试验一 绝缘电阻、吸收比的测量.

试验一 绝缘电阻、吸收比的测量.
试验一 绝缘电阻、吸收比的测量.

试验一 绝缘电阻、吸收比的测量

一、实验目的

1.了解兆欧表的原理,掌握兆欧表的使用方法;

2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。

3.分析设备绝缘状况。

二、实验内容

1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;

2.测量高压直流下的试品泄漏电流。

三、实验原理

测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s 和15s 时测得的绝缘电阻之比为吸收比。即

K =R60///R15//

当K ≥1.3时,认为绝缘干燥,而以60s 时的电阻为该设备的绝缘电阻。

(a)原理图 (b ) 等值电路

图1-1 双层介质的吸收现象

下面以双层介质为例说明吸收现象,如图1-1。在双层介质上施加直流电压,当K 刚合上瞬间,电压突变,这时层间电压分配取决于电容.即 1

2021

C C U U t =+= 而在稳态(t -∞)时,层间电压取决于电阻,即

2

121

r r U U t =∞→ 若被测介质均匀,C 1=C 2,r 1=r 2,则∞→==+t t U U U U 21021

,在介质分界面上不

会出现电荷重新分配的过程。

若被测介质均匀C 1≠C 2,r 1≠r 2,则∞→=≠+t t U U U U 21021。这表明K 合闸后,两

层介质上的电压要重新分配。若C 1>,r 1>r 2,则合闸瞬间U 2>U 1;稳态时,U 1> U 2,即U 2逐渐下

降,U 1逐渐增大。C 2已充上的一部分电荷要通过r 2放掉,而C 1则要经R 和r 2从电源再吸收一部分电荷。这一过程称为吸收过程。因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。

图1-2吸收曲线

初始瞬间由于各种极化过程的存在,介质中流过的电流很大.随时间增加。电流逐渐减小,最后趋于一稳定值I g ,这个电流的稳定值就是由介质电导决定的

泄漏电流。与之相应的电阻就是介质的绝缘电阻,图1-2中阴影部分面积就表示了吸收过程中的吸收电荷,相应的电流称为吸收电流。它随时间增长而衰减,其衰减速度取决于介质的电容和电阻(时间常数为2

12121)(r r r r C C ++=τ)。对于燥绝缘,r 很大,故τ很大,吸收过程明显,吸收电流衰减缓慢,吸收比K 大;而绝缘受潮后,电导增大,r 减小,I g 也增大,吸收过程不明显1→K 。因此,可根

据绝缘电阻和吸收比K 来判断绝缘是否受潮。

四、实验装置及接线图

1.用兆欧表测量试品绝缘电阻和吸收比的接线图

图1-3 兆欧表测量绝缘电阻

图中:

R1、R2:串联电阻;E:摇表接地电极;

G:摇表屏蔽电极;L:摇表高压电极;

A、B、C:三相电缆的三个单相端头。

2.用数字式兆欧表测量电缆护套的绝缘电阻

图1-1 兆欧表测量绝缘电阻接线图

图1-4 数字式兆欧表测量绝缘电阻接线图

四、实验内容

用兆欧表测量试品绝缘电阻和吸收比的接线图

1.断开被试设备的电源及一切外联线.将被试品对地充分放电,容量较大的放电不得少于2min。

2.用清洁干净的软布擦去被试品表面污垢:

3.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。

4.按图1-3接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。

5.读取15秒及60秒时的读数,即为R

15及R

60

6.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。

7.表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2和3。

8.测量时应记录当时试品温度.气象情况和日期。

用数字式兆欧表测量电缆护套的绝缘电阻

1.机械零位校准:档位开关拨至OFF位,调节机械零位调节钮使仪表指针标准到标度尺的“∞”分度线上。

2.连接测试线:将红色测试线的红色插头插到兆欧表的高压输出端,黑色插头插入屏蔽端,将另一黑色插头插入仪器接地端插座。将测试线的另一端接至被测试品的测试端,在进行高阻测量时,为消除表面泄漏电流的影响,还应使屏蔽端接至被测试品测试端与地之间绝缘外表地屏蔽层(屏蔽环)上。

3.测量

a.按测试要求的电压将档位开关置于相应电压位置,此时表盘电源指示灯亮,此时LCD数字显示使用场合的环境温度。

b.接通电源,按下高压开关按钮

五、实验数据处理

1.列出所试电缆的型号、电压等级、相应的绝缘电阻的测量结果。

2.分析测量结果的正误、每个数据测量五组,求其误差的平方均值。

3.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。对于未受潮的电气设备吸收比应在1.3~2范围内,电气设备受潮时,此比值近与1。对于电容量不大,绝缘正常的试品,因吸收比不显著,故无实用价值。

六、实验结果分析

1.绝缘电阻

不同结构、不同容量、不同电压等级的试品,其绝缘电阻有很大差异。因此,试验规程中一般没有也不应规定统一的绝缘电阻合格值。绝缘电阻的判断是根据工厂、安装、交接、大修及历次试验的历史数据进行相互比较.根据同期同型产品,同一产品不同相的数据进行相互比较。

通常认为当绝缘电阻降至初始值的60%时应查明原因。造成绝缘电阻显著下降的原因有:

1)全部或局部绝缘有贯穿性受潮;

2)全部或局部表面有贯穿性脏污;

3)绝缘中存在因局部放电造成的贯穿性烧伤导电通道。

2.吸收比

吸收比是同一设备两个电阻的比值.故排除了绝缘结构几何尺寸的影响。规程规定了在100C-300C ,吸收比不小于1.3。

七、思考题

1.加在被试品上的电压是什么极性?为什么要采用这种极性的电压?

2.测量绝缘电阻时为什么同时要记录温度?

3.为什么几何尺寸不同时绝缘电阻也不同?吸收比与几何尺寸有关吗?

实验二泄漏电流及直流耐压试验

一、实验目的

1.掌握获得直流高压的方法;

2.学习测量泄漏电流的方法,并根据泄漏电流的变化状况来分析绝缘状况。

二、试验装置及接线

测量泄漏电流所需的直流高压是利用交流电压经整流器整流而获得的。用得较多、最简单的是半波整流电路如图6。图中C为稳压电容,可减小输出电压的脉动,一般取C为0.1PF即可,对大容量试品.如电缆、电力电容器等.其本身电容量就很大.可不用电容器。

R1为保护电阻.用以限制当被试设备击穿放电时在回路中造成的大电流,其阻值按硅堆整流器的短时最大允许电流来选择

R =U/Im(MΩ)

式中,u为试验时所加直流高压,kV;Im为硅堆的短时最大允许电流,mA;为保证电阻R有一定热容量,且电阻表面不发生闪络,宜采用水阻,表面长度按lkv/cm设计。

当硅堆串联使用时.为使硅堆电压分布均匀,需并联均压电阻.其阻值一般取硅堆反向电阻值的1/3~1/4。

所产生的直流高压可用静电电压表直接测量或通过高阻串联微安表进行测量.如图6。高阻值电阻R2的选择由被测电压的大小而定,一般取流过R2的电流为数十微安到1mA.并折算成kV数。

利用微安表测量泄漏电流,其接线常有图7(a)、(b))两种。图7(a)中微安表在低压端.读数比较安全,操作方便。但试品需对地绝缘.在现场中实现困难。所以工程上常用图7(b)所示接线,微安表在高压端.为避免高压部分产生电晕

和表面泄漏电流引起误差.将微安表放入屏蔽罩内且采用屏蔽的高压引线,这样测量准确,但操作不方便。

为避免在试验过程中大电流通过微安表.微安表需进行保护,一般的保护线路如图8。图中C为滤波电容.用来滤掉测量回路中的交流分量并使放电管F能稳定放电,一般取0.5-5uF.300V;放电管F是保证回路中出现微安表不允许的电流时能迅速放电.将微安表短接。放电管放电电压约50-150V,利用在微安表支路中串一适当增压电阻R’,其阻值为R’= UF/IμA×106Ω。其中UF 为放电管实际放电电压(V)。IμA为多量程微安表所用挡的电流满刻毒值(μA)。

三、实验原理

泄漏电流测量原理与绝缘电阻的测量原理完全相同。兆欧表由于其容量小.故绝缘电阻的测量受其负载特性的影响,绝缘劣化时影响尤为严重。用直流高压装置来测量绝缘的泄漏电流时,与兆欧表相比有以下优点:1)试验电压高,且可任意调节试验电压值,对一定电压等级的被试品加以相应的试验电压,可使绝缘奉身的弱点更易显示出来;同时在升压过程中可随时监视微安表的指示,以了解绝缘状况:如绝缘良好.则泄漏电流与电压的关系应是成正比例增大:如绝缘有缺陷或受潮时,泄漏电流的增长比电压增长快.且电压较高时.泄漏电流急剧增加,还会有一些不正常现象;2)微安表的测量精度比兆欧表高:3)测量泄漏电流可与直流耐压合并进行。

直流耐压试验与泄漏电流测量,方法一致,但试验的作用有所不同。前者校核耐电强度,其试验电压较高:后者着重检查绝缘状况,其试验电压较低。二者均能反映设备受潮、劣化和局部缺陷等问题。而直流耐压因电压高对于发现局部缺陷更有效。

四、实验方法

1.根据现有条件选择合适的试验设备和接线图。

2.按接线图接线。通电前。应查看接线和所有表计数值是否正确,调压器位置是否处在零位。

3.试验中电压逐渐升高,并读取相应的泄漏电流值。

4.试验中如有击穿、闪络、微安表指针大幅度摆动或电流突变等异常现象时,应马上降压、切断电源,查明原因经处理后再做。

5.试验完后,降压,切断调压器电源,最后切断总电源。

6.每次试验完毕.须将被试品经电阻对地充分放电。根据放电火花的大小.也可大概了解被试品绝缘状况。放电时应使用绝缘棒,放电完毕应在被试品上挂上接地棒.方可拆线或更改接线。

7.再试验时,须检查接地线是否拆除。

五、实验结果分析

与绝缘电阻一样.不同试品的泄漏电流不同。为正确判断绝缘状况,也应将所测得的泄漏电流值进行纵横比较。同样,温度对其影响也较大,应尽量在接近温度下测量,不同温度下的泄漏电流应换算为同一温度时的值再作比较。

测试泄漏电流时,由于所加电压较高,如达到试验电压时还可以兼作直流耐压。规程中给出了不同试验电压下的泄漏电流参考值。直流耐压可以发现一些未贯穿的集中性缺陷,甚至可能发现试品将击穿,泄漏电流大大增加。

六、思考题

1.泄漏电流及直流耐压试验中试品为变压器及电缆时,接线图如何?

2.为提高测量准确度可采用哪些方法?

实验三 介质损耗正切角tan δ的测量

一、实验目的

1.了解西林电桥的工作原理及结构,学习操作测试方法;

2.学习绝缘介损角正切的测量方法;

3.掌握用所得测量结果判断被试品绝缘状况的方法。

二、实验原理

工程介质都不是理想的电介质,都是有损耗的.在交流电压作用下.绝缘物中产生的损耗 称为介质损耗。把绝缘的功率因数角的余角称为介质损失角.用δ表示.有损介质可用串联或并联等值电路来分析.如图9。

对并联等值电路有:CU R U

ωδ=tan δωtan 22C U R U P == 对串联等值电路有:x x x x R C C I IR ωωδ==tan

δδω222tan 1tan +==x C U R I P 可见介质损耗P 与外施电压U ,试品几何尺寸均有关系,而tan δ却与试品尺寸无关,仅与试品的绝缘性能有关。因此可用tan δ值表征介质在交流下的绝缘性能:—般介质的tan δ很小,故1tan 1≈+δ。因此,无论是串联还是并联等值电路,其计算表达式是一样的。

三、试验装置及接线

仪器测量线路包括一标准回容(CN)和一被试回路(Cx),如图3-1所示。标准回路由内置高稳稳定度标准电容与测量线路组成,被试回路由试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D 转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位差,再由单片机运用数字化实时

采样方法,通过矢量运算便可以得出试品的电容值和介质损耗正切值。

图3-1精密介损测量仪工作原理

测试接线方式分为正接法和反接法两种,正接法是采用仪器的专用高压电缆从仪器后部的Cx端上引出接至被测电缆的高压端(电缆导体),专用低压电缆从仪器后部的Zx端引出接至被测电缆的低压端,其接线图见图3-2(a)。反接法是用专用高压电缆从仪器后部的Cx端上引出接至被测电缆,低压端接地如图3-2(b)。

缆图2-2(a)正接法接线图

缆图2-2(b)反接法接线图

四、实验内容:

1.测量电缆的主绝缘的介质损耗正切角因数tanδ。

2.测量电缆的护套绝缘的损耗因数tanδ。

五、试验步骤

1.按要求进行正确接线,保证接地系统良好,选定试验电压等级。

2.打开电源,启动仪器进行测试。

3.测试完成后,关闭仪器,对电缆进行放电,最后进行拆线。

六、实验结果分析

一般,绝缘良好的介质tan δ很小,绝缘受潮、老化后tan δ增大。

由于tan δ与温度有很大关系,温度愈高,tan δ愈大。因此在比较时应注意在相同温度下进行。不同温度下应换算,换算公式为

)(tan )20(tan 00C t K C δδ?=

式中,)20(tan 0C δ为C 020时绝缘的tan δ值;

)(tan 0C t δ为试验时实际温度C t 0时的tan δ;K 为换算系数,与绝缘类型有关。“规程”规定了C 020时tan

δ (%)值。

对大体积绝缘设备中的局部缺陷,测量tan δ是难以发现的。应尽可能将设备分解,逐一测试,直至找到有缺陷的部分。

设备绝缘的tan δ单个值,虽能说明一些问题,但对于了解电气设备的实际情况来说,更重 要的是观察在不同试验电压下tan δ的变化。在不同试验电压下,tan δ变化太大时,说明设备绝缘必然有不良现象存在。

六、注意事项

1.仪器自带有升压装置,应注意高压引线的绝缘距离及人员安全。

2.仪器应可靠接地。

3.使用仪器检测设备前,应对设备进行绝缘检测。

4.确定设备的耐压等级,正确选择仪器升压档位,以防击穿设备,损坏仪器。

5.仪器启动后,不允许突然断电,以免引起过压损坏设备。

6.如仪器进入保护状态,请先检测输入电压是否过高,然后检测被试品是否严重漏电或击穿。

七、思考题

1.同一试品在正、反接线下的测试结果和不同电压F 的测试结果有无差异?为什么?

2.为什么测量tanJ 对大体积设备中的局部缺陷不灵敏?

绝缘电阻和吸收比试验

实验一 绝缘电阻和吸收比实验 1、实验目的 (1)掌握兆欧表的原理及使用方法; (2)掌握绝缘电阻和吸收比的测量方法及步骤; (3)掌握根据实验数据判断测试对象绝缘状况的方法; (4)了解数字兆欧表的原理及使用。 2、实验设备 手摇兆欧表,数字兆欧表,接地电阻测试仪,电缆,导线,计时器 3、兆欧表的接线及原理 兆欧表是一种高值电阻测量仪表。用途非常广泛,我们一般常利用它检验一切电气设备和器材的电气绝缘程度。 图1 兆欧表实图 图2 测试接线图 如图1、图2所示。被测绝缘电阻接到L 和E 接线柱之间时,指针的停留位置由电流线圈电流和电压线圈电流的比值决定。流过电压线圈的电流大小由分压电阻RV 确定,而电流线圈的电流由被测绝缘电阻的大小确定。指针指示位置由两个线圈通过电流之比决定,所以兆欧表的读数基本上不受手摇发电机转速及发电机直流电压的影响,但要求手摇兆欧表测试时应保证转速为120转/min 。 保护环G 装在L 接线柱的外圈,它和L 接线柱绝缘,并接至手摇发电机的负极。保护环G 的作用是排除由于(电气设备瓷套外表面泄漏通道)导线绝缘层表面漏电电流和L ,E 接线柱间漏电电流所引起的误差。 4、实验步骤 E L G 电缆外皮 内层绝缘 电缆芯M Ω

(1)断开试品电源及拆除一切对外连线,将其接地充分放电,放电时间不少于 1min ,对于电容量较大的试品(如变压器、电容器、电缆等),放电时间一般不少于 2min 。若遇重复试验或加过直流高压后的试品,放电时间则应更长些。进行放电工作应使用绝缘工具(如绝缘棒、绝缘手套、绝缘钳等),不得用手直接接触放电导线。 (2)用清洁柔软的布擦去试品表面的污垢,必要时要先用汽油或其他适当的去垢剂洗净套管表面的积污。 (3)读取手摇兆欧表及数字兆欧表的铭牌并记录主要数据。 手摇兆欧表 数字兆欧表 (4)将兆欧表水平放置,将摇表的L 端子和E 端子开路,摇动手柄至额定转速(120r/min ),此时指针应指 “ ∝ ” ;然后再用导线瞬时短接 “ 火线 ” (L )和地 “ 地线 ” (E )端钮,并轻轻摇动手柄,指针应指 “ 0 ” 位”(注意轻摇以免打坏表针)。 兆欧表上的接线端子“E ”是接在设备和回路的接地端,“L ”是接在设备和回路的绝缘端,“G ”是接设备和回路屏蔽端的。 (5)将试品的非测量部分均接地,然后将接地线接于兆欧表的接地端头 “E ” 上;被测量部分用绝缘导线上接于兆欧表的火线端头 “L ” 上( “E ” 和 “L ” 两引线不得缠绕在一起)。试品表面泄漏电流较大时,为避免表面泄漏电流的影响,必须加以屏蔽(可用软裸线在绝缘表面缠绕几圈,其部位就靠近被测量部分,但不得相碰),并用绝缘导线接于兆欧表的屏蔽端 “G ” 上。 (6)驱动兆欧表达额定转速,待指针稳定后, 读取绝缘电阻值。 电缆绝缘电阻 导线绝缘电阻 (7)做吸收比试验时,为了正确测量15s 和60s 的绝缘电阻值,应先将兆欧表摇至额定 被试品不接地 的测试接线被试品接地的测试接线被试品接地带屏蔽的测试接线 Cx Cx Cx E G L L G E E G L

电缆绝缘电阻的测量方法

电缆绝缘电阻的测量方法 1、电缆测量应在光线充足,空气干燥的条件下进行,测量推荐温度20±5℃。 2、电缆绝缘测量的工作负责人必须有三年及以上高压电气作业经验。 3、高压电缆测量前,应办理“两票”。 4、低压电缆测量前,应办理低压柜停送电工作票。 5、电缆绝缘电阻测量之前,应首先断开电缆的电源及负荷,并经充分放电之后方可进行。 6、按照电缆的额定电压选择合适的兆欧表,详见表1。 表1 兆欧表选择标准 序号电缆额定电压等级兆欧表电压等级 1 500V以下电缆500V兆欧表 2 500V<U≤1kV电缆1000V兆欧表 3 1kV以上电缆2500V兆欧表 7、测量前应对兆欧表进行开路实验和短路试验。测量时要先将摇表放平,摇动手把到额定转速此时指针应指向∞,再减低转速,用导线短接正负极,指针应指向零,证明摇表正常。 8、测量时应先测量A、B、C三相对地绝缘电阻,然后测量A、B、C相间绝缘,最后测量地线对绝缘皮的绝缘。测量时另一端安排专人看守,防止电缆相间接触或者接地。 9、遥测时摇表手把的转动速度约120r/min,待仪表指针稳定后,并记录电缆电阻值。停止遥测前,应将表线与电缆的连接断开,以免电缆向摇表反充电。 10、测量完毕后,对电缆芯线进行充分放电的以防触电。 11、1千米电缆的绝缘值应满足表2要求。 表2:电缆绝缘值合格标准 序号电缆电压等级新电缆旧电缆 1 1kv及以下不低于50MΩ不低于2MΩ 2 1kv以上不低于100MΩ不低于50MΩ12、1千米长度的绝缘电阻值=电缆的实际长度(km)×电缆绝缘电阻实测值。对于不足1千米的电缆绝缘测量时,其合格值参考1千米电缆的绝缘合格值。

绝缘电阻和吸收比测试

绝缘电阻和吸收比试验 测量设备的绝缘电阻,是检查其绝缘状态最简便的辅助方法在现场普遍采用兆欧表来测量绝缘电阻,由于选用的兆欧表电压低于被试物的工作电压,因此,此项试验属于非破坏性试验,操作安全、简便。由所测得的绝缘电阻值可发现影响电气设备绝缘的异物,绝缘局部或整体受潮和脏污,绝缘油严重老化,绝缘击穿和严重热老化等缺陷,因此,测量绝缘电阻是电气安装、检修、运行过程中,试验人员都应掌握的基本方法。 一、绝缘电阻和吸收比 绝缘电阻是指在绝缘体的临界电压下,加于试品上的直流电压与流过试品的泄漏电流(或称电导电流)之比,即R= U / Ie 如果施加的直流电压超过绝缘体的临界电压值,就会产生电导电流,绝缘电阻急剧下降,这样,在过高电压作用下绝缘就遇到了损伤,甚至可能击穿。所以一般兆欧表的额定电压不太高,使用时应根据不同电压等级的绝缘选用。 工程上所用的绝缘介质,并非纯粹的绝缘体,在直流电压的作用下,会产生多种极化,并从极化开始到完成,需要一定的时间,通常利用绝缘的绝缘电阻随时间变化的关系,作为判断绝缘状态的依据。 在绝缘体上施加直流电压后,其中便有3种电流产生,即电导电流、电容电流和吸收电流。这3种电流的变化能反映出绝缘电阻值的大小,即随着加压时间的增长,这3 种电流值的总和下降,而绝缘电阻值相应地增大,对于具有夹层绝缘(如变压器、电缆、电机等)的大容量设备,这种吸收现象就更明显。,因为总电流随时间衰减,经过一定时间后,才趋于电导电流的数值,所以,通常要求在加压1min后,读取兆欧表的数值,才能代表真实的绝缘电阻值。 当试品绝缘受潮、脏污或有贯穿性缺陷时,介质内的离子增加,因而加压后电导电流大大增加,绝缘电阻大大降低,绝缘电阻值即可灵敏地反映出这些绝缘缺陷,达到

电缆绝缘电阻的正确测量

电缆绝缘电阻的正确测量 电线电缆命名与型号 命名原则及案例: 电线电缆的完整命名通常较为复杂,所以人们有时用一个简单的名称(通常是一个类别的名称)结合型号规格来代替完整的名称,如“低压电缆”代表 0.6/1kV级的所有塑料绝缘类电力电缆。电线电缆的型谱较为完善,可以说,只要写出电线电缆的标准型号规格,就能明确具体的产品,但它的完整命名是怎样的呢? 电线电缆产品的命名有以下原则: 1、产品名称中包括的内容 (1)产品应用场合或大小类名称 (2)产品结构材料或型式; (3)产品的重要特征或附加特征 基本按上述顺序命名,有时为了强调重要或附加特征,将特征写到前面或相应的结构描述前。 2、结构描述的顺序 产品结构描述按从内到外的原则:导体-->绝缘-->内护层-->外护层-->铠装型式。 3、简化 在不会引起混淆的情况下,有些结构描述省写或简写,如汽车线、软线中不允许用铝导体,故不描述导体材料。 案例: 额定电压8.7/15kV阻燃铜芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆 “额定电压8.7/15kV”——使用场合/电压等级 “阻燃”——强调的特征 “铜芯”——导体材料

“交联聚乙烯绝缘”——绝缘材料 “钢带铠装”——铠装层材料及型式(双钢带间隙绕包) “聚氯乙烯护套”——内外护套材料(内外护套材料均一样,省写内护套材料) “电力电缆”——产品的大类名称 与之对应的型号写为ZR-YJV22-8.7/15,型号的写法见后面的说明。 电线与电缆的区分 其实,“电线”和“电缆”并没有严格的界限。通常将芯数少、产品直径小、结构简单的产品称为电线,没有绝缘的称为裸电线,其他的称为电缆;导体截面积较大的(大于6平方毫米)称为大电线,较小的(小于或等于6平方毫米)称为小电线,绝缘电线又称为布电线。 电线电缆的型号组成与顺序如下: [1:类别、用途] [2:导体] [3:绝缘] [4:内护层] [5:结构特征] [6:外护层或派生] [7:使锰卣] 1-5项和第7项用拼音字母表示,高分子材料用英文名的第位字母表示,每项可以是1-2个字母;第6项是1-3个数字。 型号中的省略原则:电线电缆产品中铜是主要使用的导体材料,故铜芯代号T省写,但裸电线及裸导体制品除外。裸电线及裸导体制品类、电力电缆类、电磁线类产品不表明大类代号,电气装备用电线电缆类和通信电缆类也不列明,但列明小类或系列代号等。

变压器绝缘电阻测试方法

油浸自冷式变压器绝缘电阻的测量 1、兆欧表的选用及检查? 答:兆欧表的选择和检查:主要考虑兆欧表的额定电压和测量范围是否与被测的电器设备绝缘等级相适应。 (1)选用2500V的兆欧表; (2)对兆欧表进行外观检查:外观应良好,外壳完整,玻璃无破损,摇把灵活,指针无卡阻,接线端子应齐全完好,表线应是单根软绝缘铜线且完好无损、其长度不应超过5米; (3)对兆欧表进行开路试验:分开两条线分开(L和E)处于绝缘状态,摇动兆欧表的手柄达120r/min表针指向无限大(∞)为好; (4)对兆欧表进行短路试验:摇动兆欧表手柄到120r/min,将两只表笔瞬间搭接一下,表针指向“0”(零),说明兆欧表正常; (5)测试线绝缘应良好,禁止使用双股麻花线或平行线。 2、对变压器绝缘电阻的要求是: 答:绝缘电阻的名称: 高对低及地:(一次绕组对二次绕组和外壳)高压绕组对低压绕组及外壳的绝缘电阻; 低对高及地:(二次绕组对一次绕组和外壳)低压绕组对高压绕组及外壳的绝缘电阻; 绝缘电阻合格值的标准是: (1)这次测得的绝缘电阻值与上次测得的数值换算到同一温度下相比较,这次数值比上次数值不得降低30%; (2)吸收比R60/R15(遥测中60秒与15秒时绝缘电阻的比值),在10~30℃时应为1.3被及以上: (3)一次侧电压为10kV的变压器,其绝缘电阻的最低合格值与温度有关。

变压器绝缘电阻计算口诀:利用口诀计算出各温度下的绝缘电阻“升十减半,减十翻倍,良好乘以一点五” 吸收比:R 20 = R t X 10t-20/40温度每升高10O C ,R t X 2/3倍。温度每降低10O C , R t X 1.5倍。 (4)新安装的和大修后的变压器,其绝缘电阻合格值应符合上述规定。运行中的变压器则不低于10兆欧。 3、试述对一台运行中的变压器进行绝缘测量的全过程(按操作顺序回答。安全措施应足够)。 (1)接线方法:将变压器停电、验电并放电后按以下要求进行。 摇测一次绕组对二次绕组及地(壳)的绝缘电阻的接线方法:将一次绕组三相引出端lU、lV、1W用裸铜线短接,以备接兆欧表“L”端;将二次绕组引出端N、2U、2V、2W及地(地壳)用裸铜线短接后,接在兆欧表“E”端;必要时,为减少表面泄漏影响测量值可用裸铜线在一次侧瓷套管的瓷裙上缠绕几匝之后,再用绝缘导线接在兆欧表“G”端; 摇测二次绕组对一次绕组及地(壳)的绝缘电阻的接线方法:将二次绕组引出端 2U,2V、2W、N用裸铜线短接。以备接兆欧表“L”端;将一次绕组三相引出端1U、1V、1W及地(壳)用裸铜线短接后,接在兆欧表“E”端;必要时,为减少表面泄漏影响测量值可用裸铜线在二次侧瓷套管的瓷裙上缠绕几匝之后,再用绝缘导线接在兆欧表“G”端。 (2)准备工作 组织准备:

吸收比测量试验

试验一绝缘电阻、吸收比的测量 、实验目的 1. 了解兆欧表的原理,掌握兆欧表的使用方法; 2?学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。 3. 分析设备绝缘状况。 二、实验内容 1. 用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比; 2. 测量高压直流下的试品泄漏电流。 三、实验原理 测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s和15s时测得的绝缘电阻之比为吸收比。即K = R6d/ RlS 当K> 1.3时,认为绝缘干燥,而以60s时的电阻为该设备的绝缘电阻。 (a)原理图(b)等值电路 图1 —1双层介质的吸收现象 下面以双层介质为例说明吸收现象,如图1-1。在双层介质上施加直流电压,当K 刚合上瞬间,电压突变,这时层间电压分配取决于电容?即 而在稳态(t —%)时,层间电压取决于电阻,即 若被测介质均匀,C2, n二「2,则b b ,在介质分界面上不 U 2 U 2t 会出现电荷重新分配的过程。 若被测介质均匀G M G,「1工「2,则U^ +工丛t匕。这表明K合闸后,两 U2 U2 t 层介质上的电压要重新分配。若G>,「1>「2,则合闸瞬间U>U;稳态时,U> U2, 即U2逐渐下 降,U逐渐增大。C2已充上的一部分电荷要通过「2放掉,而C则要经R和「2从电源再吸收一部分电荷。这一过程称为吸收过程。因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。 图1-2吸收曲线 初始瞬间由于各种极化过程的存在,介质中流过的电流很大?随时间增加。电流逐渐减小,最后趋于一稳定值l g,这个电流的稳定值就是由介质电导决定的泄漏电流。与之相应的电阻就是介质的绝缘电阻,图 1 —2中阴影部分面积就表示了吸收过程中的吸收电荷,相应的电流称为吸收电流。它随时间增长而衰减,其衰减速度取决于介质的电容和电阻(时间常数为T=(G1 +C2)r1r2)。对于燥绝缘,r很大,故 很大,吸收过程明显,吸收电流衰减缓慢,吸收比K大;而绝缘受潮后,电导增大,r减

教你如何绝缘电阻测试

五、关于电机绕组绝缘电阻的合格标准问题:在电机额定负载工作到稳定状态时,其绕组与机壳之间的绝缘电阻Rm(单位为MΩ)应符合下式所表示的关系。式中:U为被试电机绕组的额定电压,单位为V;P为被试电机的额定功率,单位为kw。 Rm≥U/(1000+P/100) 因P/100相对于1000而言很小,所以可以忽略不计,此时上述公式就简化为“电机电压每千伏,绝缘电阻超一兆”Rm≥U/1000对于我们常见的380v电机,在热态时,其绝缘电阻应不小于(380/1000)MΩ=0.38MΩ,即Rm≥0.38MΩ 上式计算值低于0.38MΩ时,则按0.38MΩ考核。 但日常使用电机时,一般都是在冷态下测量,以确定该电机绕组绝缘是否正常。此时的标准怎样给出,GB14711—2006中规定,对低压电机(1100V及以下的电机)应不低于5MΩ。高压电机没有具体规定,一般需要由供需双方协商确定。 六、关于吸收比:对于较大容量的电机绕组,应通过测量吸收比的办法检查其受潮情况,受潮严重时,即使绝缘电阻合格,也不可投入使用。确的方法是先设法将电机绕组烘干,再测量吸收比,若达到要求,再投入正常使用。 绕组的吸收比,是从开始摇测到第15s和到第60s时,两个绝缘电阻值的比值。用B代表吸收比,Rm15和Rm60分别代表第15s和第60s时的两个绝缘电阻值,则用算式表示为:B=Rm60/Rm15 吸收比的合格标准是≥1.3。若<1.3,则说明该绕组受潮较严重。 一般铜线安全计算方法是: 2.5平方毫米铜电源线的安全载流量--28A。

4平方毫米铜电源线的安全载流量--35A。6平方毫米铜电源线的安全载流量--48A。10平方毫米铜电源线的安全载流量--65A。16平方毫米铜电源线的安全载流量--91A。25平方毫米铜电源线的安全载流量--120A。 绝缘电阻测试记录

绝缘电阻正确的测量方法

绝缘电阻正确的测量方法 在使用兆欧表时,自身会产生很高的电压,由于测量对象通常为电气设备,所以必须正确使用,否则将造成安全事故或设备事故。本文介绍如何用兆欧表正确测量绝缘电阻,供初学者参考。 一、准备工作 在使用前要做好以下准备: 1.必须切断被测设备电源,并对地短路放电,不允许在设备带电的情况下进行测量。 2.对那些可能感应出高电压的设备,必须消除这种可能性后,才能进行测量。 3.注意被测物表面需保持清洁,减小表面电阻,确保测量结果的正确性。 4.应检查兆欧表是否处于正常状态,主要检查其"0"和"∞"两点。即摇动手柄,使电机达到额定转速,在短路兆欧表时指针应指在"0"位置,而开路时指针应指在"∞"位置。 5.注意平稳、牢固地放置兆欧表,且远离较大电流导体及强磁场。 二、正确测量 在测量时,要注意兆欧表的正确接线,否则将引起不必要的误差。兆欧表的接线柱有三个:一个为"L",即线端;一个为"E",即地端;另一个为"G",即屏蔽端(也叫保护环)。一般被测绝缘物体接在"L"、"E"之间,但当被测绝缘体表面严重漏电时,必须将被测物的屏蔽端或不需测量的部分与"G"端相连接。这样漏电流就经由屏蔽端"G"直接流回发电机的负端形成回路,而不再流过兆欧表的测量机构(流比计)。从根本上消除了表面漏电流的影响,特别应该注意的是测量电缆线芯和外表之 用兆欧表测量电器设备的绝缘电阻时,一定要注意"L"和"E"端不能接反。正确的接法是:"L"端接被测设备导体,"E"端与接地的设备外壳相连,"G"端接被测设备的绝缘部分。如果接反了"L"和"E"端,流过绝缘体内及表面的漏电流经外壳汇集到地,由地经"L"流进流比计,使"G"失去屏蔽作用而给测量带来较大误差。另外,因为"E"端内部引线同外壳的绝缘程度低于"L"端与外壳的绝缘程度,将兆欧表放在地上,采用正确的接线方式时,"E"端对仪表外壳和外壳对地的绝缘电阻相当于短路,不会造成测量误差;而当"L"与"E"接反时,"E"对地的绝缘电阻就会与被测绝缘电阻并联,使测量结果偏小,造成较大的误差。 1 / 1

绝缘电阻的正确测量方法及标准

绝缘电阻的正确测量方法 一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝

缘纸上。 2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 绝缘阻值判断 (1)、所测绝缘电阻应等于或大于一般容许的数值,各种电器的具体规定不一样,最低限值: 低压设备0.5MΩ, 3-10KV 300MΩ、 20-35KV为400MΩ、 63-220KV为800MΩ、 500KV为3000MΩ。 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω=0.001MΩ,每千伏1 MΩ。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

试验一 绝缘电阻、吸收比的测量.

试验一 绝缘电阻、吸收比的测量 一、实验目的 1.了解兆欧表的原理,掌握兆欧表的使用方法; 2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。 3.分析设备绝缘状况。 二、实验内容 1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比; 2.测量高压直流下的试品泄漏电流。 三、实验原理 测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s 和15s 时测得的绝缘电阻之比为吸收比。即 K =R60///R15// 当K ≥1.3时,认为绝缘干燥,而以60s 时的电阻为该设备的绝缘电阻。 (a)原理图 (b ) 等值电路 图1-1 双层介质的吸收现象 下面以双层介质为例说明吸收现象,如图1-1。在双层介质上施加直流电压,当K 刚合上瞬间,电压突变,这时层间电压分配取决于电容.即 1 2021 C C U U t =+= 而在稳态(t -∞)时,层间电压取决于电阻,即 2 121 r r U U t =∞→ 若被测介质均匀,C 1=C 2,r 1=r 2,则∞→==+t t U U U U 21021 ,在介质分界面上不

会出现电荷重新分配的过程。 若被测介质均匀C 1≠C 2,r 1≠r 2,则∞→=≠+t t U U U U 21021。这表明K 合闸后,两 层介质上的电压要重新分配。若C 1>,r 1>r 2,则合闸瞬间U 2>U 1;稳态时,U 1> U 2,即U 2逐渐下 降,U 1逐渐增大。C 2已充上的一部分电荷要通过r 2放掉,而C 1则要经R 和r 2从电源再吸收一部分电荷。这一过程称为吸收过程。因此,直流电压加在介质上,回路中电流随时间的变化,如图1-2所示。 图1-2吸收曲线 初始瞬间由于各种极化过程的存在,介质中流过的电流很大.随时间增加。电流逐渐减小,最后趋于一稳定值I g ,这个电流的稳定值就是由介质电导决定的 泄漏电流。与之相应的电阻就是介质的绝缘电阻,图1-2中阴影部分面积就表示了吸收过程中的吸收电荷,相应的电流称为吸收电流。它随时间增长而衰减,其衰减速度取决于介质的电容和电阻(时间常数为2 12121)(r r r r C C ++=τ)。对于燥绝缘,r 很大,故τ很大,吸收过程明显,吸收电流衰减缓慢,吸收比K 大;而绝缘受潮后,电导增大,r 减小,I g 也增大,吸收过程不明显1→K 。因此,可根 据绝缘电阻和吸收比K 来判断绝缘是否受潮。 四、实验装置及接线图 1.用兆欧表测量试品绝缘电阻和吸收比的接线图

绝缘电阻测量的基础知识.

绝缘电阻测量的基础知识 绝缘电阻测试是测试和检验电气设备的绝缘性能的比较常规的手段, 所使适用的设备包括马达、变压器、开关装置、控制装置和其他电气装置中绕组、电缆以及所有的绝缘材料。同时也是高压绝缘试验的预备试验, 在进行比较危险和破坏性的实验之前,先进行绝缘电阻的测试,可以提前发现绝缘材料的比较大的绝缘缺陷, 并提前采取相应的措施, 避免完全破坏被试物的绝缘. 最佳的方法由被测设备类型和测试目的所确定。其中带有绕组或电介质材料的被试物或电容的测量中,吸收比和极化指数是判断其绝缘特性非常重要的指标。 吸收比是指对被试物进行测试,利用1分钟时的绝缘电阻值除以15秒时的绝缘电阻值得出的结果; 极化指数是10分钟时的绝缘电阻值除以1分钟时的绝缘电阻值得出的结果。相对于绝缘电阻,以上两个指标具有更多的优越之处。如绝缘电阻对于温度、湿度等环境条件的变化非常敏感,在不同的温度、湿度等环境下,绝缘电阻也会产生非常大的变化(尤其是温度)。因此不同环境中所进行的绝缘电阻的测量结果是不能直接进行比较分析的。因此必须对绝缘电阻进行温度折算,将测量结果归算到20℃,才能进行比较和分析。而吸收比和极化指数则不需要进行温度归算,因为它们的测量结果是在同一个环境下测量出来的。 利用HIOKI 3455兆欧表进行绝缘性能测量 HIOKI 3455兆欧表型仪表是一种由电池供电的绝缘测试仪该测试仪符合第四类(CAT IV)IEC 61*10 标准。IEC 61010 标准根据瞬态脉冲的危险程度定义了四种测量类别(CAT I 至IV)。第四类(CA T IV)测试仪设计成可防护来自供电母线的(如高空或地下公用事业线路设施)瞬态损害。利用HIOKI 3455兆欧表可以进行测量,不仅可以得出绝缘电阻,还可以自动得出吸收比和极化指数。这些测量结果可以直接用于设计测试、生产测试、交接验收测试、验证测试、预防性维护测试以及故障定位测试。对于其中任何一种测量HIOKI 3455兆欧表均可以迅速、简单、方便地得出非常准确的结果。 测量绝缘电阻 绝缘测试只能在不通电的电路上进行。HIOKI 3455兆欧表具有自动带电检测和检测接收后自动放电功能,具体操作步骤如下: 1.将测试探头插入V 和COM(公共)输入端子。2.将旋转开关转至所需要的测试电压3.将探头与待测电路连接。测试仪会自动检测电路是否带电-位置显示 - - - - 直到您按测试 T 按钮,此时将获得一个有效的绝缘电阻读数。 -电路中的电压超过 30 *(交流或直流)以上,在主显示位置显示电压超过 30 V 以上警告的同时,还会显示高压符号(Z)。在这种情况下测试被禁止。在继续操作之前,先断开测试仪的连接并关闭电源。 4.按住 T 为单位显示电阻。显示屏的下端出现 t 或 G测试按钮开始测试。辅显示位置上显示被测电路上所施加的测试电压。主显示位置上显示高压符号(Z)并以 M 图标,直到释放测试按 T 钮。当电阻超过最大显示量程时,测试仪显示 Q 符号以及当前量程的最大电阻。

电缆绝缘电阻值!测量绝缘电阻

1、测量10kV电力电缆,选用何种兆欧表?使用前应作哪些检查? 测量10KV电力电缆接线 选择2500V兆欧表一只(带有测试线),将兆欧表水平放置,未接线前先做仪表外观检查及开路、短路试验,确认兆欧表完好。(兆欧表的检查方法见前题)摇测的接线方法应正确(接线前应先放电)。 摇测项目是相间及对地的绝缘电阻值,即U—V、W、地; V—U、W、地; W—U、V、地。共三次。 2、对10kV电力电缆的绝缘电阻有何要求? 答:判断合格的标准规定如下: (1)长度在500m及以下的10kV电力电缆,用2500V兆欧表摇测,在电缆温度为+20℃时,其绝缘电阻值不应低于400MΩ。 (2)三相之间,绝缘电阻值比较一致;若不一致,则不平衡系数不得大于2.5。 (3)本次测定值与上次测定的数值,换算到同一温度下。其值不得下降30%以上。1KV及以下电力电缆的绝缘电阻值,在电缆温度为20摄氏度时,不应低于1MΩ。 3、试述对一条运行中的10kV电力电缆测量的全过程(按操作顺序回答、包括判断该电缆是否可继续运行。安全措施应足够)。 答:摇测方法及步骤如下: 首先执行有关的安全措施: 组织准备: 1)要求签发工作票; 2)填写操作票并经模拟板试操作准确无误; 3)确定工作负责人和监护人; 4)如须减轻负荷,应提前通知受影响的用户。 物质准备: 1)准备安全用具(绝缘杆、绝缘手套、临时接地线、绝缘靴、标示牌); 2) 2500V兆欧表一只(带有测试线)(经检查良好); 3)其他用具及材料(电工工具等); 材料准备: 按操作票步骤,将变压器推出运行,达到“检修状态”:1)停电 2)验电 3)挂临时接地线 4)悬挂标示牌 过程: (1)被遥测电缆必须停电、验电后,再进行逐相放电,放电时间不得小于1min,电缆较长电容量较大的不少于2min;

(完整版)教你如何绝缘电阻测试

一、口诀:电机运行保安全,使用之前测绝缘。测量采用兆欧表,仪表产生高压电。电压规格分四级,常用五百和一千,二百五和两千五,根据被测电压选。五百以下用五百,一千用到三千三,再高使用两千五,二百五为安全 四、手摇式兆欧表的使用方法:在使用手摇式兆欧表时,若测量绕组对机壳的绝缘电阻,其标有L的一端应与电机绕组相接,标有E的一端应与电机外壳相接。测量时,摇动的转速应尽可能地均匀,以每分钟120转为宜(“转动两圈用一秒”)。待表针稳定到一个位置后,再读数确定测量结果,一般情况下,应摇动1分钟左右另外,为防止仪表的两条引线接触部位存在绝缘损伤造成对测量的影响,应使用单独的两条引线,有必要时,在正式测量之前,先摇动发电机检查引线和仪表其他部件的绝缘情况,正常时,仪表指示应为无穷大(∞)

五、关于电机绕组绝缘电阻的合格标准问题:在电机额定负载工作到稳定状态时,其绕组与机壳之间的绝缘电阻Rm(单位为MΩ)应符合下式所表示的关系。式中:U为被试电机绕组的额定电压,单位为V;P为被试电机的额定功率,单位为kw。 Rm≥U/(1000+P/100) 因P/100相对于1000而言很小,所以可以忽略不计,此时上述公式就简化为“电机电压每千伏,绝缘电阻超一兆”Rm≥U/1000对于我们常见的380v电机,在热态时,其绝缘电阻应不小于(380/1000)MΩ=0.38MΩ,即Rm≥0.38MΩ 上式计算值低于0.38MΩ时,则按0.38MΩ考核。 但日常使用电机时,一般都是在冷态下测量,以确定该电机绕组绝缘是否正常。此时的标准怎样给出,GB14711—2006中规定,对低压电机(1100V及以下的电机)应不低于5MΩ。高压电机没有具体规定,一般需要由供需双方协商确定。 六、关于吸收比:对于较大容量的电机绕组,应通过测量吸收比的办法检查其受潮情况,受潮严重时,即使绝缘电阻合格,也不可投入使用。确的方法是先设法将电机绕组烘干,再测量吸收比,若达到要求,再投入正常使用。 绕组的吸收比,是从开始摇测到第15s和到第60s时,两个绝缘电阻值的比值。用B代表吸收比,Rm15和Rm60分别代表第15s和第60s时的两个绝缘电阻值,则用算式表示为:B=Rm60/Rm15 吸收比的合格标准是≥1.3。若<1.3,则说明该绕组受潮较严重。 一般铜线安全计算方法是: 2.5平方毫米铜电源线的安全载流量--28A。

绝缘电阻测量标准化作业指导书

绝缘电阻测量标准化作业指导书 1.1测量目的 通过对主绝缘绝缘电阻的测试可初步判断电缆绝缘是否受潮、老化、脏污及局部缺陷,并可检查由耐压试验检出的缺陷的性质。对橡塑绝缘电力电缆而言,通过电缆外护套和电缆内衬层绝缘电阻的测试,可以判断外护套和内衬层是否进水。 1.2 该项目适用范围 交接(针对橡塑绝缘电缆)及预防性试验时,耐压前后进行。 1.3试验时使用的仪器、仪表 1.3.1 采用500V兆欧表(测量橡塑电缆的外护套和内衬层 绝缘电阻时) 1.3.2 采用1000V兆欧表(对0.6/1kV及以下电缆) 1.3.3采用2500 V兆欧表(对0.6/1kV以上电缆) 1.4试验步骤 1.4.1电缆主绝缘绝缘电阻测量 1.4.1.1断开被试品的电源,拆除或断开其对外的一切连线,并将其接地充分放电。 用干燥清洁柔软的布檫净电缆头,然后将非被试相1.4.1.2 缆芯与铅皮一同接地,逐相测量。

1.4.1.3 将兆欧表放置平稳,将兆欧表的接地端头“E”与被试品的接地端相连,带有屏蔽线的测量导线的火线和屏蔽线分别与兆欧表的测量端头“L”及屏蔽端头“G”相连接。 1.4.1.4 接线完成后,先驱动兆欧表至额定转速(120转/ 分钟),此时,兆欧表指针应指向“∞”,再将火线接至被试品,待指针稳定后,读取绝缘电阻的数值。 1.4.1.5读取绝缘电阻的数值后,先断开接至被试品的火线,然后再将兆欧表停止运转。 1.4.1.6 将被试相电缆充分放电,操作应采用绝缘工具。1.4.2 橡塑电缆内衬层和外护套绝缘电阻测量 解开终端的铠装层和铜屏蔽层的接地线 1.4. 2.1 同1.4.1中1.4.1.1; 1.4. 2.2 首先用干燥清洁柔软的布檫净电缆头; 注1:测量内衬层绝缘电阻时: 将铠装层接地;将铜屏蔽层和三相缆芯一起短路(摇绝缘时接火线) 注2:测量外护套绝缘电阻时: 将铠装层、铜屏蔽层和三相缆芯一起短路(摇绝缘时接火线)中1.4.1分别同1.4.2.6,1.4.2.5 , 1.4.2.4 ,1.4.2.3.1.4.1.3, 1.4.1.4, 1.4.1.5 ,1.4.1.6 1.5试验接线图

吸收比

绝缘电阻――在绝缘结构的两个电极之间施加的直流电压值与流经该对电极的泄漏电流值之比。R=U/I,常用单位:(MΩ)兆欧 吸收比――在同一次试验中,1min时的绝缘电阻值与15s时的绝缘电阻值之比。用字母K来表示。 极化指数――在同一次试验中,10min时的绝缘电阻值与1min时的绝缘电阻值之比。用字母P来表示。 绝缘电阻测试是电气试验人员最常用的方法;该方法操作简单,易于判断。通常用兆欧表进行测量。根据测得的试品1分钟时的绝缘电阻值的大小以及吸收比,可检出绝缘是否有贯通性的集中缺陷、整体受潮或贯通性受潮。 预防性试验规程对变压器绝缘电阻的要求: 1)绝缘电阻换算至同一温度下,与前一次测试结果相比应无显著变化,一般不低于上次值的70% 2)35kV及以上变压器应测量吸收比,吸收比在常温下不低于1.3;吸收比偏低时可测量极化指数,应不低于1.5 3)绝缘电阻大于10000 MΩ时,吸收比不低于1.1或极化指数不低于1.3 应当指出:只有当绝缘缺陷贯通于两极之间,测得其绝缘电阻时才会有明显的变化。若设备绝缘只是局部缺陷,而两极之间仍保持有部分良好绝缘时。绝缘电阻降低很少,甚至不发生变化。因此不能检出这

种局部的缺陷。 绝缘材料的绝缘电阻并不是一个恒定的值,当绝缘材料吸收水份或表面有灰尘或瓷件表面有污垢时,绝缘材料的绝缘电阻就会大大地降低。绝缘电阻之所以会降低是由于吸收水份受脏后相当于并联了一个相当数值的电阻,使绝缘材料的总电阻下降。绝缘电阻降低后泄漏电流就增大。所以绝缘电阻可以判断内部绝缘材料是否受潮,或外绝缘表面是否有缺陷。对外绝缘而言,如果擦干净后,即可恢复其绝缘性能,说明不了外绝缘的绝缘性能本质。对内绝缘而言,也不能表示其老化程度与损伤情况(这些绝缘性能要由介质损失角及局部放电试验来测定)。所以绝缘电阻,吸收比试验,极化指数是一项在低电压下测定的绝缘性能。它们能反映一部分影响绝缘性能的原因。 吸收比:在同一次试验中,用2500V的摇表测得60s时的绝缘电阻值与15s时的绝缘电阻值之比。测量吸收比的目的是发现绝缘受潮。吸收比除反映绝缘受潮情况外,还能反映整体和局部缺陷。《电气装置安装工程电气设备交接试验标准》交流电动机实验项目强制条文。变压器大修后在进行的电气试验项目之一就是测量绕组的绝缘电阻和吸收比。《国家电网山东电力集团公司2007版电力设备交接和预防性试验规程》对吸收比有如下规定:吸收比在常温下不低于1.3;当R60s(60秒时的电阻)大于3000MΩ时,吸收比可不做考核要求。

绝缘电阻的现代测量方法

绝缘电阻的一种现代测量方法 作者:王奥飞 学号:201620212

摘要 绝缘电阻测试是电气设备安全要求测试中的一项重要指标,也是有效判断绝缘体是否完整以及绝缘体表面是否被污染的主要参数之一,通过测量电气设备的绝缘电阻值可以及时检测出设备普遍受潮、局部严重受潮和贯穿性等存在的缺陷。 本文将高频高压开关稳压电源和单片机微控制器引入到绝缘电阻测试系统中,实现测量的自动化、数字化和宽量程,满足电气设备测量中对绝缘电阻测量技术的需要。结合绝缘电阻测量中需要高电压,弱电流等特点,通过分析在绝缘电阻测量中误差的产生原因,决定以单片机作为本系统的核心,使用加压测流法的测量方案。单片机主要完成数据采集和处理经过转换后的数字量信号,并且完成了液晶显示等功能。而加压测流部分采用单端反激式的DC/DC 变换器和多阶倍压整流电路相结合的方式,可根据设定值将交流电和15V 直流供电电压经过变压整流输出四个不同档位的高压源。文中,详细分析了高压电源设计模块的工作原理、电气设计和结构设计中应该注意的问题和相应的解决措施。在随后的电阻分压电路中,将标准分压电阻与被测绝缘电阻进行串联,高压通过标准分压电阻和被测电阻后产生分压信号。信号采集模块对标准电阻上所产生分压信号进行信号采集和A/D 转换。将最后所测量的数字分压信号送至单片机处理,单片机根据分压信号计算出被测电阻的绝缘电阻值并通过LCD 显示。 关键词:绝缘电阻,单端反激式变压器,单片机,测试装置

第一章引言 随着科学技术的不断发展,电力电子设备的绝缘性能在设备正常运行中起到非常重要的作用,减少因为电气设备的绝缘性降低而造成的损失,将会给工农业生产带来最大的经济利益。绝缘电阻被定义为用绝缘材料隔开的两个导体之间,在规定的条件下所呈现的电阻,即加在与绝缘体或试样相接触的两个电极之间的直流电压除以通过两电极的总电流所得的商。绝缘电阻是电气设备、电缆及输电线路的重要技术指标,是保证其正常运行的重要前提。为了避免因绝缘材料由于发热、受潮、机械损伤、污染及老化等原因而造成漏电或短路事故的发生,必须及时和定期地测量电气设备及电力线路的绝缘电阻,以推测其绝缘性能是否满足使用要求,防患于未然。通过对电气设备的绝缘电阻测试,可以对其绝缘性能有个充分了解: (1)检测绝缘结构体和绝缘材料的特性。通过测量可以检测出某种绝缘材料或是绝缘结构体的绝缘性能,以便在以后的生产过程中正确选材。 (2)对电器产品的绝缘性能进行评估,有效判别出厂家生产的电器产品是否符合绝缘性能的要求。 (3)及时了解电气设备的绝缘性能,尤其是对正在工作使用时期的绝缘设备的检测。通过检测及时的了解其绝缘性能的好坏,避免不必要的事故发生。 (4)绝缘设备耐压性能测试。通常在进行耐压试验之前,都要对被检设备进行一次绝缘电阻测量。只有测量结果符合耐压测试要求的设备才能继续进行耐压试验,否则电气设备在测试时就会产生比较大电流而导致设备被击穿。 由上可知,对于设备的绝缘性能的测试可以有效、直观的反映出其绝缘程度。通过对测量数据的分析,可以发现绝缘物的老化和磨损程度,是否受潮,工作环境是否合适等缺陷。所以,绝缘电阻测试是电气设备安检测试中不可或缺的一项重要的检验项目。

绝缘电阻和吸收比试验

实验一 绝缘电阻和吸收比实验 1、实验目的 (1)掌握兆欧表的原理及使用方法; (2)掌握绝缘电阻和吸收比的测量方法及步骤; (3)掌握根据实验数据判断测试对象绝缘状况的方法; (4)了解数字兆欧表的原理及使用。 2、实验设备 手摇兆欧表,数字兆欧表,接地电阻测试仪,电缆,导线,计时器 3、兆欧表的接线及原理 兆欧表是一种高值电阻测量仪表。用途非常广泛,我们一般常利用它检验一切电气设备和器材的电气绝缘程度。 图1 兆欧表实图 图2 测试接线图 如图1、图2所示。被测绝缘电阻接到L 和E 接线柱之间时,指针的停留位臵由电流线圈电流和电压线圈电流的比值决定。流过电压线圈的电流大小由分压电阻RV 确定,而电流线圈的电流由被测绝缘电阻的大小确定。指针指示位臵由两个线圈通过电流之比决定,所以兆欧表的读数基本上不受手摇发电机转速及发电机直流电压的影响,但要求手摇兆欧表测试时应保证转速为120转/min 。 保护环G 装在L 接线柱的外圈,它与L 接线柱绝缘,并接至手摇发电机的负极。保护环G 的作用是排除由于(电气设备瓷套外表面泄漏通道)导线绝缘层表面漏电电流和L ,E 接线柱间漏电电流所引起的误差。 4、实验步骤

(1)断开试品电源及拆除一切对外连线,将其接地充分放电,放电时间不少于 1min ,对于电容量较大的试品(如变压器、电容器、电缆等),放电时间一般不少于 2min 。若遇重复试验或加过直流高压后的试品,放电时间则应更长些。进行放电工作应使用绝缘工具(如绝缘棒、绝缘手套、绝缘钳等),不得用手直接接触放电导线。 (2)用清洁柔软的布擦去试品表面的污垢,必要时要先用汽油或其他适当的去垢剂洗净套管表面的积污。 (3)读取手摇兆欧表及数字兆欧表的铭牌并记录主要数据。 (4)将兆欧表水平放臵,将摇表的L 端子与E 端子开路,摇动手柄至额定转速(120r/min ),此时指针应指 “ ∝ ” ;然后再用导线瞬时短接 “ 火线 ” (L )与地 “ 地线 ” (E )端钮,并轻轻摇动手柄,指针应指 “ 0 ” 位”(注意轻摇以免打坏表针)。 兆欧表上的接线端子“E ”是接在设备和回路的接地端,“L ”是接在设备和回路的绝缘端,“G ”是接设备和回路屏蔽端的。 (5)将试品的非测量部分均接地,然后将接地线接于兆欧表的接地端头 “E ” 上;被测量部分用绝缘导线上接于兆欧表的火线端头 “L ” 上( “E ” 与 “L ” 两引线不得缠绕在一起)。试品表面泄漏电流较大时,为避免表面泄漏电流的影响,必须加以屏蔽(可用软裸线在绝缘表面缠绕几圈,其部位就靠近被测量部分,但不得相碰),并用绝缘导线接于兆欧表的屏蔽端 “G ” 上。 (6 读取绝缘电阻值。

绝缘电阻测试方法

绝缘电阻测试方法 一、测试内容 施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法 线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输

出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。

测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝缘纸上。 2、电气设备、设施绝缘电阻测试方法 首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。 5、手持电动工具带电零件与外壳之间绝缘电阻值:Ⅰ类手持电动工具应大于2ΜΩ、Ⅱ类手持电动工具应大于7ΜΩ、Ⅲ类手持电动工具应大于1ΜΩ。

相关文档
最新文档