实验CPU通用寄存器组 计算机组成原理

合集下载

计算机组成原理 实验(一)

计算机组成原理 实验(一)

计算机组成原理实验(一)实验项目名: 实验台基本模块认识实验实验要求:学习使用计算机组成原理教学实验系统的,认识组成原理实验台上的各个组成部件模块,熟悉各模块的功能、数据通路和使用方法,为后续实验做准备。

实验内容:(1)了解计算机组成原理硬件实验台各模块的组成和功能✶运算器单元- 74LS181(4位并行运算器),输入端74LS373(锁存器),输出端74LS245(三态缓冲器),74LS74(双D触发器)。

✶寄存器组单元– 3片74LS374 作为三个通用寄存器使用,R0、R1、R2 与总线相连。

✶地址寄存器单元– 2片地址锁存器74LS273锁存地址,通过总线将地址送入到该地址寄存器单元,而该地址寄存器与存储器接口相连,用于访问存储器。

✶数据总线单元–显示当前数据总线输出的内容。

✶主存储器单元–由6116 SRAM(4片)存储器作为主存储器,存储实验用机器指令,连接到数据和地址总线上。

✶程序计数器PC– 8位指令地址,使用2片74LS163构成,通过控制信号,可实现PC内容与总线间的交换。

✶指令寄存器单元—使用1片74LS273锁存器锁存当前执行的指令,IR寄存器的一端连接到数据总线上,另一端则连接到微地址单元的地址输入接口,用于寻址控存。

✶时序启停单元—通过输入系统脉冲源,可产生T1~T4四个标准的周期性信号,并且通过按键控制,可产生单次脉冲。

✶微程序电路单元—模拟微程序结构的CU,根据指令的操作码译码后得到的微程序地址,访问系统中的控存6116,取出微指令后,发出相应的微操作控制信号,控制系统中数据的流动及功能器件的动作。

该实验台各模块共有26个微控制信号,其中有7个(BUS-111,BUS-110,Rd-BUS,Rs-BUS,299-BUS,ALU-BUS,PC-BUS)采用译码输出的方式,而剩余的采用直接控制方式输出。

下一条微指令的地址由微指令的低地址(每条微指令长度为32位,其中(26-7)+3(译码)为微操作控制位,其余的为下地址)部分决定。

计算机组成原理实验报告 通用寄存器单元实验

计算机组成原理实验报告  通用寄存器单元实验

西华大学数学与计算机学院实验报告课程名称:计算机组成原理年级:2011级实验成绩:指导教师:祝昌宇姓名:蒋俊实验名称:通用寄存器单元实验学号:312011*********实验日期:2013-12-15一、目的1.了解通用寄存器的组成和硬件电路2. 利用通用寄存器实现数据的置数、左移、右移等功能二、实验原理(1)寄存器实验构成1、通用寄存器由2片GAL构成8位字长的寄存器单元。

8芯插座RA-IN作为数据输入端,可通过端8芯扁平电缆,把数据数据输入端连接到数据总线上。

2、数据输出由一片74LS244(输出缓冲器)来控制。

用8芯插座RA-OUT作为数据输出端,可通过端8芯扁平电缆,把数据数据输出端连接到数据总线上。

3、判零和进位电路由1片GAL、1片7474和一些常规芯片组成,用2个LED(ZD、CY)发光管分别显示其状态。

(2)通用寄存器单元的工作原理通用寄存器的核心部件为2片GAL,它具有锁存、左移、右移、保存等功能。

各个功能都由X1、X2信号和工作脉冲RACK来决定。

当置ERA=0、X0=1、X1=1,RACK有上升沿时,把总线上的数据打入通用寄存器。

可通过设置X1、X0来指定通用寄存器工作方式,通用寄存器的输出端Q0~Q7接入判零电路。

LED(ZD)亮时,表示当前通用寄存器内数据为0。

输出缓冲器采用74LS244,当控制信号RA-O为低时,74LS244开通,把通用寄存器内容输出到总线;当控制信号RA-O为高时,74LS244的输出为高阻。

图1 通用寄存器原理图三、使用环境计算机组成原理实验箱四、实验步骤(一)数据输入通用寄存器1.把RA-IN(8芯的盒型插座)与CPT-B板上二进制开关单元中的J1插座相连(对应二进制开关H16~H23),把RA-OUT(8芯的盒型插座)与数据总线上的DJ6相连。

2.把RACK连到脉冲单元的PLS1,把ERA、X0、X1、RA-0、M接入二进制拨动开关。

请按下表接线。

通用寄存器ALU

通用寄存器ALU
M
S2
S1
S0
0
1
0
0
按下单拍按钮,使R0+R1的值输入到总线ALU中,再通过调节X2X1X0XP
RWRDI/SBOP/SA
000
按下单拍按钮,使R0+R1的数进入R0,R2+R3也是如此。
接下来是数据左移,保持初始数据不变,数据移动方向为R1-DBUS-A-ALU-R1,经过三次循环,最后一次写出数值,例如R1=44H=100100,左移一次为00100010,为22H,再左移一次为00010001=11H,第三次为88H.同理66H左移三次为cc。
2、
五、实验结果和分析
通过实验熟悉了通用寄存器的数据通路,了解了寄存器的构成和运用,同时对八位运算器也有了一些了解,理论思维和动手能力需要进一步加强。
成绩评定
根据实验情况和实验报告质量作出写实性评价
2、评分
优秀 良好 中等 差
综合评分
折合成等级
15

4

3

指导教师签名
时间
K23-k0置”1”,灭M23-M0控位显示灯。然后按下表要求“搭接“部件。
连线
信号孔
接入孔
1
DRCK
CLOCK
2
X2
K1
3
X1
K2
4
X0
K3
5
XP
K4
6
M
K5
7
S2
K6
8
S1
K7
9
S0
K8
10
AWR/AEN
K9
11
BWR/WEN
K10
12
DI/SB
K11

实验六实验报告模板 CPU组成与机器指令执行周期实验(1)

实验六实验报告模板 CPU组成与机器指令执行周期实验(1)

实验六实验报告模板 CPU组成与机器指令执行周期实验(1)课程计算机组成原理实验名称 CPU组成与指令周期实验专业:计算机班级:3 学号:105032021118 姓名:林加明实验日期 2021 年 6 月 10 日报告退发 (订正、重做)实验六 CPU组成与指令周期实验一、实验目的1.用微程序控制器控制数据通路,将相应的信号线连接,构成一台能运行测试程序的模型计算机。

2.执行一个简单的程序,掌握机器指令与微指令的关系。

3.理解计算机如何取出指令、如何执行指令、如何在一条指令执行结束后自动取出下一条指令并执行,牢固建立的计算机整机概念。

二、实验内容及说明1.实验电路及说明ZMS0S1S2S3CINC数据总线DBUSINS7―INS0ABUSALUA端口A7―A04选1选择器ARD0RD1B端口B7―B04选1选择器B LDCLDZT3MBUSMEMWT2D7L―D0LD7R―D0R双端口RAMA7L―A0LA7R―A0RPC7―PC0CLR#PCADDLPCPCINCT3IR3―IR0IRBUSRS0RS1AR7―AR0CLR#L ARARINCT3DBUSRD1RD0LR0LR1LR2LR3SWDRD0RD1RS0数据开关SD7―SD0A组控制信号B组控制信号独立K15-K0IR7―IR4RS1W3INTQW1W2T1T2T3ZCCLR#T3ZCCLR#T3MFCLR#QDSTOPDPINTENINTDIINTPSHOR T LONG本实验将前面几个实验中的所有电路,包括时序发生器、通用寄存器组、算术逻辑运算部件、存储器、微程序控制器等模块组合在一起,构成一台能够运行程序的简单处理机。

数据通路的控制由微程序控制器完成,由微程序解释指令的执行过程,从存储器2―4译码器ARPCR0DBUSSBUSLR0DRWT3R1LR1DRWT3R2LR2DRWT3R3LR3DRWT3LIARIABUST3IARIRPC7―PC0LIRT3控制信号控制信号切换电路控制转换微程序控制器硬连线控制器W3―W1IR7―I R42选1选择器IR3―IR0SELCTLSEL3―SEL0IRBUS时序发生器SWC―SWA图6.1 TEC-8模型计算机框图1取出一条指令到执行指令结束的一个指令周期,是由微程序完成的,即一条机器指令对应一个微程序序列。

计算机组成原理实验说明

计算机组成原理实验说明

实验一运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆(组)的读写操作。

2.熟悉简单运算器的数据传送通路。

3.验证运算器74LS181的算术逻辑功能。

4.按给定数据,完成指定的算术、逻辑运算。

二、实验原理上图是本实验所用的运算器数据通路图。

参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。

RF由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。

双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选取从A端口(左端口)读出的通用寄存器。

而WR1、WR0用于选择写入的通用寄存器。

LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。

RF的A、B端口分别与操作数暂存器DR1、DR2相连:另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF 中的数据可以直接通过B端口送到DBUS上。

DR1和DR2各由1片74LS273构成,用于暂存参与运算的数据。

DR1接ALU 的A输入端口,DR2接ALU的B端口。

ALU由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。

图中尾巴上带粗短线标记的信号都是控制信号,其中S3,S2,Sl,S0,M,Cn#,LDDR2,LDDRl, ALU-BUS#,SW-BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0等是电位信号,用电平开关K0—Kl5来模拟。

T2、T3是脉冲信号,印制板上已连接到实验台的时序电路上。

#为低电平有效。

K0—K15是一组用于模拟各控制电平信号的开关,开关向上时为1,开关向下时为0,每个开关无固定用途,可根据实验具体情况选用。

实验中进行单拍操作,每次只产生一组Tl,T2,T3,T4脉冲,需将实验台上的DP,DB开关进行正确设置。

计算机组成原理CPU设计实验报告

计算机组成原理CPU设计实验报告

计算机组成原理CPU设计实验报告课程设计题目:16位CPU设计学院: 信息学院班级:电子A班学号:1115102015姓名:方茹1目录1 实验方法 ..................................................................... . (4)2 总体说明 ..................................................................... ................................................. 5 2.1指令系统: .................................................................... .......................... 5 2.1.1指令格式分类(按指令字长和操作数不同): ...................................................... 5 2.1.2具体指令汇总表: .................................................................... .......................... 6 2.1.3相关指令流程图: .................................................................... .......................... 6 2.1.4指令数据通路的构建: .................................................................... ................... 8 2.1.5指令的分组及节拍: .................................................................... ..................... 12 2.1.6指令执行状态图:(见下页)..................................................................... ........... 13 2.1.7具体微指令: .................................................................... ............................... 13 2.2 系统整体介绍 ..................................................................... .................. 16 2.2.1系统基本模块划分 ..................................................................... ....................... 16 2.2.2总体结构图:(见下页)..................................................................... (17)3 CPU的控制逻辑与具体数据通道设计 ..................................................................... ......18 3.1取指令逻辑的设计 ..................................................................... .. (19)3.1.1指令地址的保存 ..................................................................... (19)3.1.2指令存储器 ..................................................................... .................................. 20 3.1.3下一条指令地址的计算 ..................................................................... ................ 20 3.2指令译码逻辑的设计...................................................................... ...................... 21 3.3指令执行逻辑的设计...................................................................... ...................... 22 3.4存储器访问逻辑的设计 ..................................................................... ................... 23 3.5结果写回逻辑的设计...................................................................... ...................... 24 3.6单周期CPU的总成...................................................................... (25)4各部分说明 ..................................................................... .............................................26 4.1ALU .................................................................................................................... 26 4.2数据选择器BUS_MUX ................................................................ ........................ 28 4.3器件T1 ..................................................................... .......................................... 30 4.4标志寄存器FLAG_REG ............................................................... ........................ 31 4.5T2: .................................................................... ................................................ 33 4.6程序计数器PC ..................................................................... ............................... 33 4.7地址寄存器AR和指令寄存器IR: .................................................................... .. 34 4.8寄存器、寄存器组和寄存器的选择.......................................................................36 4.9一位控制信号/WR .................................................................... ........................... 37 4.10 节拍发生器 ..................................................................... .................................. 37 4.11控制逻辑 ..................................................................... ...................................... 39 4.12T3...................................................................... ................................................ 42 4.13REG_OUT ......................................................................................................... 43 4.14存储器 ..................................................................... .......................................... 44 4.15总线选择器 ..................................................................... .. (45)24.16REG_TEST ............................................................... .. (46)5附录: .................................................................... .. (47)附录A:组员分工: .................................................................... .. (47)附录B:组员设计总结: .................................................................... . (47)31 实验方法实验要完成的工作主要包括:指令系统的设计,FPGA-CPU的整体结构设计及其细化,逻辑设计的具体实现(VHDL语言程序的编写),软件模拟,以及硬件调试。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用.二、实验要求掌握通用寄存器R3~R0的读写操作.三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效.准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2—3-3 通用寄存器数据通路四、实验内容1.实验连线连线信号孔接入孔作用有效电平2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表.通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表.通用寄存器“手动/搭接”源编码④ 通用寄存器的读出关闭写使能,令K18(RWR )=1,按下流程分别读R0、R1、R2、R3。

五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能.二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU 运算控制位的运用.三、实验原理实验中所用的运算器数据通路如图2-3—1所示。

ALU 运算器由CPLD 描述。

运算器的输出FUN 经过74LS245三态门与数据总线相连,运算源寄存器A 和暂存器B 的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O 输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告引言计算机组成原理是计算机科学与技术的基础课程之一,通过实验可以更好地理解和掌握计算机的组成和工作原理。

本文将结合实验的过程和结果,详细论述计算机组成原理的一些关键概念和实际应用。

一、实验目的本次实验的目的是通过搭建一个简单的计算机系统,深入了解计算机的各个组成模块,如中央处理器(CPU)、存储器、输入输出设备等,并验证计算机的基本工作原理。

二、实验内容本次实验分为两个部分,第一部分是计算机系统的搭建,包括CPU的设计与实现、存储器的设计与实现等;第二部分是对已搭建的系统进行功能测试,包括寄存器的读写、指令的执行等。

1. CPU的设计与实现CPU是计算机的核心处理单元,它负责执行各种指令,并控制计算机的运行状态。

在本次实验中,我们采用了冯·诺依曼结构的单周期CPU设计,包括指令寄存器、算术逻辑单元、控制单元等组成部分。

通过在实验中的操作和执行,我们深入理解了指令的编码方式、运算的过程等。

2. 存储器的设计与实现存储器是计算机系统中的主要组成部分,用于存放指令和数据。

在本次实验中,我们设计了一个简单的存储器,采用了随机存取存储器(RAM)的结构。

通过实验中的存储器读写操作,我们了解了存储器的寻址方式、数据的存取过程等。

三、实验结果与分析经过实验的搭建和测试,我们成功完成了计算机系统的建设,并验证了其基本功能。

在测试过程中,我们发现了一些问题和改进之处,例如CPU的时钟频率过低导致指令执行速度较慢,存储器的容量不足等。

通过对这些问题的研究和分析,我们能够进一步优化和改进计算机系统的性能。

四、实验心得体会通过本次实验,我进一步加深了对计算机组成原理的理解和掌握。

实验中我不仅学到了理论知识,还通过动手搭建和操作实际的计算机系统,加深了对计算机组成原理的实际应用的理解。

同时,我也意识到计算机的设计和实现是一个综合性强的工程,需要考虑多方面的问题,如硬件的选择与优化、指令的设计与调度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
architecture struct of regfile is
-- components
-- 16 bit Register for register file
component reg
port(
clr:instd_logic;
D:instd_logic_vector(15 downto 0);
clk:in std_logic;
d_input:in std_logic_vector(15 downto 0);
DR_data:out std_logic_vector(15 downto 0);
SR_data:out std_logic_vector(15 downto 0)
);
end regfile;
3333
5555
AAAA
0000
3333
5555
AAAA
0000
(5)R1写入oxFFFF
3333
FFFF
AAAA
0000
3333
FFFF
AAAA
0000
六、实验收获
通过这次实验了解了通用寄存器组对于CPU的重要性,了解了通用寄存器的使用方法。熟悉了VHDL语言描述通用寄存器的方法。
实验CPU通用寄存器组
一、实验目的
(1)了解通用寄存器组的用途及对CPU的重要性。
(2)掌握通用寄存器组的设计方法。
二、实验原理
通用寄存器组是CPU的重要组成部分。从存储器取来的数据要放在通用寄存器中;从外部设备取来的数据除DMA方式外,要放在通用寄存器中。向存储器输出的数据也是从通用寄存器中取出;向外部设备输出的数据除DMA方式外也是从通用寄存器中取出来的。由于从通用寄存器组中取数据比从存储器或者外部设备取数据快得多,因此参加算术运算和逻辑运算的数据一般是从通用寄存器组中取出,它向算术逻辑单元ALU提供了进行算术运算和逻辑运算所需要的两个操作数,同时又是运算结果的暂存地。通用寄存器组内寄存器的数目与CPU性能有关,CPU性能预告,通用寄存器组内的寄存器数目越多。由于算术逻辑运算需要两个操作数,因此通用寄存器组有两个读端口,负责提供进行算术逻辑单元需要的源操作数和目的操作数。通用寄存器组有1个写端口,负责将运算结果保存到指定的寄存器内。根据通用寄存器组的功能要求,一个只有4个16位寄存器的通用寄存器组的框图如下图所示。
end component;
signal reg00, reg01, reg02, reg03
:std_logic_vector(15 downto 0);
signal sel00 ,sel01 ,sel02 ,ቤተ መጻሕፍቲ ባይዱel03
: std_logic;
begin
Areg00: reg port map(
clr=> reset,
(2)将涉及在QuartusII下输入,编译后下载到TEC_CA上的FPGA中。
(3)将下列数据存入寄存器:
R0 0x3333
R1 0x5555
R2 0xAAAA
R3 oxFFFF
(4)在试验台指示灯A15~A0和R15~R0上观察各寄存器的值,并填入下表。
步骤
A15~A0
R15~R0
R0
R1
R2
R3
use IEEE.STD_LOGIC_1164.ALL;
entity regfile is
Port ( DR:in std_logic_vector(1 downto 0);
SR:in std_logic_vector(1 downto 0);
reset:in std_logic;
DRWr:in std_logic;
write=>DRWr ,
sel=>sel03 ,
Q=> reg03
);
-- decoder
des_decoder: decoder_2_to_4 port map
(
sel=> DR,
sel00=> sel00 ,
sel01=> sel01 ,
sel02=> sel02 ,
sel03=> sel03
clock:instd_logic;
write: instd_logic;
sel:instd_logic;
Q:out std_logic_vector(15 downto 0)
);
end component;
-- 2 to 4 Decoder
component decoder_2_to_4
port(
component mux_4_to_1
port (
input0,
input1,
input2,
input3: in std_logic_vector(15 downto 0);
sel:in std_logic_vector(1 downto 0);
out_put: out std_logic_vector(15 downto 0));
sel:in std_logic_vector(1 downto 0);
sel00:out std_logic;
sel01:out std_logic;
sel02:out std_logic;
sel03:out std_logic
);
end component;
-- 4 to 1 line multiplexer
(3)SR[1...0]对应试验台开关SA1,SA0。
(4)DR[1..0]对应试验台开关SA3,SA2。
(5)DRWr对应试验台开关SA5。
(6)目的操作数用实验台上的指示灯A15~A0显示,源操作数用试验台上的指示灯R15~R0显示。
(7)d-input接开关SD15~SD0。
四、实验主要代码
library IEEE;
R0
R1
R2
R3
(1)reset
0000
0000
0000
0000
0000
0000
0000
0000
(2)R0写入ox3333
3333
0000
0000
0000
3333
0000
0000
0000
(3)R1写入ox5555
3333
5555
0000
0000
3333
5555
0000
0000
(4)R2写入oxAAAA
);
Areg02: reg port map(
clr=> reset,
D=> d_input ,
clock=>clk ,
write=>DRWr ,
sel=>sel02 ,
Q=> reg02
);
Areg03: reg port map(
clr=> reset,
D=>d_input ,
clock=>clk ,
(5)设计要求层次设计。底层的设计实体有3个:16位寄存器,具有复位功能和允许写功能;一个2-4译码器,对应寄存器写选择;一个4选1多路开关,负责选择寄存器的读出。顶层设计构成一个完整的通用寄存器组。
2、顶层设计实体的引脚要求
引脚要求对应关系如下
(1)clk对应实验台上的时钟(单脉冲)。
(2)reset对应试验台上的CPU复位信号CPU-RST。
三、实验要求
1、实验设计目标
设计一个通用寄存器组,满足以下要求:
(1)通用寄存器组有4个16位的寄存器。
(2)当复位信号reset=0时,将通用寄存器组中的4个寄存器清零。
(3)通用寄存器组中有1个写入端口,当DRWr=1时,在时钟clk的上升沿将数据总线上的数写入DR[1..0]指定的寄存器。
(4)通用寄存器组中有两个读出端口,一个对应算术逻辑单元的目的操作数DR,另一个对应算术逻辑单元的源操作数SR。DR[1..0]选择目的操作数;SR[1..0]选择源操作数。
input0=> reg00 ,
input1=> reg01 ,
input2=> reg02 ,
input3=> reg03 ,
sel=> SR ,
out_put => SR_data
);
end struct;
五、实验步骤
(1)将实验台设置成FPGA-CPU独立调试模式,REGSEL=0、CLKSEL=1、FDSEL=0。使用试验台上的单脉冲,即DTEP_CLK短路子短接,短路子RUN_CLK断开。
在上图所示的电路中,当reset为低电平时,将4个16位寄存器R0~R3复位为0。当寄存器的write和sel为高电平时,在时钟信号clk的上升沿将D端的输入D[15..0]写入寄存器,然后送到寄存器的输出Q[15..0]。4个寄存器的允许写信号write和外部产生的目的寄存器写信号DRWr直接相连。每个寄存器还有另一个选择信号sel,它决定哪一个寄存器进行写操作。4个寄存器的选择信号分别和2-4译码器产生的sel00、sel01、sel10和sel11相连。只有当1个寄存器被选中时,才允许对该寄存器进行写操作。2-4译码器的输入sel[1..0]接DR[1..0],2-4译码器对2位的输入信号sel[1..0]进行2-4译码,产生4个输出sel00、sel01、sel10和sel11,分别送往4个寄存器R0、R1、R2、R3的选择端4选1多路选择器1从4个寄存器R0、R1、R2、R3的输出Q[15..0]选择1路送到DR_data[1..0],给算术逻辑单元提供目的操作数;选择信号sel[1..0]接DR[1..0]。4选1多路选择器2从4个寄存器R0、R1、R2、R3的输出Q[15..0]选择一路送到SR_data[1..0],给算术逻辑单元提供源操作数;选择信号sel[1..0]接SR[1..0]。
相关文档
最新文档