人教版初中数学八年级下册 第16章达标测试卷
人教版八年级数学下册第16章达标检测卷及答案

第十六章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要使二次根式x -3有意义,x 必须满足( ) A .x ≤3 B .x ≥3 C .x >3 D .x <3 2.下列二次根式中,不能与2合并的是( ) A .12B .8C .12D .18 3.下列二次根式中,最简二次根式是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.下列计算正确的是( )A .53-23=2B .22×32=6 2C .3+23=3D .33÷3=3 5.下列各式中,一定成立的是( ) A .(-2.5)2=( 2.5)2 B .a 2=(a)2C .x 2-2x +1=x -1D .x 2-9=x -3·x +36.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n 7.计算912÷5412×36的结果为( ) A .312 B .36 C .33 D .3348.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形9.已知x ,y 为实数,且3x +4+y 2-6y +9=0.若axy -3x =y ,则实数a 的值为( ) A .14 B .-14 C .74 D .-7410.已知实数x ,y 满足:y =x 2-16+16-x 2+24x -4,则xy +13的值为( )A .0B .37C .13D .5二、填空题(每题3分,共30分) 11.计算:24-323=________. 12.若最简二次根式3a -1与2a +3可以合并,则a 的值为________. 13.已知x -1x =6,则x 2+1x2=________.14.当x =5-1时,代数式x 2+2x +3的值是________.15.有一个密码系统,其原理如图所示,当输出的值为3时,则输入的x =________.输入x →x +26→ 输出 (第15题)16.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.17.实数a 在数轴上的位置如图,化简|a -1|+(a -2)2=________.(第17题)18.若实数m 满足(m -2)2=m +1,且0<m <3,则m 的值为________. 19.若xy >0,则二次根式x-yx2化简的结果为________. 20.若x +y =5+3,xy =15-3,则x +y =________.三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:(1)312-248+8; (2)⎝⎛⎭⎫13+27×3;(3)48÷3-215×30+(22+3)2;(4)(2-3)2 017(2+3)2 018-|-3|-(-2)0.22.先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =5+2,b =5-2.23.已知a ,b ,c 是△ABC 的三边长,化简:(a +b +c )2-(b +c -a )2+(c -b -a )2.24.已知a +b =-2,ab =12,求b a +ab的值.25.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.26.观察下列各式: ①2-25=85=225;②3-310=2710=3310;③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -nn 2+1(n ≥2,n 为自然数)等于什么?并通过计算证实你的猜想.27.(1)已知|2 017-x|+x -2 018=x ,求x -2 0182的值;(2)已知a >0,b >0且a(a +b)=3b(a +5b),求2a +3b +aba -b +ab 的值.答案一、1.B 2.C 3.B 4.D 5.A 6.D 7.B 点拨:原式=912×1254×36=36×6=36. 8.B 点拨:原等式可化为|a -b|+|b -c|=0,∴a -b =0且b -c =0,∴a =b =c ,即△ABC 是等边三角形.9.A 10.D 二、11. 612.4 点拨:∵最简二次根式3a -1与2a +3可以合并,∴它们的被开方数相同,即3a -1=2a +3,解得a =4.13.8 点拨:x 2+1x 2=x 2+1x2-2+2=⎝⎛⎭⎫x -1x 2+2=(6)2+2=6+2=8.14.7 15.22 16.23 17.1 18.1219.--y 点拨:由题意知x <0,y <0,所以x -yx2=--y.解此类题要注意二次根式的隐含条件:被开方数是非负数.20.8+2 3三、21.解:(1)原式=-23+2 2. (2)原式=10. (3)原式=15+2 6. (4)原式=1.22.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b ,当a =5+2,b =5-2时,原式=5+2+5-25+2-5+2=254=52.23.解:∵a ,b ,c 是△ABC 的三边长,∴a +b +c >0,b +c -a >0,c -b -a <0,∴原式=a +b +c -(b +c -a)+(a +b -c)=3a +b -c.24.解:由题意,知a <0,b <0,所以原式=ab a 2+ab b 2=ab a 2+ab b 2=ab -a +ab-b=-(a +b )ab ab =-(-2)×1212=2 2.点拨:此题易出现以下错误:原式=b a +a b =a +b ab=-212=-2 2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由a +b =-2,ab =12,可知a <0,b <0,所以将b a+a b 变形成b a +ab是不成立的. 25.解:(1)2(a +b)=2×⎝⎛⎭⎫1232+1318=2×(22+2)=6 2.故长方形的周长为6 2. (2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大.26.解:(1)12526;5526(2)猜想:n -nn 2+1=n nn 2+1.验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1. 27.解:(1)∵x -2 018≥0,∴x ≥2 018, ∴原等式可化为x -2 017+x -2 018=x , ∴x -2 018=2 017. ∴x -2 018=2 0172. ∴x =2 0172+2 018.∴x -2 0182=2 0172-2 0182+2 018=(2 017-2 018)×(2 017+2 018)+2 018=-(2 017+2 018)+2 018=-2 017.(2)∵a(a +b)=3b(a +5b), ∴a +ab =3ab +15b , ∴a -2ab -15b =0, ∴(a -5b)(a +3b)=0. ∵a >0,b >0, ∴a +3b >0, ∴a -5b =0, ∴a =25b.∴原式=2×25b +3b +25b 225b -b +25b 2=58b29b =2.。
第十六章 二次根式 单元测试 人教版八年级数学下册

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)试题及答案

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义?(1);1x - (2);2x - (3);12+x(4)⋅+-xx21 10.计算下列各式:(1);)23(2(2);)1(22+a (3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3C .-3D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯-(3);8223⨯(4);1252735⨯ (5);131aab ⋅ (6);5252acc b b a ⋅⋅ (7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______. 2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .与80可以合并C .只有根指数为2的根式才能合并D .与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412( 10..1878523x x x +- 11.⋅-+xx x x 1246932 综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与bab 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+--16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba b ab a -+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+ 11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等 D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+ 四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值. 21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:与,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1) (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2)测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1); (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+-12.).32)(23(--13..25341122÷⋅14.).94(323ab ab ab a aba b +-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B .11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义 ,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时 ,12--x 有意义 ,当x ______时 ,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时 ,以下各式中 ,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时 ,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时 ,2244121x x x x ++-+-=________. 二、选择题15.以下各式中 ,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2 ,b =-1 ,c =-1时 ,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下列图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数 ,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算 ,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立 ,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时 ,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2 ,这条边上的高为cm 12 ,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算 "@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6 =______.10.矩形的长为cm 52 ,宽为cm 10 ,那么面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立 ,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内 ,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数 ,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算 ,能把二次根式化成最||简二次根式.课堂学习检测一、填空题1.把以下各式化成最||简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最||简单的因式 ,使得它与所给二次根式相乘的结果为有理式 ,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最||简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式 ,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中 ,最||简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时 ,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征 ,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后 ,与2的被开方数相同的有______ ,与3的被开方数相同的有______ ,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后 ,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算 ,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式 ,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并 ,这种说法是______的.(填 "正确〞或 "错误〞) 二、选择题14.在以下二次根式中 ,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+ ,其中4=x ,91=y .20.当321-=x 时 ,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的 ,在括号内画 "√〞 ,否那么画 "×〞.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后 ,发现了什么规律?请用含有n 的式子将规律表示出来 ,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算 ,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时 ,最||简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______ ,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最||简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b ) =|a -b | ,其中a ,b 为实数 ,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部 ,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1 , >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2 ,b =3 ,于是1<c <5 ,所以c =2 ,3 ,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577 ,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时 ,a a a ==22)(;当a <0时 ,a a -=2 ,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画 "√〞;(2)1122-=-+n n nn n n (n ≥2 ,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法 ,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义 ,那么在平面直角坐标系中 ,点P (m ,n )位于第______象限. 2.322-的相反数是______ ,绝||对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52 ,那么这个三角形的周长为______. 5.当32-=x 时 ,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时 ,式子2)2(,2,2,2-+--a a a a 中 ,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中 ,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2 ,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a | ,那么以下各式中 ,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动 ,当线段AB 最||短时 ,B 点坐标( ).A .(0 ,0)B .)22,22(- C .(1 ,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根 ,求222<-a x 的正整数解.18.:如图 ,直角梯形ABCD 中 ,AD ∥BC ,∠A =90° ,△BCD 为等边三角形 ,且AD 2= ,求梯形ABCD 的周长.附加题19.先观察以下等式 ,再答复以下问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息 ,猜想2251411++的结果; (2)请按照上面各等式反映的规律 ,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形 ,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1 ,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1 ,对角线);cm (0.733712721222≈=+(2)拼成2×3 ,对角线3.431312362422≈=+(cm).。
初中八年级数学下册第十六章综合测试卷3套及答案

15.【答案】(1) 5 = 5 3 = 15 . 3 3 3 3
(2)由二次根式有意义的条件及分母不为 0,得 3 x>0 ,即 x 3<0 .
所以 x 3 1 3 x 1 = 3 x2 1 3 x .
3 x
A. a>b>c
B. c>b>a
C. b>a>c
D. 5 2x )
D. a>c>b
8.若 a b 2 , a b 32 , a c 5 ,则 a c 的值是( )
A. 5 2 5
B. 5 22 5
C. 5 22 5
9.(2
x)
x
1
2
的根号外的(2
x)移入根号内得(
)
A. 2 x
B. x 2
C. 2 x
D. 5 2 5 D. x 2
10.已知 △ABC 的三边 a 、b 、c 满足 a2 | 50 c | 10a 25 5 b ,则对 △ABC 的形状描述最准确的
是( ) A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
二、填空题(每小题 3 分,共 18 分) 11.当 a __________时, 3a 2 无意义。
【解析】要使 x 3 在实数范围内有意义,则需 x 3≥0 ,所以 x 的取值范围是 x≥3 .答案选 D.
2.【答案】A
【解析】 a2b5 | a | b2 b , 18=3 2 , 1 的被开方数含有分母,故都不是最简二次根式. x2 1 符合 3
最简二次根式的条件.故选 A.
3.【答案】B
D. (3)2 3 D.1<x≤3
5.若 2x 1 | y 3 | 0 ,则 xy 的值为()
新人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______.二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ).A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义?(1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______.12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______.14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-x C .x-21 D .121-x16.若022|5|=++-y x ,则x -y 的值是( ).A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______.二、选择题4.下列计算正确的是( ).A .532=⋅B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3B .3C .-3D .9三、解答题7.计算:(1);26⨯ (2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅ (6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11-B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <14.下列计算不正确的是( ).A .471613= B .xy xx y 63132=C .201)51()41(22=-D .x xx3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281 D .241 三、计算题6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷ (7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式:(1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =bB .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ).A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ).A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与bab 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a 124118..21233ab bb a aba b ab a -+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ).A .ab 与2abB mn 与nm 11+ C .22n m +与22n m -D .2398b a 与4329b a5.下列计算正确的是( ).A .b a b a b a -=-+2))(2(B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ).A .7B .223366-+-C .1D .22336-+三、计算题(能简算的要简算)7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ).A .互为倒数B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式:(1)25与______; (2)y x 2-与______; (3)mn 与______;(4)32+与______; (5)223+与______; (6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅8279..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题1.已知m nm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______.二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ).A .1个B .2个C .3个D .4个7.下列各式的计算中,正确的是( ).A .6)9(4)9()4(=-⨯-=-⨯-B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ).A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ).A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B .11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
第16章 二次根式-人教版数学八年级下册达标检测(含答案)

人教版初中数学八年级下册第十六章二次根式达标检测一、单选题:1.在中,是最简二次根式的有()A.2个B.3个C.4个D.5个【答案】B【分析】根据最简二次根式的两个特点“(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式”进行解答即可得.【详解】解:不是二次根式,不符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,不是最简二次根式,不符合题意,不是最简二次根式,不符合题意,综上,是最简二次根式的有3个,故选B.【点睛】本题考查了最简二次根式,解题的关键是熟记二次根式的两个特点.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【答案】C【分析】各项化简后,利用同类二次根式定义判断即可.【详解】A选项:,与的被开方数不同,故不是同类二次根式,故A错误;B选项:与的被开方数不同,故不是同类二次根式,故B错误;C选项:与的被开方数相同,是同类二次根式,故C正确;D选项:与的被开方数不相同,故不是同类二次根式,故D错误.故选C.【点睛】此题考查了同类二次根式,以及最简二次根式,熟练掌握各自的性质是解本题的关键.3.下列各式中,一定能成立的有()①②③④A.①B.①④C.①③④D.①②③④【答案】A【分析】根据开算术平方和平方的概念对4个等式逐一判断.【详解】A.,则A成立;B.当a<0时,不存在,则B等式不成立;C.当x<1时,不存在,则C等式不成立;D.当x<-3时,不存在,则D等式不成立.故选A.【点睛】本题考查开算术平方根和平方之间的等量关系,注意算术平方根下的式子不能小于零的情况,掌握这一点是本题解题关键.4.计算的结果估计在( )A.与之间B.与之间C.与之间D.与之间【答案】C【分析】先根据二次根式的混合运算计算得到,进而估算即可.【详解】解:===,∵∴,故选:C.【点睛】此题考查了二次根式的混合运算和无理数的估算,熟练掌握二次根式混合运算的法则是解题的关键.5.若,则()A.B.C.D.【答案】D【分析】直接利用二次根式的性质求解即可.【详解】解:∵,,∴解得,,故选:D.【点睛】本题主要考查了二次根式的性质,熟练掌握是解答本题的关键.6.若是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】B【分析】先将45写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出n的最小整数值.【详解】解:.由是整数,得,故选:B.【点睛】本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.7.如图,在长方形ABCD中无重叠放入面积分别为和的两张正方形纸片,则图中空白部分的面积为().A.B.C.D.【答案】B【分析】先求得大正方形的边长和小正方形的边长,进而得出空白的长和宽,再计算面积即可.【详解】解:∵大正方形的面积为,∴大正方形的边长=,∵小正方形的面积为,∴小正方形的边长=,∴空白的长为:,空白的高为:,∴空白面积=故选:B.【点睛】本题考查了二次根式及其应用,掌握二次根式的性质是解题关键.8.已知,,则代数式的值为()A.9B.C.3D.5【答案】C【分析】计算出m−n及mn的值,再运用完全平方公式可把根号内的算式用m−n及mn的代数式表示,整体代入即可完成求值.【详解】∵,,∴,mn=-1,∴=3.故选:C.【点睛】本题考查了求代数式的值,二次根式的混合运算,完全平方公式的应用,对被开方数进行变形并运用整体代入法求值是关键.9.已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【详解】解:∵,,,又,∴.故选:A.【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.10.设S=,则不大于S的最大整数[S]等于( ) A.98B.99C.100D.101【答案】B【分析】由,代入数值,求出S=+++ …+ =99+1-,由此能求出不大于S的最大整数为99.【详解】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道是解答本题的基础.二、填空题:11.如果分式有意义,那么x的取值范围是_______.【答案】且x≠4【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】∵二次根式的被开方数是非负数,∴2x+3≥0,解得x≥-,又分母不等于零,∴x≠4,∴x≥-且x≠4.故答案为x≥-且x≠4.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,该题属于易错题,同学们往往忽略了分母不等于零这一条件,错解为x≥-.12.计算:______.【答案】##【分析】利用二次根式的混合运算法则计算即可.【详解】解:==.故答案为:.【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.若的整数部分是a,小数部分是b,则的值是___________.【答案】【分析】首先根据的取值范围得出a,b的值进而求出即可.【详解】解:∵,的整数部分是a,小数部分是b,∴a=1,b=∴故答案为:【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.14.若,则的值是_________.【答案】4【分析】根据被开方数大于等于0列式求x,再求出y,然后相加计算即可得解.【详解】解:由题意得,﹣2﹣x≥0且3x+6≥0,解得x≤﹣2且x≥﹣2,∴x=﹣2,∴y=6,∴x+y=﹣2+6=4.故答案为:4.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,熟练掌握二次根式有意义的条件是解决本题的关键.15.若最简二次根式与是同类根式,则2a﹣b=___.【答案】9【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.16.计算的值为__________.【答案】2【分析】先根据积的乘方的逆运算,再合并同类二次根式即可;【详解】解:原式==;故答案为:2【点睛】本题考查了积的乘方的逆运算、二次根式的混合运算,熟练掌握运算法则是解题的关键17.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.18.设、、是的三边的长,化简的结果是________.【答案】【分析】根据三角形的三边关系:两边之和大于第三边,依此对原式进行去根号和去绝对值.【详解】解:∵a,b,c是△ABC的三边的长,∴a<b+c,a+c>b,∴a-b-c<0,a-b+c>0,∴故答案为:.【点睛】本题考查了二次根式的化简和三角形的三边关系定理,关键是根据三角形的性质:两边之和大于第三边去根号和去绝对值解答.19.观察下列各式:,,,……请你将发现的规律用含自然数n (n≥1)的等式表示出来_________.【答案】【分析】根据等式的左边根号内整数部分为自然数加上,右边为,据此即可求解.【详解】解:∵第1个式子为:,第2个式子为:,第3个式子为:,……∴第个式子为:.故答案为:.【点睛】本题考查了二次根式的规律题,找到规律是解题的关键.20.已知,化简得____________.【答案】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案.【详解】∵0<a<1∴>1∴===故答案为【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:21.当x是怎样的实数时,下列各式在实数范围内有意义?(1);(2);(3);(4).【答案】(1);(2);(3);(4)【分析】(1)根据二次根式有意义的条件可得不等式3+x≥0,再解不等式即可;(2)根据二次根式有意义及分式有意义的条件可得不等式2x-1>0,再解不等式即可;(3)根据二次根式有意义及分式有意义的条件可得不等式2-3x>0,再解不等式即可;(4)根据二次根式有意义及分式有意义的条件可得不等式x≠0.【详解】解:(1)根据题意,3+x≥0,解得:x≥-3;(2)根据题意,2x-1>0,解得:x>;(3)根据题意,≥0且2-3x≠0,即2-3x>0,解得:x<;(4)根据题意,≥0且x-1≠0,即x≠1.【点睛】本题主要考查了二次根式有意义及分式有意义的条件,关键是掌握二次根式中的被开方数是非负数和分式的分母不为0.22.化简:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3);(4);(5);(6)【分析】(1)把500因数分解为5×102即可;(2)把12分解为3×22即可;(3)先把被开方数中带分数化为假分数,利用分数的基本性质将分母变平方即可(4)将被开方式中即可;(5)将被开方式即可;(6)将被开方式即可.【详解】解:(1);(2);(3);(4);(5);(6).【点睛】本题考查二次根式化为最简二次根式,掌握最简二次根式定义与化简方法是关键.23.计算:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3)6;(4);(5);(6)【分析】(1)先化简二次根式,再根据二次根式加减运算法则计算即可;(2)先化简二次根式,再根据二次根式乘除运算法则计算即可;(3)利用平方差公式计算即可;(4)先化简二次根式,再合并后计算乘除运算即可;(5)利用完全平方公式进行计算即可;(6)利用完全平方公式进行计算即可;【详解】(1)原式;(2)原式;(3)原式;(4)原式;(5)原式;(6)原式【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.24.先化筒.再求值:,其中,.【答案】,【分析】按照异分母分式运算法则计算即可.【详解】解:原式当,时,原式.【点睛】此题考查了分式的化简求值,掌握异分母分式运算法则是解题的关键.25.已知实数a,b,c在数轴上的位置如图所示,化简:.【答案】【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.26.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【答案】(1)16;(2)﹣8【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【详解】(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.【点睛】本题考查了二次根式的化简求值、完全平方公式、平方差公式,熟记完全平方公式和平方差公式,利用整体思想方法解决问题是解答的关键.27.已知等式|a-2 018|+=a成立,求a-2 0182的值.【答案】2019【分析】由二次根式的意义得到a的范围,再将原等式化简变形.【详解】由题意,得a-2 019≥0.∴a≥2 019.原等式变形为a-2 018+=a.整理,得=2 018.两边平方,得a-2 019=2 0182.∴a-2 0182=2 019.【点睛】本题考查了非负数的性质,代数式求值,二次根式有意义的条件,得到=2 018是解题的关键.28.观察下列等式:①;②;③…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:.【答案】(1);(2)【详解】试题分析:根据分母有理化的性质,由各式的特点,结合平方差公式化简计算即可.试题解析:(1)==;(2)=+…+=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章达标测试卷
一、选择题(每题3分,共30分)
1.若x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()
2.下列等式正确的是()
A.(7)2=7 B.(-7)2=-7
C.73=7 D.(-7)2=-7
3.下列二次根式中,最简二次根式是()
A.30
B.12
C.8
D.1 2
4.下列运算中,错误的是()
A.2+3= 5 B.2×3= 6
C.8÷2=2 D.|1-2|=2-1
5.∵23=22×3=12,①
-23=(-2)2×3=12,②
∴23=-23,③
∴2=-2.④
以上推导中的错误出在第几步?()
A.①B.②C.③D.④6.下列计算正确的是()
A.a+b=ab B.(-a2)2=-a4
C.1
a
=a D.a÷b=
a
b(a≥0,b>0)
7.估计5+2×10的值应在() A.5和6之间B.6和7之间
C.7和8之间D.8和9之间
8.若x<0,则x-x2
x的结果是()
A.0B.-2 C.0或2 D.2
9.已知a,b,c为△ABC的三边长,且a2-2ab+b2+|b-c|=0,则△ABC的形状是()
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
10.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为() A.9 B.±3 C.3 D.5
二、填空题(每题3分,共24分)
11.计算:12×3=________.
12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.
13.比较:5-1
2________
1
2(填“>”“=”或“<”).
14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.
(第14题)
15.实数a,b满足a+1+4a2+4ab+b2=0,则b a的值为________.
16.△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为__________.17.已知a≠0,b≠0且a<b,化简-a3b的结果是__________.
18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S=
p(p-a)(p-b)(p-c),其中p=a+b+c
2;我国南宋时期数学家秦
九韶曾提出利用三角形的三边求其面积的秦九韶公式S=1 2
a 2
b 2
-⎝
⎛⎭
⎪⎫a 2+b 2-c 222
,若一个三角形的三边长分别为2,3,4,则其面积是________.
三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分) 19.计算下列各式:
(1)20+5(2+5); (2)(46-32)÷22;
(3)218-41
8+332;
(4)⎝ ⎛
⎭
⎪⎫
a 3
b -a b +2b a +ab
÷b
a (a >0,
b >0).
20.比较5+2与3+2的大小关系.
21.已知(2a-b)2+|a|-5
a+5
=0,求(a+2b)(a-2b)的值.
22.据报道某天有一个孩子把34楼的啤酒瓶拿到28楼然后扔下去,所幸并没有人员伤亡,据研究从高空抛物到落地所需时间t(单位:s)和高度h(单位:m)
近似地满足公式t=2h
10(不考虑风速的影响).
(1)从50 m高空抛物到落地所需时间t1的值是多少?
(2)从100 m高空抛物到落地所需时间t2的值是多少?
(3)t2是t1的多少倍?
23.阅读理解:我们把⎪⎪
⎪⎪⎪⎪a b c d 称为二阶行列式,规定其运算法则为⎪⎪⎪⎪
⎪⎪
a b c d =ad -bc .如⎪⎪⎪⎪
⎪⎪
2345=2×5-3×4=-2.
(1)计算:⎪
⎪
⎪⎪
⎪⎪226
12
24; (2)如果⎪⎪
⎪⎪⎪⎪
3x +12x =0,求x 的值.
24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3
=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1. (1)化简3+2 2. (2)化简4+2 3. (3)化简4-12.
(4)若a±2 b=m±n,则m,n与a,b的关系是什么?并说明理由.
答案
一、1.D 2.A 3.A 4.A 5.B 6.D 7.B 8.D 9.B
10.C 点拨:∵m -n =(1+2)-(1-2)=22,mn =(1+2)(1-2)=-1,
∴m 2+n 2-3mn =(m -n )2-mn =(22)2-(-1)=9=3. 二、11.6 12.4 13.> 14.7 15.12 16.43cm
17.-a -ab 点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.
∴a ,b 异号. 又∵a <b ,∴a <0,b >0. ∴-a 3b =-a -ab . 18.3154
三、19.解:(1)原式=25+25+(5)2=45+5;
(2)原式=46÷22-32÷22=23-3
2;
(3)原式=62-2+122=172; (4)原式=(a 3
b -a b +2b a +ab )·a b =a 3
b ·a b -a b ·a b +
2
b a ·a b +ab ·a b
=a 4-⎝ ⎛⎭
⎪⎫a b 2
+2+a 2=a 2+a -a b +2.
20.解:∵5+2>0,3+2>0,(5+2)2=7+210=7+40,(3+2)2
=7+43=7+48, ∴(5+2)2<(3+2)2. ∴5+2<3+2.
21.解:由题意得⎩⎨⎧2a -b =0,|a |=5,a +5>0,
解得⎩
⎨⎧a =5,
b =10.
∴(a +2b )(a -2b )=(a )2-(2b )2=a -4b =5-4×10=-35.
22.解:(1)当h =50时,t 1=
2h
10=100
10=10. (2)当h =100时,t 2=2h 10=
200
10=20=2 5.
(3)∵t 2t 1=2510=2,
∴t 2是t 1的2倍.
23.解:(1)⎪
⎪⎪
⎪
⎪⎪
226
12
24=2×24-
1
2×
26=43-23=2 3. (2)因为⎪⎪
⎪⎪⎪⎪
3x +12x =0, 所以3x -2(x +1)=0, 即(3-2)x =2. 则x =
2
3-2
=-2(3+2)=-23-4. 24.解:(1)3+22=(2+1)2=2+1.
(2)4+23=(3+1)2=3+1.
(3)4-12=4-23=(3-1)2=3-1. (4)⎩⎨⎧m +n =a ,mn =b .
理由:把a ±2b =m ±n 两边平方,得a ±2b =m +n ±2mn , ∴⎩⎨⎧m +n =a ,mn =b .。