【免费下载】第五章能量衡算习题解答

【免费下载】第五章能量衡算习题解答
【免费下载】第五章能量衡算习题解答

5-1 压力为,温度为的水蒸气通过一根内径为75㎜的管子,以的速度进1.5MPa 320℃-1

3m s ?入透平机。由透平机出来的乏气用内径为25㎜的管子引出,其压力为,温度为℃。假定35kPa 80过程无热损失,试问透平机输出的功率为多少?

【解】:查593K 和353K 过热水蒸气焓值,,-113255.8kJ kg h =?-122645.6kJ kg

h =? 由 3-13-11176.5cm g 0.1765m kg V =?=?313-1

24625 4.625m kg V cm g -=?=? 进口截面积 ()2

2210.0750.00442m 44A D π

π

==?=、 -11130.004420.0751kg s 0.1756u A m V ?===?m V A u V A u ==111222-122220.0751 4.6257.08m s 0.254m V u A π??===??-1212645.63255.8610.2kJ kg h h h ?=-=-=-? 忽略位能变化,则 0

z ?= ()2223-1117.0831020.563kJ kg 22

u -?=-?=? 212s q w m h u ??+=?+? ???

()-10.0751610.220.56347.37kJ s 47.37kW

s w =-+=-?=-5-2 有一水泵每小时从水井抽出的水并泵入储水槽中,水井深,储水槽的水位离地1892kg 61m 面,水泵用功率为的电机驱动,在泵送水过程中,只耗用该电机功率的45%。储水18.3m 3.7KW 槽的进、出水位的质量流量完全相等,水槽内的水位维持不变,从而确保水作稳态流动。在冬天,井水温度为℃,为防止水槽输出管路发生冻结现象,在水的输入管路上安设一台加热器对水进4.5行加热,使水温保持在℃,试计算此加热器所需净输入的热量。

7.2【解】:流动体系由水井、管路、泵、加热器和储水槽组成。计算基准:以一小时操作记, 稳流过程:212s s Q W m h g z u ?

?+=?+?+ ???

-1

9.8179.3777.933kJ kg g z ??=?=?0212=?u 3-1-13.7100.453168.08J kg 3.168kJ kg 189213600

s N W Q ??===?=?? 水热容:3-1-14.18410J kg K

P C =??? ()3-1

4.184107.2 4.511296.8kJ kg P h C T ?=?=??-=? s Q mw =-+212m h g z u ???+?+

??? ()-1-1-1

1892 3.16811.2970.77816851.7kJ h 8.906kJ kg 4.68kJ s =-++=?=?=?5-3 水蒸气在透平机中等熵膨胀,其状态由6MPa 、600℃变为10kPa 。如果水蒸气的质量流量为,试计算透平机的输出功率。

-12kJ s ?

【解】:水蒸气在透平中为等熵膨胀,查水蒸气表知6MPa 、600℃过热水蒸气熵和焓值分别为: ,-1-117.1677kJ kg K s =??-113658.4kJ kg

h =?出口处为湿蒸汽,查10kPa 的饱和水蒸气和饱和水的熵和焓值为: ,-1-10.6493kJ kg K l s =??-1191.83kJ kg

l h =?,-1-18.1482kJ kg K g s =??-1

2583.8kJ kg g h =?由以上数据可确定出口处水蒸气的干度122

7.16770.64938.1482s s x ===+ 20.80

x =出口处水蒸气的焓值为:

-122191.832583.80.802258.87191.83kJ kg l g l h h h x h =+=+?==?等熵膨胀为绝热可逆过程,忽略动、位能变化,由能量平衡方程知:

()()2122258.873658.42799.06kW

S W H m h h =?=-=-=-5-11 设有一股温度为90℃,流量为20kg/s 的热水与另一股温度为50℃,流量为30kg.s -1的温水绝热混合。试求此过程产生的熵。此绝热混合过程是否可逆?

解:90℃ 20kg.s -1 和 50℃ 30 kg.s -1在绝热条件下混合成温度为T 3的水,求:?

=?S 混合过程:()()()2321312

21132312211321S S m S S m S m S m S m S m S m S m S m m S -+-=--+=--=?+焓换算 C t t t C t t C h m h m h m m p p 660)()()323132211321==-+-=+=+( 或设水的热容相等: C t K m m t m t m T t m t m t m t m t t C m t t C m p p 66339302032330363200)()(3212211322321131232131==+?+?=++=+-=-=-+-2211321232131)()()(S m S m S m m S S m S S m S --+=-+-=?或 3446.0ln ln 23213*1=+=?T T C m T T C m S pm p g -1-14.184J kg K p C =??查附表 水 C 901925.11=S C 507038.02=S C

66905

.03=S 所以 -1-1(2030)0.90520 1.195300.70380.286k J kg s g S ?=+?-?-?=??5-12 140℃饱和水蒸气以4 kg.s -1的流率进入换热器,加热20℃的空气,水蒸气与空气逆向流动。如果饱和水蒸气离开换热器时冷凝为140℃的饱和水。求热流体传热过程的熵产生量。

【解】:选择水蒸汽未研究体系,因为是稳流过程,作功为零,且忽略动、位能变化。则能量平衡方程:简化为:212

?+?+?=+S H mg z m u Q W H m h Q

?=?=由稳流系统的熵平衡式得熵产生得表达式

路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

()()f

in

i i i out j j j g S s m s m S ?--=?∑∑()21g Q S m s s T ?=--

由水蒸气表查得:

140℃下的饱和蒸汽 ,-112733.8k J kg h =?-1-1

1 6.9302kJ kg K s =??140℃下的饱和水 ,-12589.24k J kg h =?-1-1

2 1.73936kJ kg K

s =??得:()()-1

214589.242733.88578.24kJ s Q m h h =-=-=-?()()-1-1

218578.2441.73936 6.93028.5kJ K s 293.15

g Q S m s s T ?=--=-+=??5-14 1mol 理想气体在400K 由0.1013MPa 经等温不可逆压缩到1.013MPa ,压缩过程的热被移到300K 的贮热器,实际压缩功比同样的可逆压缩功多20%,计算气体与贮热器的熵变及总熵变。【解】:理想气体等温过程的可逆轴功为: -121 1.013ln 8.314400ln 7657.48J mol 0.1013R p w RT p ==?=? 不可逆轴功为可逆轴功的1.2倍 -11.2 1.27657.489188.976J mol s R w w ==?=?由热力学第一定律知:0s h q w ?=+= -19188.976J mol s q w =-=?气体熵变 -1-121p 1.013ln 8.314ln 19.14J mol K p 0.1013s R ???气=-=-=-设储热器温度不变则:-1-19188.976s 30.63J mol K 300q T -?==??贮-=总熵变 -1-1s 19.1430.6311.49J mol K s s ?=?+?=-+=??贮气5-16 12MPa 、700℃的水蒸气供给一个透平机,排出的水蒸气的压力为0.6MPa 。 (a )在透平机中进行绝热可逆膨胀,求过程理想功和损失功。 (b )如果等熵效率为0.88,求过程的理想功、损失功和热力学效率。 【解】:(a )入口水蒸气性质可由水蒸气h-s 图查得: , -1-117.0757kJ kg k s =??-113858.4kJ kg h =? 绝热可逆膨胀为等熵过程 -1-1217.0757kJ kg k s s ==??出口为过热蒸汽,由压力和熵值由h-s 图查得出口焓值

-122904.1kJ kg h

=?由热力学第一定律

-1212904.13858.4954.3kJ kg s w h h h =?=-=-=-?理想功

-10954.3kJ kg id W H T S H =?-?=?=-?绝热可逆膨胀的损失功 0

L id S W W W =-=(b )等熵效率为0.88时()-10.8954.3839.8kJ kg

s w =?-=-?对于该绝热过程-1213858.4839.83081.6kJ kg

s h h w =-=-=?由h-s 图查得不可逆绝热过程的出口熵值 设环境温度为298K ,

-1-127.2946kJ kg k s =?? ()()-1

0212987.29467.0757905kJ kg id W H T S h h =?-?=---=-?处理高中资料试卷弯扁度固要求技术交底。管线敷设技、电气护进行整核对定值,审核与方案,编写重要设备高中资、电气设备调试高坏范围,或者对某些异常高中资料试卷保护装置动作,

损失功-1839.890565.2kJ kg

L S id W W W =-=-+=?热力学效率 839.80.928905

S a id W W η===5-23有一温度为℃、流量为的热水和另一股温度为℃、流量为的90-172000kg h ?50-1108000kg h ?水绝热混合。试分别用熵分析和有效能分析计算混合过程的有效能损失。大气温度为℃。问此25过程用哪个分析方法求有效能损失较简便?为什么?

解: 求得131231()()p p m c t t m c t t -=--366C

t =

Q =0 W 3=0 ΔH=0

熵分析法123112313231123()g S m m S m S m S m S m S m S m S ?=+---=+--131232()()m S S m S S =-+-33

1212

ln ln p p T T m c m c T T =+-1

33933972000 4.184ln 108000ln 1240.8kJ h 363323

p c =?+=?0X L g E W T S -?==?5-1

3.710kJ kg =??有效能分析法

312

X X X X E E E E ?=--1230030110010220020()[()()][()()[()()m m H H T S S m H H T S S m H H T S S =+----------- 3121230011002200000

()[()ln ][()ln )][()ln p p p T T T m m c H H T m c T T T m c T T T T T T =+--------363363=(72000+108000) 4.184[(66-25)-298ln

72000 4.184(9025298ln )298298?-?--323108000 4.184[(5025)298ln ]298

-?--6655-1

1.94710 1.86810 4.48910 3.710kJ h =?-?-?=??5-24

某厂因生产需要,设有过热蒸汽降温装置,将℃的热水和、1205-1210kg h ??0.7MPa ℃的蒸汽等压绝热混合。大气温度为℃。求绝热混合过程有效能损失。

3005-1510kg h ??15解:X id

E W ?=设:393.15K 时水的下标用a 表示,573.15 K 时过热蒸汽的下标用b 表示,混合后的性质用下标m 表示由饱和水、饱和水蒸汽表及过热蒸汽表查得:

H a =503.71kJ·kg -1 S a =7.2965 kJ·kg -1k -1 H b =3059kJ·kg -1 S b =7.2965kJ·kg -1k -1 混合过程为绝热:则 (先判断混合后所处状态) (a+b )H m =aH a +bH b

55-155

210503.715103059.02328.9kJ kg 210510m H ???+??==??+?由H m 的数据可知混合器中为压力700kPa 的液体水和蒸汽的混合物

此时由饱和水和饱和水蒸气查得水和蒸汽的焓、熵分别为:

H f =697.21kJ·kg -1 S f =1.9922 kJ·kg -1k -1

H g =2763.5kJ·kg -1 S g =6.7080kJ·kg -1k -1在水和蒸汽的混合物中,水的摩尔分数为:2328.92763.50.2103697.212763.5

m g

w f g H H x H H --===--地线弯曲半径标高等,要求装置高中资料试卷调试方案处理,尤其要避免错误高中

能量衡算方程式

能量衡算方程式 在图1-9所示的定态流动系统中,流体从截面1-1′流入,经粗细不同的管道,从截 面2-2′流出。管路上装有对流体作功的泵2及向流体输入或从流体取出热量的换热器1。 衡算范围:内壁面、1-1′与2-2′截面间。 衡算基准:1kg流体。 基准水平面:o-o′ 设u1、u2分别为流体在截面1-1′与2-2′处的流速,m/s;p1、p2分别为流体在截 面1-1′与2-2′处的压强,Pa。 1kg流体进、出系统时输入和输出的能量有下面各项: (1)内能物质内部能量的总和称为内能。1kg流体输入与输出的内能分别以U1和 U2表示,其单位为J/kg。 (2)位能流体因受重力的作用,在不同的高度处具有不同的位能,相当于质量为m 的流体自基准水平面升举到某高度Z所作功,即: 位能=mgZ 位能的单位是N·m或者J。 1kg流体输入与输出的位能分别为gZ1与gZ2,其单位为J/kg。位能是个相对值,随 所选的基准水平面位置而定,在基准水平面以上的位能为正值,以下的为负值。 (3)动能流体以一定的速度运动时,便具有一定的动能.质量为m,流速为u的流体所具有的动能为: 动能=mu2/2 动能的单位是N·m或J 1kg流体输入与输出的动能分别为u12/2与u22/2,其单位为J/kg。 (4)静压能(压强能) 静止流体内部任一处都有一定的静压强。流动着的流体内部任 何位置也都有一定的静压强。如果在内部有液体流动的管壁上开孔,并与一根垂直的玻璃 管相接,液体便会在玻璃管内上升,上升的液柱高度便是运动着流体在该截面处的静压强 的表现。对于图1-9所示的流动系统,流体通过截面1-1′时,由于该截面处流体具有一 定的压力,这就需要对流体作相应的功,以克服这个压力,才能把流体推进系统里去。于 是通过截面1-1′,的流体必定要带着与所需的功相当的能量进入系统,流体所具有的这 种能量称为静压能或流动功。

物料及热量衡算

第1章物料及热量衡算 本工艺采用草酸二甲酯和为原料制乙二醇,其中有未反应的、过量的氢气及中间产物乙醇酸甲酯。采用加氢反应合成并借助高效催化剂提高转化率和反应速率,在精馏分离工段中,利用复合式精馏塔进行多元物质的分离。 工艺流程的物料衡算以的流程模拟结果为基础所得到的。以工段为单位进行物料衡算,全流程分为两个工段:加氢反应工段、精馏分离工段。下面为两个工段的物流平衡表。 1.1物料衡算 1.1.1加氢反应工段 原料和经混合器混合后并在换热器中加热然后进入反应器中进行合成反应。 表 1-1 加氢反应工段的物料平衡表 项目MDO原料H2原料循环气粗乙醇温度℃165.00 70.00 40.00 40.00 压力bar 25.00 25.00 20.00 20.00 气化率0 1 1 0 质量流率kg/hr 1.19E+05 8.01E+03 1.38E+05 1.27E+05 DMO 1.19E+05 0 1.44E+00 2.37E+02 MG 0 0 2.48E+01 2.70E+03 EG 0 0 2.76E+01 6.07E+04 H2 0 8.01E+03 1.14E+05 5.98E-04

MEOH 0 2.37E+04 6.36E+04 质量分率 DMO 1 0 1.04E-05 1.86E-03 MG 0 0 1.80E-04 2.12E-02 EG 0 0 2.00E-04 4.77E-01 H2 0 1 8.27E-01 4.70E-09 MEOH 0 0 1.72E-01 5.00E-01 1.1.2精馏分离工段 反应所生成的乙二醇、甲醇以及中间产物和未完全反应的进入精馏分离工段进行精馏,此工段主要包括两个精馏塔。 表 1-2精馏工段物料平衡表 项目粗乙醇纯甲醇纯乙二醇回收原料温度℃40.00 15.00 171.62 104.61 压力bar 20.00 0.30 0.45 0.40 气化率0 0 0 0 质量流率 1.27E+05 6.36E+04 6.07E+04 2.99E+03 kg/hr DMO 2.37E+02 2.65E-10 7.34E+01 5.47E-02 MG 2.70E+03 1.69E-06 1.01E+02 8.68E-01 EG 6.07E+04 5.13E-23 6.05E+04 5.64E-02

热量衡算示例

热量衡算示例。 求车间生产能力为11万吨/年P 2O 5萃取磷酸(32%P 2O 5)过程的小时热量平衡(采用真空冷却)。 小时消耗量为:磷精矿36.7吨;100%H 2SO 433.5吨;真空蒸发器进口循环料浆1412吨,出口1406吨;返回淡磷酸`145.2吨。抽出235吨/小时料浆去过滤。萃取槽加入 稀释到56%,冷却到40℃的硫酸。淡磷酸含29.2%P 2O 5,循环 料浆的液相含32%P 2O 5。向萃取槽加入5000米3/小时空气以便排出逸出的气体。周围空间的热损失,根据实际数据约取支出热量的 1.8%。入萃取槽淡磷酸的温度55℃。空气温度20℃。排出气体温度40℃。排出料浆温度69℃。 (注意:磷精矿的小时消耗量为实际耗量,即由物料衡算100kg 磷矿生产的P 2O 5量和每年的P 2O 5产量进行折算;其理论耗量,是由Ca 5F(PO 4)3的理论P 2O 5含量求得Ca 5F(PO 4)3的消耗量,再以任务书中所给的原料磷精矿中P 2O 5含量换算成Ca 5F(PO 4)3的含量,进行原料磷精矿耗量的计算,理论耗量未考虑磷的损失和收率等)。 1、 收入热量: 总的热量由下列物料带入的热量确定:磷矿粉(Q 磷矿) ,硫酸(Q 硫酸),淡磷酸(Q 淡磷酸),以及反应热(Q 反应)和萃取槽中硫酸稀释热(Q 稀释 )。另外,还有空气(Q 空气)和循环料浆(Q 循环料浆)带入的热量。即: Q 进=Q 磷矿+Q 硫酸+Q 淡磷酸+Q 反应+Q 稀释+Q 空气+Q 循环料浆 (注意:因为采用真空冷却时需要将反应槽中的料浆泵入真空冷却器,冷却后再返回 反应槽,所以只有采用真空冷却时才需要考虑Q 循环料浆) 下面分别求每一项带入的热量: Q 磷矿=36700×0.783×17.6=505755(KJ) ≈505×106J(0.783——磷精矿比热,KJ/kg ·K;17.6——夏季月平均温度,即车间热负荷最大期间的温度℃ Q 硫酸=59800×2.470×40=5908747(KJ)≈5908.7×106J (式中:2.470——40℃时56%H 2SO 4的比热,KJ/kg ·K) H 2SO 4的比热可以查手册。当硫酸浓度Cs=81-100(%),温度t=20-250℃范围,硫酸溶液的平均热容为(H 2SO 4比热数学模型): C t =(B 0+B 1*Cs+B 2*Cs 2 +B 3*t+B 4*t 2 +B 5*Cs*t+B 6*Cs 2 *t)*4.19/t 式中系数:B 0=-38.2471158,B 1=0.8799812,B 2=-0.0050389, B 3=1.4884802,B 4=0.0002962,B 5=-0.0201982,B 6=0.0000868 (注意:计算时Cs 为百分数,即不带入%)。 Q 淡磷酸=145200×3.036×55=24245496(KJ)≈24245.5×106J [式中:3.036——29.2%P 2O 5磷酸溶液的比热KJ/kg ·K ,可以查曲线或按以下经验公式计算:C=4.2324-0.02968×40.3=3.036(KJ/kg ·K),式中:40.3为淡磷酸含H 3PO 4重量%]

热量衡算

热量衡算 1计算方法与原则 1.1热量衡算的目的及意义 热量衡算的主要目的是为了确定设备的热负荷。根据设备热负荷的大小、所处理物料的性质及工艺要求再选择传热面的形式、计算传热面积、确定设备的主要工艺尺寸。传热所需的加热剂或冷却剂的用量也是以热负荷的大小为依据而进行计算的。 1.2热量衡算的依据及必要条件 热量衡算的主要依据是能量守恒定律,其数学表达式为 Q1+ Q2+Q3=Q4+Q5+Q6 式1 其中: Q1——物料带入到设备的热量,kJ Q2——加热剂或冷却剂传给设备和所处理物料的热量,kJ Q3——过程热效应,kJ Q4——物料离开设备所消耗的热量,kJ Q5——加热或冷却设备所消耗的热量,kJ Q6——设备向环境散失的热量,kJ Q1(Q4)=ΣmC P(t2- t0)kJ式2 m——输入或输出设备的物料质量,kg C P——物料的平均比热容,kJ/(kg?℃) t2——物料的温度,℃ t0——基准温度,℃ Q5=ΣC P M(t2-t1)kJ式3 M——设备各部件的质量,kg C P——设备各部件的比热容,kJ/(kg?℃)

t1——设备各部件的初始温度,℃ t ——设备各部件的最终温度,℃ 2 Q5+Q6=10%Q总式4 热量衡算是在车间物料衡算的结果基础上而进行的,因此,车间物料衡算表是进行车间热量衡算的首要条件。其次还必须收集有关物质的热力学数据,例如比热容,相变热,反应热等。本设计还将涉及到的所有物料的热力学数据汇总成表4,以便于后期的计算。 1.3热量衡算基准 因为物料衡算计算的是各个岗位的天处理量,所以热量衡算计算的也是某个设备天换热介质消耗量,同时温度基准采用的是0℃做基准。当然,进行传热面积校核时,是根据批处理量计算。

物料衡算

三.工艺设计计算 3.1 物料横算 3.1.1物料衡算的意义 物料横算,是在已知产品规格和产量前提下算出所需原料量、废品量及消耗量。同时,还可拟定出原料消耗定额,并在此基础上做能量平衡计算。通过物料横算可算出: (1)实际动力消耗量 (2)生产过程所需热量或冷量 (3)为设备选型、决定规格、台数(或台时产量)提供依据 (4)在拟定原料消耗定额的基础上,可进一步计算日消耗量,每小时消耗量 等设备所需的基础数据。 综上所述,物料衡算是紧密配合车间生产工艺设计而进行的,因此,物料衡算是工艺设计过程的一项重要的计算内容。 3.1.2物料横算的方法 塑料制品的生产过程多采用全流程、连续操作的形式。 物料衡算的步骤如下: (1)确定物料衡算范围,画出物料衡算示意图,注上与物料衡算有关的数据。 物料衡算示意图如下:

(2)说明计算任务。如:年产量、年工时数等。 (3)选定计算基准。生产上常用的计算基准有:①单位时间产品数量或单位 时间原谅投入量,如:kg/h,件/h,t/h(连续操作常采用此种基准);②加入设备的原料量(间歇操作常采用此种基准)。 (4)由已知数据,根据下列公式进行物料衡算: ΣG1=ΣG1+ΣG3 式中:ΣG1——进入设备的物料量总和 ΣG2——离开设备的正品量和次品量总和 ΣG3——加工过程中物料损失量总和 (5)收集数据资料。一般包括以下方面: ①年生产时间:连续生产300~350 d 间歇生产200~250 d 连续生产时,年生产的天数较多,在300d左右,其他时间将考虑全长检修,车间检修或5%~10%意外停机。当间歇生产时,就要减去全年的休息日,目前为双休日加上法定假日全年约为110d,所以间歇生产比连续生产少110个工作日。 总之,确定了每年有效地工作时数后就能正确定出物料衡算的时间基准,算出每小时的生产任务,进而在以后的计算中选定设备的规格。 具体的选择天数要通过分析得出。 ②有关定额、合格率、废品率、消耗率、回收率等。在任何一个产品加 工过程中,合格产品都不是百分之百。由于设备原因、原材料原因以及人为原因都可能造成废品的出现。加工不同的产品出现废品的几率有差异,要具体情况具体分析。才外还应考虑车间管理水平、设备先进水平等,取高值与低值都应有充分的论据。经过电铲研究后发现:塑料制品合格率为85%~95%、自然损耗率为0.1%~0.15%,这主要是贮存、运输、

能量衡算

能量衡算 4.1热量衡算的目的 热量衡算主要是为了确定设备的热负荷,根据设备热负荷的大小、 所处理物料的性质及工艺确定设备的主要工艺尺寸。 4.2热量衡算依据 热量衡算的主要依据是能量守恒定律,以车间物料衡算的结果为基 础而进行的,所以,车间物料衡算表是进行车间热量衡算的首要条件。 4.3液化加热蒸汽量 4.3.1加热蒸汽消耗量D 可按下式计算: D=GC(t2-t1)/(I-λ﹚ 式中: G——淀粉浆量(kg/h) C——淀粉浆比热容[kJ/(kg·K)] t1——浆料初温(10+273=293K) t2——液化温度(90+273=363K) I——加热蒸汽焓2738kJ/kg(0.3Mpa ,表压) λ——加热蒸汽凝结水的焓,在363K时为377kJ/kg 4.3.2淀粉浆量G 根据物料衡算,日投工业淀粉1543.84Kg,由于为连续化液化,1543.84/24=64.3(Kg/h) 。 加水量为1:2.5, 粉浆量为G= 64.3× 3.5=225.14(kg/h) 4.3.3 粉浆干物质浓度 64.3× 86% × 100%÷225.14=24.6% 4.3.4粉浆干物质C 可按下式计算:C=C o*X+C水*(100-X) 式中: C o——淀粉质比热容,取1.55kJ/(kg·K) X——粉浆干物质含量,24.6% C水——水的比热容4.18KJ/(kg·K) C=1.55×24.6/100+4.18×(100-24.6)/100=3.53[kJ/kg·K] 4.3.5蒸汽用量 D=64.3×3.53×(363-283)/(2738-377)=7.68(kg/h) 灭菌是将液化液由90℃加热至100℃,在100℃时的λ为419kJ/kg ,则灭菌所用蒸汽量: D灭=64.3×3.53×(100-90)/(2738-419)=9.8(kg/h )。 由于要求在内使液化液由90℃加热至100℃,则蒸汽高峰量为:

热量衡算

热量衡算与热交换计算 热量衡算与热交换计算 一、热量衡算 传热计算根据总传热方程进行:Q=KA△tm 对于一个热交换器,传热计算的内容有两种,一为设计计算,即根据给定的传热量,确定热交换器的几何尺寸和结构参数;二为校核计算,即对某些热交换器,根据它的尺寸和结构进行校核,看其能否满足传热量的要求。这两种计算的关键都在于传热面积是否合适,计算的基本依据是总传热方程以及与之相关的热量衡算式,在第四节中,已对总传热方程进行了较为详细的讨论,下面介绍热交换中的热量衡算式。 当热损失为零时,对热交换器作热量衡算可得到单位时间的传热量,此传热量又叫热负荷,即式3-20中的传热速率Q。 热负荷分为两种,即工艺热负荷和设备热负荷,工艺热负荷是指工艺上要求的在单位时间内需要对物料加入或取出的热量,用QL表示,单位为W。设备热负荷是热交换器所具备的换热能力,所以设备热负荷也就是热交换器的传热速率Q。当热损失不可忽略时,为满足工艺要求,Q应大于QL。 由热量衡算得到的是工艺热负荷QL。如果流体不发生相变化,比热取平均温度下的比热,则有: QL=whcph(T1-T2)=wccpc(t2-t1) ( 3-29) 式中w----流体的质量流量,kg/s; cp----流体的平均定压比热,kJ/(kg?K); T----热流体温度,K; t----冷流体温度,K; (下标h和c分别表示热流体和冷流体,下标1和2表示热交换器的进口和出口)式3-29是热交换器的热量衡算式,也称为热平衡方程。若流体在换热过程中有相变,例如饱和蒸汽冷凝成同温度冷凝液时,则有: QL=whr=wccpc(t2-t1) (3-30) 式中wh----饱和蒸汽的冷凝速率,kg/s; r----饱和蒸汽的冷凝潜热,kJ/kg; 当饱和蒸汽在热交换器中冷凝后,冷凝液液温度继续下降到T2,两部分热量(即潜热和显热)要加起来计算,这时: QL=wh[r+cph(Ts-T2)]=wccpc(t2-t1) 式中cph-----冷凝液的比热,kJ/kg?K; Ts------冷凝液饱和温度,K。 为满足工艺要求,应该使热交换器的传热速率等于或略大于工艺热负荷, 即: Q≥QL (3-31)

化工能量衡算

制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能 量衡算。又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上 是热量衡算。生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产 过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。通过热量衡算, 对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需 传递的热量。 热量衡算的基础 热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表示 Q1+Q2+Q3=Q4+Q5+Q6 (1—1) 式中: Q1—所处理的物料带入设备总的热量,KJ; Q2—加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热 量为“+”,冷却剂吸收热量为“-”),KJ; Q3—过程的热效率,(符号规定过程放热为“+”;过程吸热为“-”) Q4—反应终 了时物料的焓(输出反应器的物料的焓) Q5—设备部件所消耗的热量,KJ; Q6—设备向四周散失的热量,又称热损失,KJ; 热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。(计算传热面积的热负荷必须以每小时作为基准,而该时间必须是稳定传热时间)热 量衡算温度基准,一般规定25℃。热量衡算式中各项计算从(1—1)式中可得: Q2 =Q 4+Q5+Q6-Q1-Q3 (1—2) 式中各项可用以下计算方法(1)Q1和Q4的计算 Q1和Q4均可以用下式计算: Q=∑miciT1(T2) 式中: mi—反应物体系中组分I的质量,Kg; ci—组分i在0—T℃时的平均比热容,KJ/(Kg*℃)或KJ/(Kmol·℃); T1(T2)—反应物系反应前后的温度,℃ (2)Q3的计算

物料衡算和热量衡算

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

反应热量衡算-4.18

2.热量衡算 主要对氯化反应器进行热量衡算,通过衡算,可以确定塔顶排出的汽化苯的量。 本衡算中,为计算方便,取进料中H 2和Cl 2温度同为25℃,取出料中氯化液的温度和塔顶排出气体的温度同为81℃。 2.1 反应器热量衡算中所使用到的数据 参考葛化厂资料,画出反应器热量衡算图: 81℃) (30℃) (81℃) 图2-1 反应器热量衡算图 考虑到本衡算中是多处进料和多处出料,并且温度也有差异,故对液体物料取25℃液相为计算基准,氯气、氯化氢等气体物料取25℃汽相为计算基准。 应用下面形式的热衡算方程 [8] : Q 1+Q 2+Q 3=Q 4+Q 5+Q 6+Q 7 (2-1) 式中 Q 1 ——物料带入热; Q 2 ——过程放出的热; Q 3 ——从加热介质获得的热; Q 4 ——物料带出热; Q 5 ——冷却介质带出的热; Q 6 ——过程吸收的热; Q 7 ——热损失,一般取5%Q 2。 本衡算中,经过分析可知Q 3(从加热介质获得的热),Q 5(冷却介质带出的热)以及Q 6(过程吸收的热)都可以取0,于是该热衡算方程可简化为:Q 1+Q 2=Q 4+Q 7。 查得:物质的液体热容温度关联式系数[9] :C pl =A+BT+CT 2+DT 3 表2-1 物质的液体热容温度关联式系数表

物质的理想气体热容温度关联式系数[10] :C p =a 0+a 1T+a 2T 2+a 3T 3+a 4T 4 苯在25℃下的气化热:△v H 298,苯= 33.6KJ/mol ,T c 苯=562.05K; 表2-2 物质的理想气体热容温度关联式系数表 物质的标准生成热:△f H 298,苯(l )=48.99KJ/mol ,△f H 298,氯苯(l )=11.0 KJ/mol , △f H 298,氯化氢(g )=-92.3 KJ/mol ,△f H 298,氯气(g )=0, △f H 298,二氯苯(l )= -17.5KJ/mol. 根据物料衡算,结果列于表2-3中: 2.2 物料带入热Q 1的热量衡算 分别取25℃液相和25℃汽相为计算基准,有:

第五章 能量衡算

第五章能量衡算 第一节概述 第二节热量衡算 第三节过程的热效应 第四节热量衡算举例 第五节加热剂、冷却剂及其其他能量消耗的计算 5.1 概述 5.1.1能量衡算的目的和意义 计算过程能耗指标进行方案比较,选定先进生产工艺。 能量衡算数据是设备选型和计算的依据; 是组织、管理、生产、经济核算和最优化的基础 5.1.2能量衡算的的依据及必要条件 依据为能量守恒定律 条件:物料衡算的数据,相关热力学物性数据。 5.1.3能量守恒的基本方程 输出能量+消耗能量+积累能量=输入能量+生成能量 5.1.4能量衡算的分类 单元设备的能量衡算和系统的能量衡算 5.2 热量衡算 5.2.1热量平衡方程式 Q1—物料带入设备的热量,kJ; Q2—加热剂或冷却剂传给设备及所处理物料的热量,kJ; Q3—过程的热效应,kJ;(注意符号规定) Q4—物料带出设备的热量,kJ; Q5—加热或冷却设备所消耗的热量或冷量,kJ; Q6—设备向环境散失的热量,kJ。 注意各Q的符号规定 Q2为设备的热负荷。若Q2为正值,需要向设备及所处理的物料提供热量;反之,表明需要从设备及所处理的物料移走热量。 对间歇操作,按不同的时间段分别计算Q2的值,并取其最大值作为设备热负荷的设计依据。

5.2.2 各项热量的计算 1、计算基准 一般情况下,可以0℃和1.013?105 Pa为计算基准 有反应的过程,也常以25℃和1.013?105Pa为计算基准。 2、Q1或Q4的计算 无相变时 物料的恒压热容与温度的函数关系常用多项式来表示: 若知物料在所涉及温度范围内的平均恒压热容,则: 3、Q3的计算 过程的热效应由物理变化热Q P和化学变化热Q C两部分组成 物理变化热是指物料的浓度或状态发生改变时所产生的热效应。若过程为纯物理过程,无化学反应发生,如固体的溶解、硝化混酸的配制、液体混合物的精馏等,则 Q C=0 。 化学变化热是指组分之间发生化学反应时所产生的热效应,可根据物质的反应量和化学反应热计算。 4、Q5的计算 稳态操作过程 Q5=0 非稳态操作过程由下式求Q5 Q5=∑GC P(T2-T1) G—设备各部件的质量,kg; C p—设备各部件材料的平均恒压热容,kJ?kg-1?℃-1; T1—设备各部件的初始温度,℃; T2—设备各部件的最终温度,℃。 与其他各项热量相比,Q5的数值一般较小,因此,Q5常可忽略不计。 5、Q6的计算 对有保温层的设备或管道,αT可用下列公式估算。 (1)空气在保温层外作自然对流,且T W<150℃ 在平壁保温层外,αT=9.8+0.07(TW-T) 在圆筒壁保温层外,αT=9.4+0.052(TW-T) (2)空气沿粗糙壁面作强制对流 当空气流速u不大于5m?s-1时,αT可按下式估算 αT=6.2+4.2u 当空气速度大于5m?s-1时,αT可按下式估算 αT=7.8u0.78

物料衡算举例

物料衡算举例: 实验三对硝基苯甲醚合成工艺研究本工艺研究型实验是设计性实验。要求学生独立完成文献资料的查阅,实验方法,合成路线的选择和设计,通过与其他同学在不同的实验条件下的实验结果进行比较和分析,分析讨论工艺条件对反应的影响,掌握精细有机合成工艺研究的基本方法。 一、实验目的 1) 通过查阅文献,了解对硝基苯甲醚的各种合成路线,初步掌握合成路线选择的方法。 2) 了解相转移催化反应的原理和合成方法。 3) 掌握精细有机合成工艺研究的基本方法。 二、实验原理 相转移催化反应是指:一种催化剂加速或能使分别处于互不相溶的二种溶剂中的物质发生反应。反应时,催化剂把一种实际参加反应的实体(负离子),从水相转移到有机相中,而相转移催化剂没有损耗,重复地起“转送”负离子的作用。 对硝基苯甲醚的反应式如下: Cl NO 2CH 3 OH/ OMe NO 2 三、主要试剂及仪器

试剂:对硝基氯苯,甲醇,季铵盐,氢氧化钠。 仪器:三口烧瓶,搅拌器,温度计,球型冷凝管,熔点测定仪,气相色谱仪。 四、实验步骤 在装有搅拌器,球型冷凝管和温度计的250毫升三口烧瓶瓶中,加入39.4克对硝基氯苯, 77毫升甲醇和4克季铵盐.加热至70℃,恒温回流.然后一次加入经预热至65℃的35%氢氧化钠溶液(24克氢氧化钠和45毫升水配制而成),反应2小时,再升温至80℃,继续反应2小时。反应完毕后将反应物倒入冰水中,过滤,滤饼依此用工业乙醇和无水乙醇重结晶几次。干燥后,测其熔点并用气相色谱仪测定含量。理论量:37.84克(原料对硝基氯苯纯度0.988;产品对硝基苯甲醚纯度0.99)虚拟工业生产放大倍数:单批、单个设备放大40000~60000倍。 设计依据 主要流程: 1.配碱过程: 2.

热量衡算

第二章 能量衡算 2.1 能量衡算概述 物料衡算完成后,对于没有传热要求的设备,可以由物料处理量,物料的性质及工艺要求进行设备的工艺设计,以确定设备的型式,台数,容积以及重要尺寸。对于有传热要求的设备则必须通过能量衡算,才能确定设备的主要工艺尺寸。无论进行物理过程的设备或是化学过程的设备,多数伴有能量传递过程,所以必须进行能量衡算。 2.2 能量衡算目的 对于新设计的生产车间,能量衡算的主要目的是为了确定设备的热负荷。根据设备热负荷的大小,所处理物料的性质及工艺要求在选择传热面的型式,计算传热面积,确定设备的主要尺寸。传热所需要的加热剂或冷却剂的用量也是以热负荷的大小为依据而进行计算的。对于有些伴有热效应的过程,其物料衡算也要通过与能量衡算的联合求解才能得出最后的结果。 2.3 能量衡算依据 能量衡算的主要依据是能量守恒定律。能量守恒定律是以车间物料衡算的结果为基础而进行的。 2.4 能量衡算过程 2.4.1 反应釜的热量衡算 反应工段的热量衡算主要体现在反应釜和夹套。 对于有传热要求的的设备,其热量衡算为: 654321Q Q Q Q Q Q ++=++; 式中 1Q —物料带入到设备的热量kJ ; 2Q —加热剂传给设备的热量kJ ; 3Q —物理变化及化学反应的热效应kJ ; 4Q —物料离开设备所带走的热量kJ ; 5Q —消耗于提高设备本身温度的热量kJ ; 6Q —设备向环境散失的热量kJ 。

物料热量衡算以天为单位。 1Q 与4Q 的计算 1Q 与4Q 均可按照下式计算:()tkJ mc Q Q p ∑= 41 式中m —输入或输出设备的物料量,kg p c —物料的平均比热容,()C kg kJ ??/ t —物料的温度,℃。 该式的计算标准是标准状态,即Pa C 3101013.10??及为计算标准。 固体和液体的比热容可以采用下式计算: M n c c p ∑?=α 184 .4; []1 式中:αc —元素的原子比热容,()C kg kJ ??/ ; n —分子中同一原子的原子数; M —化合物的分子量,kmol kg /。 相关元素的原子比热容值: []1 碳C )/(8.21C kg kJ c ??=α; 氢H C kg kJ c ??=/3.42α; 氧O C kg kJ c ??=/0.63α 计算比热容得到: 丙烯酸正丁酯 C kg kJ c p ??=?+?+??=/720.2128 0.623.4128.27184.41 甲基丙烯酸甲酯 C kg kJ c p ??=?+?+??=/527.2100 0.623.488.25184.42 醋酸乙烯酯 C kg kJ c p ??=?+?+??=/384.286 0.623.468.24184.43 丙烯酸 C kg kJ c p ??=?+?+?? =/185.272 .623.448.23184.44 同理计算出水的比热容 C kg kJ c p ??=/394.35。 有前面物料平衡计算可知

物料衡算和热量衡算

物料衡算和热量衡算 物料衡算 根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。 物料衡算的基础 物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。 ∑G1=∑G2+∑G3+∑G4 ∑G2:——输人物料量总和; ∑G3:——输出物料量总和; ∑G4:——物料损失量总和; ∑G5:——物料积累量总和。 当系统内物料积累量为零时,上式可以写成: ∑G1=∑G2+∑G3 物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。 物料衡算的基准 (1)对于间歇式操作的过程,常采用一批原料为基准进行计算。 (2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。物料衡算的结果应列成原材料消耗定额及消耗量表。 消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。 制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。 热量衡算 制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。 热量衡算的基础

物料衡算基本理论

物料衡算基本理论 四、衡算方法和步骤 1,明确衡算目的通过物料衡算确定生产能力、纯度、收率 2,明确衡算对象划定衡算范围,绘出物料衡算示意图 3,对有化学反应的体系应写出化学反应方程式 4,收集与物料衡算有关的计算数据 ○1生产规模;原辅材料、中间体及产品规格; ○2有关定额和消耗指标(产品单耗、配料比、回收率、提取率、收率)○3有关的物理化学常数(密度、蒸汽压、相平衡常数) 5,选定衡算基准 6,列出物料衡算方程式 7,根据物料横算结果,编制物料平衡表 物料衡算举例 一、物理过程物料衡算 实例6-1 硝化混酸配制过程物料衡算。已知混酸组成为硫酸46%(质量百分比,下同)、硝酸46%、水8%,配制混酸用的原料92.5%的工业硫酸、98%的硝酸以及含硫酸69%的硝化废酸。试通过物料衡算确定配制1000kg混酸时各原料的用量。为简化计算,设原料中除水外的其他杂质可忽略不计。 明确衡算目的明确衡算对象 以搅拌釜为衡算范围,绘制混酸配制过程物料衡算示意图

G H2SO4 G HNO3 G 废 图中共有4股物料,3个未知数,需3个独立方程 对硝酸进行物料衡算 对硫酸进行物料衡算 对水进行物料衡算 联立方程解得 混酸过程物料衡算表 30.980.461000 HNO G =?24 0.9250.690.461000 H SO G G +=?废2430.0750.020.310.081000 H SO HNO G G G ++=?废243399.5469.4131.1H SO HNO G kg G kg G kg ===废

二,化学过程的物料衡算 1,化学过程的几个概念 转化率 收率(产率) 选择性 例6-2 甲苯用浓硫酸磺化制备对甲苯磺酸。已知甲苯的投料量为1000kg ,反应产物中含有对甲苯磺酸1460kg ,未反应的甲苯20kg 。试分别计算甲苯的转化率、对甲苯磺酸的收率和选择性。 则甲苯的转化率为 则甲苯磺酸的收率为 100% A x A =?反应物A 的反应消耗量反应物的投料量 100% y A =?按目标产物收得量折算的反应物A 的量反应物的投料量 100% A ?=?按目标产物收得量折算的反应物A 的量反应物的反应消耗量 CH 3 + H 2SO 4 CH 3 SO 3H + H 2O 110-140 100020100%98% 1000 A x -=?=146092100%78.1% 1000172 y ?=?=?

物料衡算题目 (2)

食品工厂设计实训作业 浓缩苹果汁生产苹果醋工段 物料衡算 姓名:袁玥 班级:食品质量与安全2班 学号:1311441059 指导教师:杨俊杰 提交日期:2016年5月4日

已知:班产量1000kg,瓶装规格为275ml 的苹果醋的配方对其进行物 料衡算。 一、浓缩苹果汁生产苹果果醋原料及产品规格 表一 生产1吨苹果醋饮料消耗的原料和包装材料的定额 65-78%,吸光度:<0.300,浊度:<1.0),酵母,醋酸菌干粉,纯净水。 二、工艺技术指标及基础数据 表二 苹果醋生产技术指标和基础数据

色泽:浅黄色。 香气:具有苹果香气,较为浓郁。 滋味:具有一定的酸味,有苹果滋味。 形态:呈透明状液体,长时间放置会有一定的沉淀。 杂质:无肉眼可见的漂浮物。 2、理化指标 可溶性固形物:≧3.5%(20°折光仪测定) 总酸:1.5-4.5g/L 砷:≤0.2mg/kg 铅:≤0.3mg/kg 铜:≤5mg/kg 食品添加剂按照GB2760的规定执行。 3、微生物指标 菌落总数≤100cfu/ml 大肠杆菌≤6MPN/100ml 不能含有致病菌 4、检验方法 感官理化指标按照GB/T10972中的有关规定检验 微生物指标按照GB4789.2,GB4789.中的有关规定检验 重金属指标按照GB/T5009.11,GB/T5009.13中的有关规定检验 菌落总数,大肠杆菌群按照GB4789.2,GB4789.3中的有关规定检验三、工艺流程图

四.浓缩苹果汁生产苹果果醋物料衡算过程 (一)、根据配方求出班产量为1000kg时各物料的投放量 1、发酵液计算 浓缩苹果汁:100kg 纯净水:100×70%=(100+纯净水)×10% 计算得纯净水600kg 待发酵果汁:100+600=700kg 酒精培养液:700×2‰=1.4kg 酒精发酵液:700+1.4=701.4kg 醋酸发酵液:701.4×15%=105.2kg 发酵液:701.4+105.2=806.6kg 100kg 浓缩苹果汁生产苹果醋的衡算 调配液:806.6×(6/1000+2/1000+7/1000+7/1000)÷0.1=177.5kg 2、生产1000kg苹果醋所需原料的衡算 浓缩果汁需要量: 100÷36.44×1000=119.55kg 纯净水需要量: 600÷836.44×1000=717.33kg 酵母培养液需要量: ( 119.55+717.33)×2‰=1.67kg 醋酸菌培养液需要量: ( 119.55+717.33+1.67)×15%=125.78kg 醋酸发酵液: 119.55+717.33+1.67+125.78=964.33kg 调配液: 964.33×(6/1000+2/1000+7/1000+7/1000)÷0.1=212.15kg (二)、加工后的成品质量与正常损失 浓缩苹果汁需要量:119.55-119.55×2%=117.16kg 纯净水需要量: 717.33-717.33×3%=695.81kg

物料衡算练习

物料衡算练习: 例5 在间歇釜式反应器中用浓硫酸磺化甲苯生产对甲苯磺酸,其工艺流程如图所示,试对该过程进行物料衡算。已知每批投料量为:甲苯1000kg ,纯度99.9%(wt%,下同);浓硫酸1100kg ,纯度98%;甲苯的转化率为98%,生成对甲苯磺酸的选择性为82%,生成邻甲苯磺酸的选择性为9.2%,生成间甲苯磺酸的选择性为8.8%;物料中的水约90%经连续脱水器排出。此外,为简化计算,假设原料中除纯品外都是水,且在磺化过程中无物料损失。 解:以间歇釜式反应器为衡算范围,绘出物料衡算示意图。 原料甲苯:1000kg 纯度99.9% → 甲 苯 →磺化液 浓硫酸:1100kg 纯度98% → 磺化釜 →排水器脱水 图中共有4股物料,物料衡算的目的就是确定各股物料的数量和组成,并据此编制物料 平衡表。 对于间歇操作过程,常以单位时间间隔(一个操作周期)内的投料量为基准进行物料衡算。 进料: 原料甲苯中的甲苯量为:1000?0.999=999kg 原料甲苯中的水量为:1000-999=1kg 浓硫酸中的硫酸量为:1100?0.98=1078kg 浓硫酸中的水量为:1100-1078=22kg 进料总量为:1000+1100=2100kg ,其中含甲苯 999kg ,硫酸1078kg ,水23kg 。 出料:反应消耗的甲苯量为:999?98%=979kg 未反应的甲苯量为:999-979=20kg 主反应: 副反应I 副反应II 110~140 C + H 2O + H 2SO 4 CH 3 SO 3H CH 3 CH 3 CH 3 SO 3H + H 2SO 4 + H 2O 110~140 0C CH 3 CH 3 3H + H 2SO 4 + H 2O 110~140 C ????????? ? ? 水硫酸甲苯间甲苯磺酸邻甲苯磺酸对甲苯磺酸

干燥例题-物料衡算

采用常压干燥器干燥湿物料。每小时处理湿物料1000kg,干燥操作使物料的湿基含量由40%减至5%,干燥介质是湿空气,初温为20℃,湿度H0=0.009kg水/kg绝干空气,经预热器加热至120℃后进入干燥器中,离开干燥器时废气温度为40℃,若在干燥器中空气状态沿等焓线变化。试求: (1)水分蒸发量W kg/s; (2)绝干空气消耗量L kg绝干气/s; (3)如鼓风机装在新鲜空气进口处,风机的风量应为多少m3/s? 解:(1) 物料衡算:

W=Gc(X 1-X 2) 湿基变干基: X 1=0.4/(1-0.4)=0.667 X 2=0.05/(1-0.05)=0.0526 Gc=1000(1-0.4)=600 (kg 绝干料/h ) ∴ W=600(0.667-0.0526) =368.64 kg/h =0.1024 kg/s (2) 物料衡算 : 20W L H H =- 其中 H 1=H 0=0.009 kg 水/kg

绝干气 干燥器出口空气湿度H 未知? 2 确定干燥器出口状态 可通过焓变和进出温度求算,本题:t1=120℃,t2=20℃;I1=I2 I1=(1.01+1.88H1)t1+2490H1=1.01t1+ (1.88t1+2490)H1 I2=(1.01+1.88H2)t2+2490H2=1.01t2+ (1.88t2+2490)H2 ∴H2=(1.01×120+(1.88×120+2490)×0.009-1.01×40)/(1.88×40+2490)

=0.041 kg水/kg绝干气∴L=0.1024/(0.041-0.009)=3.1974 kg绝干气/s (3)体积流量: V=L×v H =3.1974[(0.772+1.244H0)(t0+273)/2 73] =3.1974[(0.772+1.244×0.009)×(20+ 273)/273] =2.69 m3/s

物料衡算(例子)

第三章物料衡算 & 3.1流程示意图 3.1.1画流程示意图 3.1.2 化学反应方程式: 3.1.3 确定计算任务: 聚合与沉析(混料槽)均属于间歇操作,需要建立时间平衡。由设计任务和生产现场可知生产规模、生产时间、消耗定额、各步损失以及聚合配方等工艺操作条件。可以顺流程展开计算,并按间歇过程与连续过程分别确定基准依次计算。 间隙过程基准:kg/釜;连续过程基准:kg/h & 3.2生产数据 3.2.1全装置生产数据 1、生产规模:20000吨PVC/年 2、生产时间:8000h

3、聚合釜数据:1)体积:33m3 2)装料系数:0.9 3)每釜投料量:10t 4)平均每釜产量:8486㎏ 4、生产周期 1 抽真空至600mmHg……………………………………………………………………………h 2 1 充氮再抽真空至600mmHg……………………………………………………………………h 2 2 加单体、助剂、水……………………………………………………………………………h 3 1 升温……………………………………………………………………………………………h 2 6 反应……………………………………………………………………………………………h 2 排气、清物料…………………………………………………………………………………h 11 清釜……………………………………………………………………………………………h 6 12 合计……………………………………………………………………………………………h 5、损耗分配 聚合车间总收率为94.8%。总消耗为6.2%。各步骤的损失分配如下(间歇过程以单体进料量为准,连续过程以聚合釜内反应生成的聚合物为准): 聚合釜:VC 0.1%;PVC 0.2%;混料槽:VC 0.8%;PVC 0.8%; 汽提塔:VC 0.1%;PVC 0.2%;离心:PVC 0.5% 气流干燥:PVC 0.1%;沸腾干燥:PVC 1%; 包装:PVC 1.5% 合计:6.2%(其中PVC占5.2%,VC占1.0%) 6、聚合配方 1)单体 纯度:为方便起见,按100%计算 新鲜料:回收料=9:1 2)水油比:1.85软水/VC 3)助剂: 名称用量 引发剂:IPP(75%)水溶液0.025%VC 分散剂: HPMC(6%水溶液)0.0365%VC PV A (3%水溶液)0.0365%VC 热稳定剂:有机锡0.025%VC PH调节剂:H3PO4(50%水溶液)0.046%VC

相关文档
最新文档