是惯性

C.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动

D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因9.如图甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行。t=0时,将质量m=1kg的物体(可视为质点)轻放在传送带上,物体相对地面的v﹣t图像如图乙所示。设沿传送带向下为正方向,取重力加速度g=10m/s2。则()

A.传送带的速率v0=10m/s

B.传送带的倾角θ=30°

C.物体与传送带之间的动摩擦因数μ=0.5

D.0~2.0s内物体在传送带上留下的痕迹为6m

10.如图所示为直角三角形斜劈ABC①∠ABC=60°①P为AB的中点,AP=PB=10m.小物块与AP段的动摩擦因数为μ1,与PB段的动摩擦因数为μ2.第一次将BC水平放置,小物块从A点静止释放,滑到B点时速度刚好为零.第二次将AC水平放置,g取10m/s2,下列说法正确的是( )

A .第一次下滑过程中小物块经过AP 段和P

B 段的时间之比为1①(2①1) B .μ1+μ2=23

C .若第二次小物块在B 点由静止释放则一定不下滑

D .若第二次在B 点给小物块一个初速度v 0=15m/s ,小物块刚好能滑到最底端A 点 11.如图所示,在水平面上有一质量为M 、倾角为θ的斜面,其上有一质量为m 的物块,当对斜面施加水平力F 后,物块恰好作自由落体运动。不计一切摩擦,下列说法正确的是( )

A .物块与斜面之间的弹力大小为mg cos θ

B .水平面对M 的支持力大小为()M m g +

C .斜面的加速度大小为tan g θ

D .水平力的大小为tan Mg θ

12.如图所示,小车的质量为M ,人的质量为m ,人用恒力F 拉绳,若人与车保持相对静止,且地面为光滑的,又不计滑轮与绳的质量,则车对人的摩擦力可能是( ) A .(M m m M -+)F ,方向向左 B .(m M m M

-+)F ,方向向右 C .(

m M m M -+)F ,方向向左 D .(M m m M -+)F ,方向向右 13.如图所示,固定于地面、倾角为θ的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C 连接,另一端与物块A 连接,物块A 上方放置有另一物块B ,物块A 、B 质量均为m 且不粘连,整个系统在沿斜面向下的恒力F

作用下而处于静止状态。某一时刻将力F 撤去,若在弹簧

将A、B弹起过程中,A、B能够分离,则下列叙述正确的是()

A.从力F撤去到A、B发生分离的过程中,弹簧及A、B物块所构成的系统机械能守恒B.A、B被弹起过程中,A、B即将分离时,两物块速度达到最大

C.A、B刚分离瞬间,A的加速度大小为g sinθ

D.若斜面为粗糙斜面,则从力F撤去到A、B发生分离的过程中,弹簧减少的弹性势能一定大于A、B增加的机械能与系统摩擦生热之和

三、解答题

14.如图所示,质量M=8kg的长木板B沿水平地面向左运动,同时受到水平向右的恒力F=48N的作用,当长木板B的速度v=6m/s时,从长木板B的左端滑上一质量m=2kg的小木块A,此时小木块A的速度大小也为v=6m/s,已知小木块A未从长木板B的右端滑下,小木块A与长木板B和长木板B与地面之间的动摩擦因数均为μ=0.2,重力加速度

g=10m/s2。求:

(1)长木板B向左运动的最大位移;

(2)长木板B的长度至少为多少。

牛顿运动定律练习参考答案

1.实验事实①:不能滚到另一斜面与A 点等高的C 点,得出实验结果③:当减小摩擦时,滚到另一斜面的最高位置,更接近于等高的C 点,从面可推理出②:若没有摩擦时,能滚到另一斜面与A 点等高的C 点,接着推出④:若没有摩擦时,减小斜面BC 的倾角,小球将通过较长的路程,到达与A 点等高的位置,最终可得⑤:若没有摩擦时,减小斜面的倾角,直至水平,小球将沿水平面一直运动下去,综上所述,A 正确,BCD 错误。 故选A 。

2.人在下蹲的过程中,先加速向下运动,此时加速度方向向下,故人处于失重状态,最后人静止,故下半段是人减速向下的过程,此时加速度方向向上,人处于超重状态,故下蹲过程中先是失重后超重,选项D 错误;在1s 时人的失重最大,即向下的加速度最大,故此时人并没有静止,它不是下蹲的最低点,选项A 错误;2s 时人经历了失重和超重两个过程,故此时处于下蹲静止状态,选项B 正确;该同学在前2s 时是下蹲过程,后2s 是起立的过程,所以共做了1次下蹲-起立的动作,选项C 错误.

3.A .在上升过程中,夯锤先加速上升,在减速上升,加速度先向上,然后再向下,夯锤先处于超重状态然后在处于失重状态,A 错误;

B .在下落过程中,加速下落,加速度方向向下,一定处于失重状态,B 错误;

C .根据牛顿第二定律42

mg mg ma ?

-= 解得a g =

则松手时夯锤的速度大小v gt =

C 错误;

D .夯锤先加速上升的高度2211122h at gt =

= 减速上升的高度222gh v = 解得2212

h gt = 夯锤上升的最大高度212m h h h gt =+= D 正确。

故选D 。

4.AB.开始时,弹簧的弹力为5mg ,剪断C 、D 间细线的一-瞬间,弹簧的弹力不变,则小球C 的加速度大小为52 1.52mg mg a g m

-==,A.B 的加速度为零,故A.B 错误; C.同理可以分析,剪断A 、B 间细线的一瞬间,小球C 的加速度大小为0,故C 正确;

D.剪断C 球上方细线的一瞬间,弹簧的弹力迅速减为零,因此小球A 和B 的加速度大小为g ,故D 错误。

5.AC .当F 等于8N 时,加速度为a =2m/s 2,对整体分析,由牛顿第二定律有

F =①M +m ①a ,

代入数据解得

M +m =4kg

当F 大于8N 时,对B 由牛顿第二定律得:

1F mg mg a F M M M

μμ-==- 由图示图象可知,图线的斜率

12186

a k M F ?====?- 解得,木板B 的质量M =1kg ,滑块A 的质量为m =3kg .故A 正确,①①①①①;C 错误,符合题意.

B .根据F 大于8N 的图线知,F =6N 时,a =0m/s 2,由1mg a F M M

μ=- 可知:13100611μ??=?-

解得μ=0.2 由图示图象可知,当F =10N 时,滑块与木板相对滑动,B 的加速度为

2110.2310104m/s 11

B mg a a F M M μ??==

-=?-= 故B 正确,不符合题意; D .当F =10N 时,A ①B 相对滑动,木块A 的加速度

22m/s A Mg a g M μμ=

==

故D 正确,不符合题意①

故选C① 6.A .粮袋在传送带上可能一直做匀加速运动,到达B 点时的速度小于或等于v ;可能先匀加速运动,当速度与传送带相同后,做匀速运动,到达B 点时速度与v 相同;也可能先做加速度较大的匀加速运动,当速度与传送带相同后做加速度较小的匀加速运动,到达B 点时的速度大于v ,故A 正确;

B .粮袋开始时受到沿斜面向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得到,

加速度a = g (sin θ + μcos θ),若μ < tan θ,则重力沿传送带的分力大于滑动摩擦力,故a 的方向一直向下,粮袋从A 到B 一直是做加速运动,可能是一直以g (sin θ + μcos θ)的加速度匀加速,也可能先以g (sin θ + μcos θ)的加速度匀加速,后以g (sin θ ? μcos θ)匀加速;故B 错误;

C .若μ ≥ tan θ,粮袋从A 到B 可能是一直做加速运动,有可能在二者的速度相等后,粮袋做匀速直线运动,故C 错误;

D .由上分析可知,粮袋从A 到B 不一定一直匀加速运动,故D 错误。

故选A 。

7.AB .设斜面的倾角为θ,则物体下滑的加速度为a=gsinθ,设OP 的距离为x ,则2211sin cos 22

x at g t θθ==,因两物体在斜面上下滑的时间相等,则sinθcosθ相等,由图

=

,解得x =,选项A 正确,B 错误;

C .根据机械能守恒定律可知:mgH 1=

12

mv 2可知,两物块开始下落的高度H 1不同,则下落到底端的速度不同,选项C 错误;

D A 点做自由落体运动到O

点的时间,可知两小物块的运动时间D 错误;

故选A.

8.A.任何物体都有保持原来运动状态的性质,叫着惯性,所以物体抵抗运动状态变化的

性质是惯性,故A 正确;

B.惯性是保持原来运动状态的性质,圆周运动速度是改变的,故B 错误;

C.运动物体如果没有受到力的作用,将保持原来的运动状态,即将继续以同一速度沿同一直线运动,故C 正确;

D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因,故D 正确;

故选:ACD ;

9.A .由图知,物体先做初速度为零的匀加速直线运动,速度达到传送带速度后(在t =1.0s 时刻),由于重力沿斜面向下的分力大于摩擦力,物块继续向下做匀加速直线运动,从图像可知传送带的速度为v 0=10m/s ,故A 正确;

BC .在0~1.0s 内,物体摩擦力方向沿斜面向下,匀加速运动的加速度为:

1sin cos sin cos mg mg a g g m

θμθθμθ+=

=+ 由图可得: 2111

10m/s v a t ?==? 在1.0~2.0s ,物体的加速度为:

2sin cos sin cos mg mg a g g m θμθθμθ-=

=- 由图可得:2222

2m/s v a t ?==? 联立解得:0.5μ=,37θ=,故B 错误,C 正确;

D .根据“面积”表示位移,可知0~1.0s 物体相对于地的位移:11101m=5m 2

x =?? 传送带的位移为:x 2=v 0t 1=10×1m =10m

物体对传送带的位移大小为:1215m x x x ?=-=

方向向上。1.0~2.0s 物体相对于地的位移:310121m 11m 2x +=

?= 传送带的位移为:x 4=v 0t 1=10×1m =10m

物体对传送带的位移大小为:2341m x x x ?=-=

方向向下,故留下的痕迹为5m ,故D 错误。

故选:AC 。

10.第一次下滑过程中,因初速度为零,末速度为零,则物体一定是先加速后减速,若设到达P 点的速度为v ,则AP 和BP 两段的平均速度均为v/2,则小物块经过AP 段和PB 段的时间之比为1①1,选项A 错误;设AB=2L①从A 到B 由动能定理:

000

122sin 60cos 60cos 600mg L mg L mg L μμ?--= ,解得μ1+μ2选项B 正确;

第一次从A 开始时下滑时满足001sin 60cos 60mg mg μ>,即 1μ<①则2μ>第二次小物块在B 点由静止释放,则002sin 30cos30mg mg μ<成立,则小物块在B 点

由静止释放则一定不下滑,选项C 正确;若第二次在B 点给小物块一个初速度v 0=15m/s①设小物块滑到最底端A 点的速度为v′,则由动能定理:

000'22210112sin 30cos30cos6022

mg L mg L mg L mv mv μμ?--=

-,解得v′2=-175可知,物块不能到达A 点,选项D 错误;故选BC.

11.A .物块恰好作自由落体运动,则物块仅受重力作用,物块与斜面之间的弹力为0,选项A 错误;

B .物块与斜面之间的弹力为0,则斜面仅受重力Mg 、拉力F 和水平面对M 的支持力作用,水平面对M 的支持力与斜面重力相等,大小为Mg ,选项B 错误;

C .斜面的加速度与拉力F 方向相同,水平向左,将其分解如图:

所以加速度大小为

tan g a θ

=

选项C 正确;

D .根据牛顿第二定律知水平力的大小 tan Mg F Ma θ

==

选项D 正确。

故选CD 。

12.取人和小车为一整体,

由牛顿第二定律得:2F =(M +m)a 设车对人的摩擦力大小为F f ,方向水平向右,则对人由牛顿第二定律得:

F-F f=ma,解得:F f=M m M m

-

+

F

如果M>m,F f=M m

M m

-

+

F,方向向右,D正确.

如果M

M m

-

+

F,负号表示方向水平向左,C正确,B错误

13.A.从力F撤去到A、B发生分离的过程中,弹簧及A、B物块所构成的系统只有重力和弹簧的弹力做功,所以系统的机械能守恒,故A正确;

B.A、B被弹起过程中,合力等于零时,两物块速度达到最大,此时弹簧处于压缩状态,A、B还没有分离,故B错误;

C.A、B刚分离瞬间,A、B间的弹力为零,对B,由牛顿第二定律得

mg sinθ=ma B

a B=g sinθ

此瞬间A与B的加速度相同,所以A的加速度大小为g sinθ,故C正确;

D.若斜面为粗糙斜面,则从力F撤去到A、B发生分离的过程中,由能量守恒定律知,弹簧减少的弹性势能一定等于A、B增加的机械能与系统摩擦生热之和,故D错误。

故选AC。

14.(1)初始时刻对小木块A、长木板B分别进行受力分析如图所示

对小木块A 有 μmg =ma 1

解得 a 1=2m/s 2 方向向左

对长木板B 有 F +μmg +μ(M +m )g =Ma 2

解得 a 2=9m/s 2 方向向右

可见长木板B 先向左减速直到速度为零,此时

122s 3v t a == 112m 2

B v x t == (2)在12s 3

t =时间内,小木块A 一直向右减速,有 11114m/s 3v v a t =-= 11132m 29

A v v x t +== 之后,小木块A 继续向右减速,加速度不变;长木板

B 开始向右加速,其加速度为

23()4m/s F mg M m g a M

μμ+-+== 设又经过t 2两者共速,有 v 共=v 1-a l t 2=a 3t 2

解得 27s 9t = 289

v =共m/s

则 122245m 281A v v x t +==共

2298m 281

B v x t ==共 这时小木块A 相对长木板B 向右运动的位移为

1122199m 27

A B A B x x x x x =++-= 即长木板B 的长度至少为199m 27

高中物理专题训练洛伦兹力

磁场对运动电荷的作用力 1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( ) 2.如图所示,a是带正电的小物块,b是一不带电的绝缘物块,A,B叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F 拉b物块,使A,B一起无相对滑动地向左加 速运动,在加速运动阶段( ) A.A,B一起运动的加速度不变 B.A,B一起运动的加速度增大C.A,B物块间的摩擦力减小 D.A,B物块间的摩擦力增大 3.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是( ) A.油滴必带正电荷,电荷量为 B.油滴必带正电荷,比荷= C.油滴必带负电荷,电荷量为 D.油滴带什么电荷都可以,只要满足q = 4.(多选)在下列各图所示的匀强电场和匀强磁场共存的区域内,电子可能 沿水平方向向右做直线运动的是( ) 5. (多选)在图中虚线所示的区域存在匀强电场和匀强磁场.取坐标如图, 一带电粒子沿x轴正方向进入此区域,在穿过此区域的过程中运动方始终不 发生偏转,不计重力的影响,电场强度E和磁感应强度B的方向可能是 ( ) A.E和B都沿x轴方向 B.E沿y轴正向,B沿z轴正向 C.E沿z轴正向,B沿y轴正向 D.E,B都沿z轴方向 6. (多选)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端 安装了如图7所示的流量计,该装置由绝缘材料制成,长,宽,高分别为 a,b,c,左右两端开口,在垂直于上,下底面方向加磁感应强度为B的匀 强磁场,在前,后两个内侧固定有金属板作为电极,污水充满管口从左向右 流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单 位时间内排出的污水体积),下列说法中正确的是( ) A.若污水中正离子较多,则前表面比后表面电势高 B.前表面的电势一定低于后表面的电势,与哪种离 子多少无关 C.污水中离子浓度越高,电压表的示数将越大 D.污水流量Q与U成正比,与a,b无关 7.(多选)如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量 为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且 相互垂直的匀强磁场和匀强电场中,设小球的电荷量不变,小球由静止下滑 的过程中( ) A.小球加速度一直增大 B.小球速度一直增大,直到最后匀速 C.棒对小球的弹力一直减小 D.小球所受洛伦兹力一直增大,直到最后不变 8.一个质量为m=0.1 g的小滑块,带有q=5×10-4C的电荷量,放置在倾 角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中, 磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,斜面足 够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求: (1)小滑块带何种电荷? (2)小滑块离开斜面时的瞬时速度多大? (3)该斜面长度至少多长? 9.光滑绝缘杆与水平面保持θ角,磁感应强度为B 的匀强磁场充满整个空间,一个带正电q、质量为 m、可以自由滑动的小环套在杆上,如图所示,小 环下滑过程中对杆的压力为零时,小环的速度为________. 10.如图所示,质量为m的带正电小球能沿着竖直的绝缘墙竖 直下滑,磁感应强度为B的匀强磁场方向水平,并与小球运动 方向垂直.若小球电荷量为q,球与墙间的动摩擦因数为μ.则 小球下滑的最大速度为____________,最大加速度为____________. 11.如图所示,各图中的匀强磁场的磁感应强度均为B,带电粒子的速率均 为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛 伦兹力的方向.

高中物理相互作用专题训练答案及解析

高中物理相互作用专题训练答案及解析 一、高中物理精讲专题测试相互作用 1.如图所示,质量的木块A套在水平杆上,并用轻绳将木块与质量的小球B相连.今用跟水平方向成角的力,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取.求: (1)运动过程中轻绳与水平方向夹角; (2)木块与水平杆间的动摩擦因数为. (3)当为多大时,使球和木块一起向右匀速运动的拉力最小? 【答案】(1)30°(2)μ=(3)α=arctan. 【解析】 【详解】 (1)对小球B进行受力分析,设细绳对N的拉力为T由平衡条件可得: Fcos30°=Tcosθ Fsin30°+Tsinθ=mg 代入数据解得:T=10,tanθ=,即:θ=30° (2)对M进行受力分析,由平衡条件有

F N=Tsinθ+Mg f=Tcosθ f=μF N 解得:μ= (3)对M、N整体进行受力分析,由平衡条件有: F N+Fsinα=(M+m)g f=Fcosα=μF N 联立得:Fcosα=μ(M+m)g-μFsinα 解得:F= 令:sinβ=,cosβ=,即:tanβ= 则: 所以:当α+β=90°时F有最小值.所以:tanα=μ=时F的值最小.即:α=arctan 【点睛】 本题为平衡条件的应用问题,选择好合适的研究对象受力分析后应用平衡条件求解即可,难点在于研究对象的选择和应用数学方法讨论拉力F的最小值,难度不小,需要细细品味.

2.一架质量m 的飞机在水平跑道上运动时会受到机身重力、竖直向上的机翼升力F 升、发动机推力、空气阻力F 阻、地面支持力和跑道的阻力f 的作用。其中机翼升力与空气阻力均与飞机运动的速度平方成正比,即2 2 12,F k v F k v ==阻升,跑道的阻力与飞机对地面的压力成正比,比例系数为0k (012m k k k 、、、均为已知量),重力加速度为g 。 (1)飞机在滑行道上以速度0v 匀速滑向起飞等待区时,发动机应提供多大的推力? (2)若将飞机在起飞跑道由静止开始加速运动直至飞离地面的过程视为匀加速直线运动,发动机的推力保持恒定,请写出012k k k 与、的关系表达式; (3)飞机刚飞离地面的速度多大? 【答案】(1)2 220 10 ()F k v k mg k v =+-;(2)2202 1F k v ma k mg k v --=-;(3)1mg v k = 【解析】 【分析】 (1)分析粒子飞机所受的5个力,匀速运动时满足' F F F =+阻阻推,列式求解推力;(2) 根据牛顿第二定律列式求解k 0与k 1、k 2的关系表达式;(3)飞机刚飞离地面时对地面的压力为零. 【详解】 (1)当物体做匀速直线运动时,所受合力为零,此时有 空气阻力 2 20F k v 阻= 飞机升力 2 10F k v =升 飞机对地面压力为N ,N mg F =-升 地面对飞机的阻力为:' 0F k N =阻 由飞机匀速运动得:F F F =+, 阻阻推 由以上公式得 22 20010()F k v k mg k v =+-推 (2)飞机匀加速运动时,加速度为a ,某时刻飞机的速度为v ,则由牛顿第二定律: 22201-()=F k v k mg k v ma --推 解得:2202 1-F k v ma k mg k v -=-推

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

高中物理牛顿运动定律的应用专题训练答案

高中物理牛顿运动定律的应用专题训练答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10- 8 C .物块与水平面间的动摩擦因数μ=0.2,给 物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求: (1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】 带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】 (1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a = (2)物块进入电场向右运动的过程,根据动能定理得:()2101 02 mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m (3)物块先向右作匀减速直线运动,根据:00111??22 t v v v s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:21221 2 s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=- 根据:3322a t a t = 解得30.2t s = 物块运动的总时间为:123 1.74t t t t s =++= 【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.

高考物理培优专题限时训练(十一)含答案

培优专题限时训练11带电粒子在磁场中的运动1.如图所示,O'PQ是关于y轴对称的四分之一圆,在PQMN区域有均匀辐向电场,PQ与MN间的电压为U。PQ上均匀分布带正电的粒子,可均匀持续地以初速度为零发射出来,任一位置上的粒子经电场加速后都会从O'进入半径为R、中心位于坐标原点O的圆形匀强磁场区域,磁场方向垂直xOy平面向外,大小为B,其中沿+y轴方向射入的粒子经磁场偏转后恰能沿+x轴方向射出。在磁场区域右侧有一对平行于x轴且到x轴距离都为R的金属平行板A和K, 金属板长均为4R, 其中K板接地,A与K 两板间加有电压U AK>0, 忽略极板电场的边缘效应。已知金属平行板左端连线与磁场圆相切,O'在y 轴(0,-R)上。(不考虑粒子之间的相互作用力) (1)求带电粒子的比荷; (2)求带电粒子进入右侧电场时的纵坐标范围; (3)若电压U AK=,求到达K板的粒子数与进入平行板总粒子数的比值。 2.如图为一装放射源氡的盒子,静止的氡核Rn)经过一次α衰变成钋Po,新核Po的速率约为2×105 m/s。衰变后的α粒子从小孔P进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B=0.1 T。之后经过A孔进入电场加速区域Ⅱ,加速电压U=3×106 V。从区域Ⅱ射出的α粒子随后又进入半径为r=m的圆形匀强磁场区域Ⅲ,该区域磁感应强度B0=0.4 T、方向垂直纸面向里。圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M和圆形磁场的圆心O、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为=5×107 C/kg。

(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置。 3.(2018年3月新高考研究联盟第二次联考)一台质谱仪的工作原理如图1所示。大量的甲、乙两种离子以0到v范围内的初速度从A点进入电压为U的加速电场,经过加速后从O点垂直边界MN进入磁感应强度为B的匀强磁场中,最后打到照相底片上并被全部吸收。已知甲、乙两种离子的电荷量均为+q、质量分别为2m和m。不考虑离子间的相互作用。 图1 图2 (1)求乙离子离开电场时的速度范围;

高中物理专题训练一:力与运动基础练习题

专题训练一、力和运动一.选择题 1.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力 的个数和性质不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 14.如图所示,用光滑的粗铁丝做成一直角三角形,BC水平,AC边竖直,∠ABC=α,AB及AC两边上分别套有细线连着的铜环,当它们静止时,细线跟AB所成的角θ的大小为(细线长度小于BC) A.θ=α B.θ> 2 π C.θ<α D.α<θ< 2 π 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。有一质量m=10kg的猴子,从绳的另一端沿绳向上爬,如图1-1所示。不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10m/s2)A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2() 3.小木块m从光滑曲面上P点滑下,通过粗糙静止的水平传送带落于地面上的Q点,如图1-2所示。现让传送带在皮带轮带动下逆时针转 动,让m从P处重新滑下,则此次木块的落地点将 A.仍在Q点 B.在Q点右边() C.在Q点左边 D.木块可能落不到地面 4.物体A的质量为1kg,置于水平地面上,物体与地面的动摩擦因数为μ=0.2,从t=0开始物体以一定初速度v0向右滑行的同时,受到一个水平向左的恒力F=1N的作用,则捅反映物体受到的摩擦力f随时间变化的图像的是图1-3中的哪一个(取向右为正方向,g=10m/s2)() 5.把一个重为G的物体用水平力F=kt(k为恒量,t为时间)压在竖直的足够高的墙面上,则从t=0开始物体受到的摩擦力f随时间变化的图象是下图中的 图1-1 P m Q 图1-2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 图1-3

高中物理选择性必修一 周末限时训练

周五限时训练 一.选择题一、选择题(1-8单选,9-12多选,每题6分,共72分,请将答案填在括号里) 1.分析下列物理现象:(1)夏天里在一次闪电过后,有时雷声轰鸣不绝;(2)“闻其声而不见其人”;(3)围绕振动的音叉转一圈会听到忽强忽弱的声音;(4)当正在鸣笛的火车向着我们急驶而来时,我们听到汽笛声的音调变高.这些物理现象分别属于波的()A .反射、衍射、干涉、多普勒效应B .折射、衍射、多普勒效应、干涉 C .反射、折射、干涉、多普勒效应 D .衍射、折射、干涉、多普勒效应 2.装有砂粒的试管竖直静浮于水面,如图所示,将试管竖直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动,若取竖直向上为正方向,则以下描述试管振动的图像中可能正确的是() A . B . C . D . 3.如下图所示,向左匀速运动的小车发出频率为f 的声波,车左侧A 处的人感受到的声波的频率为f 1,车右侧B 处的人感受到的声波的频率为f 2,则() A .f 1<f ,f 2<f B .f 1<f ,f 2>f C .f 1>f ,f 2>f D .f 1>f ,f 2<f 4.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是() A .在1~2 T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来 4T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小 D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 5. 两列波速大小相同的简谐横波在t =0时刻的波形图如图所示,此时x =2m 处的质点的振动沿y 轴负方向,在t 1=0.3s 时,两列波第一次完全重合,则下列说法正确的是( ) A .两列波的波速大小均为10m/s B .在t 2=1.1s 时,两列波的波形第二次完全重合 C .x =4.5m 处的质点为振动减弱点 D .x =2.5m 处的质点的位移可能为8cm 6.甲、乙两个弹簧振子,它们的振动图像如图所示,则可知两弹簧振子 A .振动强度完全相同 B .振动快慢完全相同 C .振子甲速度为零时,振子乙速度最 大 D .所受回复力最大值之比F 甲∶F 乙=1∶2 7.有一个在y 方向上做简谐运动的物体,其振动图像如图所示。下列关于图甲、乙、 丙、丁的判断正确的是(选项中v 、F 、a 、E k 分别表示物体的速度、受到的回复力、加 速度和动能)() A .甲可作为该物体的v -t 图像 B .乙可作为该物体的F -t 图像 C .丙可作为该物体的a -t 图像 D .丁可作为该物体的 E k -t 图像 8.如图,t =0时刻,波源在坐标原点从平衡位置沿y 轴正向开始振动,振动周期为0.4s ,在同一均匀介质中形成沿 x 轴正、负两方向传播的简谐波.下图中能够正确表示t =0.6s 时波形的图是( )

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

高中物理电磁感应专题训练

C .若是非匀强磁场,环在左侧滚上的高度等于 D .若是匀强磁场,环在左侧滚上的高度小于 专题:电磁感应 1.如图为理想变压器原线圈所接电源电压波形, 原副线圈匝数之比 n 1∶n 2 = 10∶ 1,串联在 原线圈电路中电流表的示数为 1A ,下则说法正确的是( A .变压器输出两端所接电压表的示数为 22 2 V B .变压器输出功率为 220W C .变压器输出的交流电的频率为 50HZ D .若 n 1 = 100 匝,则变压器输出端穿过每匝线圈的磁通量的变化率的最 大值为 2.2 2wb/s 2.如图所示,图甲中 A 、B 为两个相同的线圈,共轴并靠边放置, A 线圈中画有如图乙 所 示的交变电流 i ,则( ) A .在 t 1到 t 2的时间内, A 、B 两线圈相吸 B . 在 t 2到 t 3 的时间内, A 、B 两线圈相斥 C . t 1 时刻,两线圈的作用力为 零 D . t 2时刻,两线圈的引力最大 3.如图所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面, 当 ab 棒下滑到稳定状态时,小灯泡获得的功率为 P 0 ,除灯泡外,其它电阻不计,要使灯 泡的功率变为 2P 0 ,下列措施正确的是( A .换一个电阻为原来 2 倍的灯泡 B .把磁感应强度 B 增为原来的 2 倍 C .换一根质量为原来 2 倍的金属棒 D .把导轨间的距离增大为原来的 2 4.如图所示,闭合小金属环从高 h 的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲 面在磁场中( A .是非匀强磁场,环在左侧滚上的高度小于 B .若是匀强磁场,环在左侧滚上的高度等于 ××× ×× × ×× × ××× 5.如图所示,一电子以初速 v 沿与金属板平行的方向飞入两板间,在下列哪种情况下, 电 子将向 M 板偏转?( ) A .开关 K 接通瞬间 B .断开开关 K 瞬间 C .接通 K 后,变阻器滑动触头向右迅速滑动 D .接通 K 后,变阻器滑动触头向左迅速滑动 6.如图甲, 在线圈 l 1 中通入电流 i 1后,在 l 2 上产生感应电流随时间变化规律如图乙所示, M N K

(新课标)2020高考物理复习第一部分专题一力与运动1.1.3抛体运动和圆周运动专题限时训练

1.1.3 抛体运动和圆周运动 专题限时训练 一、单项选择题 1.(2019·湖南株洲一模)在某次跳投表演中,篮球以与水平面成45°的倾角落入篮筐,设投球点和篮筐正好在同一水平面上,如图所示.已知投球点到篮筐距离为10 m ,不考虑空气阻力,则篮球投出后的最高点相对篮筐的竖直高度为( ) A .2.5 m B .5 m C .7.5 m D .10 m 答案:A 解析:篮球抛出后做斜上抛运动,根据对称性可知,出手时的速度方向与水平方向成45°角,设初速度为v 0,则水平方向x =v 0cos 45°t ;竖直方向设能到达的最大高度为h ,则h = v 0sin 45°2 ·t 2,解得h =x 4 =2.5 m ,故只有选项A 正确. 2.开口向上的半球形曲面的截面如图所示,直径AB 水平.一物块(可视为质点)在曲面内A 点以某一速率开始下滑,曲面内各处动摩擦因数不同,因摩擦作用物块下滑过程速率保持不变.在物块下滑的过程中,下列说法正确的是( ) A .物块运动过程中加速度始终为零 B .物块所受合外力大小不变,方向时刻在变化 C .滑到最低点C 时,物块所受重力的瞬时功率达到最大 D .物块所受摩擦力大小逐渐变大 答案:B 3.近年许多电视台推出户外有奖冲关的游戏节目,如图所示(俯视图)是某台设计的冲关活动中的一个环节.要求挑战者从平台A 上跳到以O 为转轴的快速旋转的水平转盘上而不落入水中.已知平台到转盘盘面的竖直高度为1.25 m ,平台边缘到转盘边缘的水平距离为1 m ,转盘半径为2 m ,以12.5 r/min 的转速匀速转动,转盘边缘间隔均匀地固定有6个相同障碍桩,障碍桩及桩和桩之间的间隔对应的圆心角均相等.若某挑战者在如图所示时刻从平台边缘以水平速度沿AO 方向跳离平台,把人视为质点,不计桩的厚度,g 取10 m/s 2 ,则能穿

高一物理专题训练专题八

专题八机械能守恒定律 知识回顾 练习题组 1.讨论力F在下列几种情况下做功的多少( ) (1)用水平推力F推质量是m的物体在光滑水平面上前进了s. (2)用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s. (3)斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿光滑斜面向上进了s. A.(3)做功最多 B.(2)做功最多 C.做功相等 D.不能确定 2.质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,那么( ) A.物体的重力势能减少2mgh B.物体的动能增加2mgh C.物体的机械能保持不变 D.物体的机械能增加mgh 3.如图1所示,一个物体放在水平面上,在跟竖直方向成θ角的斜向下的推力F的作用平面移动了位移s,若物体的质量为m,物体与地面之间的摩擦力为f,则在此过程中( ) A.摩擦力做的功为-fs B.力F做的功为Fscosθ C.力F做的功为Fssinθ D.重力做的功为mgs 4.质量为m的物体静止在倾角为θ的斜面上,当斜面沿水平方向向右匀速移动了距离s时,如图2所示,物体m相对斜面静止,则下列说法中不正确的是( ) A.摩擦力对物体m做功为零 B.合力对物体m做功为零 C.摩擦力对物体m做负功 D.弹力对物体m做正功

5.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A.返回斜面底端的动能为E B.返回斜面底端时的动能为3E/2 C.返回斜面底端的速度大小为2υ D.返回斜面底端的速度大小为 υ 6.下列关于机械能守恒的说法中正确的是:( ) A.物体做匀速直线运动,它的机械能一定守恒 B.物体所受的合力的功为零,它的机械能一定守恒 C.物体所受的合力不等于零,它的机械能可能守恒 D.物体所受的合力等于零,它的机械能一定守恒 7.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当 它落到地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A. B. C. D. 8.如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC 的长度也是R,一质量为m的物体,与两个轨道间的动摩擦因数都为,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为( ) A. B. C. D. 9.如图:用F=40 N的水平推力推一个质量m=3 kg的木块,使其沿着斜面向上移动2m,木块和斜面间的动摩擦因数为μ=0.1,则在这一过程中(g=10m/s2),求: 1 力F做的功; 2 物体克服摩擦力做的功;

高中物理重点专题练习:(临界问题)(精选.)

课堂练习:(临界问题) 1、一劲度系数为m N k /200=的轻弹簧直立在水平地板上,弹簧下端与地板相连,上端与一质量kg m 5.0=的物体B 相连,B 上放一质量也为kg 5.0的物体A ,如图。现用一竖直向下的力F 压A ,使B A 、均静止。当力F 取下列何值时,撤去F 后可使B A 、不分开 ( ) A.N 5 B.N 8 N 15 D.N 20 2、如图,三个物块质量分别为1m 、 2m 、M ,M 与1m 用弹簧联结,2m 放在1m 上,用足够大的外力F 竖直向下压缩弹簧,且弹力作用在弹性限度以内,弹簧的自然长度为L 。则撤去外力F ,当2m 离开1m 时弹簧的长度为___________,当M 与地面间的相互作用力刚为零时,1m 的加速度为 。 3、如图,车厢内光滑的墙壁上,用线拴住一个重球,车静止时,线的拉力为T ,墙对球的支持力为N 。车向右作加速运动时,线的拉力为T ',墙对球的支持力为N ',则这四个力的关系应为:T ' T ;N ' N 。(填>、<或=)若墙对球的支持力为0,则物体的运动状态可能是 或 。 4、在光滑的水平面上,B A 、两物体紧靠在一起,如图。A 物体的质量为m ,B 物体的质量m 5,A F 是N 4的水平向右的恒力,N t F B )316(-=(t 以s 为单位),是随时间变化的水平力。从 静止开始,当=t s 时,B A 、两物体开始分离,此时B 物体的速度方向 朝 (填“左”或“右”)。 5、如图,在斜面体上用平行于斜面的轻绳挂一小球,小球质量为m ,斜面体倾角为θ,置于光滑水平面上 (g 取2/10s m ),求: (1)当斜面体向右匀速直线运动时,轻绳拉力为多大; (2)当斜面体向左加速运动时,使小球对斜面体的压力为零时,斜面体加速度为多大; (3)为使小球不相对斜面滑动,斜面体水平向右运动的加速度的最大值为多少。

高中物理训练专题【曲线运动与万有引力】

限时规范训练(二) 曲线运动与万有引力 建议用时45分钟,实际用时________ 一、单项选择题 1.如图所示,绕过定滑轮的细线连着两个小球,小球a 、b 分别套在 水平杆和竖直杆上,某时刻连接两球的细线与竖直方向的夹角均为37°, 此时a 、b 两球的速度大小之比v a v b 为(已知sin 37°=0.6,cos 37°=0.8)( ) A.43 B .34 C.259 D .2516 解析:A 将a 、b 两小球的速度分解为沿细线方向的速度与垂直细线方向的速度,则a 球沿细线方向的速度大小为v 1=v a sin 37°,b 球沿细线方向的速度大小为v 2=v b cos 37°,又 v 1=v 2,解得v a v b =cos 37°sin 37°=43 ,A 正确. 2.羽毛球运动员林丹曾在某综艺节目中表演羽毛球定点击鼓,如图是他表演时的羽毛球场地示意图.图中甲、乙两鼓等高,丙、丁两鼓较低但也等高,若林丹各次发球时羽毛球飞出位置不变且均做平抛运动,则( ) A .击中甲、乙的两球初速度v 甲=v 乙 B .击中甲、乙的两球运动时间可能不同 C .假设某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓 D .击中四鼓的羽毛球中,击中丙鼓的初速度最大 解析:C 由题图可知,甲、乙高度相同,所以球到达两鼓用时相同,但由于两鼓离林 丹的水平距离不同,甲的水平距离较远,由v =x t 可知,击中甲、乙的两球初速度v 甲>v 乙,故A 、B 错误;甲鼓的位置比丁鼓位置较高,则球到达丁鼓用时较长,则若某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓,故C 正确;由于丁鼓与丙鼓高度相同,但由题图可知,丁鼓离林丹的水平距离大,所以击中丁鼓的球的初速度一定大于击中丙鼓的球的初速度,即击中丙鼓的球的初速度不是最大的,故D 错误.

高中物理《选修3-1》专题训练讲义

第一课时:电场的力的性质 一、单项选择题 1.(2011年台州模拟)在电场中的某点放一个检验电荷,其电量为q,受到的电场力为F,则该点的电 场强度为E=F q,下列说法正确的是(D) A.若移去检验电荷,则该点的电场强度为0 B.若检验电荷的电量变为4q,则该点的场强变为4E C.若放置到该点的检验电荷变为-2q,则场中该点的场强大小不变,但方向相反 D.若放置到该点的检验电荷变为-2q,则场中该点的场强大小方向均不变 2.使两个完全相同的金属小球(均可视为点电荷)分别带上-3Q和+5Q的电荷后,将它们固定在相距为a的两点,它们之间库仑力的大小为F1.现用绝缘工具使两小球相互接触后,再将它们固定在相距为2a 的两点,它们之间库仑力的大小为F2.则F1与F2之比为(D) A.2∶1 B.4∶1 C.16∶1 D.60∶1 3. (2010年高考课标全国卷)静电除尘器是目前普遍采用的一种高效除尘器.某除尘器 模型的收尘板是很长的条形金属板,图中直线ab为该收尘板的横截面.工作时收尘板带 正电,其左侧的电场线分布如图所示;粉尘带负电,在电场力作用下向收尘板运动,最 后落在收尘板上.若用粗黑曲线表示原来静止于P点的带电粉尘颗粒的运动轨迹,下列 四幅图中可能正确的是(忽略重力和空气阻力)( ) 解析:选A.根据力和运动的关系知,当粒子运动至电场中某一点时,运动速度方向与 受力方向如图所示,又据曲线运动知识知粒子运动轨迹夹在合外力与速度之间,可判定粉 尘颗粒的运动轨迹如A选项中图所示. 4.法拉第首先提出用电场线形象生动地描绘电场,如图所示为点电荷a、b所形成电场的电场线分布图,以下几种说法中正确的是( ) A.a,b为异种电荷,a的电荷量大于b的电荷量 B.a,b为异种电荷,a的电荷量小于b的电荷量 C.a,b为同种电荷,a的电荷量大于b的电荷量 D.a,b为同种电荷,a的电荷量小于b的电荷量 解析:选B.由题图看出,电场线由一个点电荷发出到另一个点电荷终止,由此可知,a、b必为异种电荷,C、D选项错;又由图可知,电荷b附近的电场线比电荷a附近的电场线密,则电荷b附近的场强必比电荷a附近的场强大,b带的电荷量必然多于a带的电荷量,则A选项错误,B选项正确.5.(2011年舟山模拟)A、B是一条电场线上的两个点,一带负电的微粒仅在电场力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图甲所示.则此电场的电场线分布可能是图乙中的( ) 解析:选A.从图象可以直接看出,粒子的速度随时间逐渐减小;图线的斜率逐渐增大,说明粒子的加速度逐渐变大,电场强度逐渐变大,从A到B电场线逐渐变密.综合分析知,负电荷是顺着电场线运动,由电场线疏处到达密处,正确选项是A.

高二限时训练物理试题

高二限时训练物理试题10.13 出题人:赵著科 审题人:王建伟 一.选择题(16个题,每题3分,选不全得2分) 1.以下叙述正确的是( ) A.由E=F/q 可知,电场强度E 与电荷所受电场力F 成正比,与电量q 成反比 B.由U=W/q 可知,电场中两点间的电势差U 与电场力做功W 成正比,与电量q 成反比 C.由C=Q/U 可知,电容C 与电容器的带电量Q 成正比,与两极板间电势差U 成反比 D.由I=U/R 可知,通过某导体的电流与导体两端的电压U 成正比,与导体电阻R 成反比 2.一个动能为Ek 的带电粒子,垂直于电场线方向飞入平行板电容器,飞出电容器时动能为3Ek ,如果使这个带电粒子的初速度变为原来的2倍,那么它飞出电容器时的动能变为( ) A .6Ek B .4.5Ek C .4.25Ek D .5.25Ek 3.一空腔导体周围的电场线分布如图所示,电场方向如图中箭头所示,M 、N 、P 、Q 是以O 为圆心的一个圆周上的四点,其中M 、O 、N 在一条直电场线上,P 、Q 在一条弯曲的电场线上,下列说法正确的有?( ) A .M 点的电场强度比N 点的电场强度大 B .P 点的电势比Q 点的电势高 C ..M 、O 间的电势差大于O 、N 间的电势差 D ..一负电荷在P 点的电势能小于在Q 点的电势能 4.将一个正电荷从无穷远移入电场中的M 点,电势能增加8.0×10-9 J ;若将另一个等量的负电荷从无穷 远移入电场中的N 点,电场力做功为9.0×10-9 J ,则正确的结果是( ) A . B . C . D . 5.如图所示,带箭头的线表示某一电场的电场线。在电场力作用下一带电粒子(不计重力)经A 点飞向 B 点,径迹如图中虚线所示,下列说法正确的是:( ) A 、粒子带正电。 B 、粒子在A 点加速度大。 C 、粒子在B 点动能小。 D 、A 、B 两点相比,B 点电势能较小。 6.如图6所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源,带电小球以速度v 0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,小球仍以相同的速度v 0从原处 飞入,则 带电小球 ( ) A .将打在下板中央 B .仍沿原轨迹由下板边缘飞出 C .不发生偏转,沿直线运动 D .若上板不动,将下板上移一段距离,小球可能打在下板的中央 7.如图4所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b.不计空气阻力,则 ( ) A .小球带负电 B .电场力跟重力平衡 C .小球在从a 点运动到b 点的过程中,电势能减小 D .小球在运动过程中机械能守恒 8.如图所示,在竖直放置的光滑半圆形绝缘细管的圆心O 处放一点电荷。现将质量为m 、电荷量为q 的小球从半圆形管的水平直径端点A 静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力。若小球所带电量很小,不影响O 点处的点电荷的电场,则置于圆心处的点电荷在B 点处的电场强度的大小为( ) A . mg q B . 2mg q C .3mg q D .4mg q 9.关于点电荷下列说法不正确... 的是 ( ) A .点电荷是一种理想化的物理模型 B .点电荷自身不一定很小,所带电荷不一定很少 C. 点电荷、元电荷、检验电荷是同一种物理模型 D. 当两个带电体的形状大小对它们间相互作用力的影响可忽略时,这两个带电体可看作点电荷 10.下列说法中,正确的是: A .公式E = q F 只适用于真空中点电荷产生的电场 0<>N M ??0<>M N ? ?

高一物理期末精选专题练习(word版

高一物理期末精选专题练习(word 版 一、第一章 运动的描述易错题培优(难) 1.质点做直线运动的 v-t 图象如图所示,则( ) A .3 ~ 4 s 内质点做匀减速直线运动 B .3 s 末质点的速度为零,且运动方向改变 C .0 ~ 2 s 内质点做匀加速直线运动,4 ~ 6 s 内质点做匀减速直线运动,加速度大小均为 2 m/s 2 D .6 s 内质点发生的位移为 8 m 【答案】BC 【解析】 试题分析:矢量的负号,只表示物体运动的方向,不参与大小的比较,所以3 s ~4 s 内质点的速度负方向增大,所以做加速运动,A 错误,3s 质点的速度为零,之后开始向负方向运动,运动方向发生变化,B 错误,图线的斜率表示物体运动的加速度,所以0~2 s 内质点做匀加速直线运动,4 s ~6 s 内质点做匀减速直线运动,加速度大小均为2 m/s 2,C 正确,v-t 图像围成的面积表示物体的位移,所以6 s 内质点发生的位移为0,D 错误, 考点:考查了对v-t 图像的理解 点评:做本题的关键是理解v-t 图像的斜率表示运动的加速度,围成的面积表示运动的位移,负面积表示负方向位移, 2.一个质点做变速直线运动的v-t 图像如图所示,下列说法中正确的是 A .第1 s 内与第5 s 内的速度方向相反 B .第1 s 内的加速度大于第5 s 内的加速度 C .OA 、AB 、BC 段的加速度大小关系是BC OA AB a a a >> D .OA 段的加速度与速度方向相同,BC 段的加速度与速度方向相反 【答案】CD 【解析】

【分析】 【详解】 A .第1s 内与第5s 内的速度均为正值,方向相同,故A 错误; B .第1 s 内、第5 s 内的加速度分别为: 2214 m/s 2m/s 2 a = = 22504 m/s 4m/s 1 a -= =- 1a 、5a 的符号相反,表示它们的方向相反,第1s 内的加速度小于于第5 s 内的加速度,故 B 错误; C .由于AB 段的加速度为零,故三段的加速度的大小关系为: BC OA AB a a a >> 故C 正确; D .OA 段的加速度与速度方向均为正值,方向相同;BC 段的加速度为负值,速度为正值,两者方向相反,故D 正确; 故选CD 。 3.如图所示为某质点做直线运动时的v-t 图象图象关于图中虚线对称,则在0~t 1时间内,关于质点的运动,下列说法正确的是 A .若质点能两次到达某一位置,则两次的速度都不可能为零 B .若质点能三次通过某一位置,则可能三次都是加速通过该位置 C .若质点能三次通过某一位置,则可能两次加速通过,一次减速通过 D .若质点能两次到达某一位置,则两次到达这一位置的速度大小一定相等 【答案】C 【解析】 【分析】 【详解】 AD 、分析质点运动过程可知,质点在10t 时间内能两次到达的位置有两个,分别对应质 点运动速度为零的两个位置,因此A 、D 错误; BC 、如图,画出质点运动的过程图:

高中物理“4 1”15分钟40分限时训练(9)

物理“4+1”15分钟40分限时训练(九) 16.下列说法中正确的是 A .泊松亮斑证实了光的粒子性 B .光的偏振现象说明光是一种纵波 C .康普顿效应进一步证实了光的粒子性 D .干涉法检查被检测平面的平整度应用了光的双缝干涉原理 17.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的半径为2r ,则可以确定 A .翟志刚出舱后不再受地球引力 B .翟志刚出舱取回外挂实验样品,若样品脱手,则样品做自由落体运动 C . “神舟七号” 与卫星的加速度大小之比为4:1 D .“神舟七号”与卫星的线速度大小之比为1 :2 18. 一理想变压器原、副线圈匝数比n 1: n 2=11:5,原线圈与正弦交流电源连接,输入电压u 如图所示,副线圈仅接入一个10 Ω的电阻,则 A. 流过电阻的电流是0.2A B. 与电阻并联的电压表示数是100 2 V C. 经过1分钟电阻发出的热量是6?103 J D. 变压器的输入功率是1?103 W 19.分别用波长为2λ和λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:3. 以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为 ( ) A .34h c λ B . 23hc λ C .λhc 4 1 D . 4hc λ 22.(16分)如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ = 0.50,斜坡的倾角θ = 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2 .求: 0 6 1 2 4 3 5 t /10-2s u /V 2202 -2202 图

相关文档
最新文档