复合材料的研究热点

复合材料的研究热点
复合材料的研究热点

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各组元材料的优点,克服单一组元的缺陷。复合材料按用途可分为结构复合材料和功能复合材料,根据基体种类可分为金属基复合材料、陶瓷基复合材料、聚合物基复合材料和炭基复合材料等,按增强(韧)相可分为颗粒增强、晶须增强或纤维增强复合材料。复合材料已广泛应用于航空航天、汽车、电子电气、建筑、体育器材、医疗器械等领域,近几年更是得到了突飞猛进的发展。

1金属基复合材料

金属基复合材料是包括颗粒、晶须、纤维增强金属基体的复合材料。金属基复合材料兼具金属与非金属的综合性能,材料的强韧性、耐磨性、耐热性、导电导热性及耐候性能适应广泛的工程要求,且比强度、比模量及耐热性超过基体金属,对航空航天等尖端领域的发展具有重要作用。在该类材料中,所用基体金属包括轻合金(铝、镁、钛)、高温合金与金属间化合物,以及钢、铜、锌、铅等;增强纤维包括炭(石墨)、碳化硅、硼、氧化铝、不锈钢及钨等纤维;增强颗粒包括碳化硅、氧化铝、氧化锆、硼化钛、碳化钛、碳化硼等;增强晶须包括碳化硅、氧化硅、硼酸铝、钛酸钾等。以上各种基体和增强体可组成大量金属基复合材料,但目前多数处于研发阶段,只有少数得到应用。如硼、石墨纤维增强铝(镁)用于卫星、航天飞机结构、空间望远镜部件,碳化硅纤维与颗粒增强钛合金用于大推比飞机压气机部件,颗粒增强铝基复合材料(PRA)广泛用于航空、航天及汽车、电子领域。在金属基复合材料中颗粒增强铝基复合材料最具发展潜力。该材料具有比强度和比模量高,耐磨性、阻尼性及导热性好,热膨胀系数小等优异性能。其主要应用领域一是航空、航天和军事领域,二是汽车、电子信息和高速机械等民用领域。发展目标是代替铝合金、钛合金、钢等用于制造高性能的构件,减重并提高性能和仪器精度。美国已从Ф455mm圆坯中挤压出182kg重的SiCp/Al型材,并轧制出尺寸为3050mm×1320mm×3mm的板材,制造了火箭发动机、导弹和卫星上的零件。加拿大Cer-cast公司试制了PRA材料飞机用光学底座、万向支架等精密铸件及液压管、压气机涡壳和卫星反动轮,代替铝合金,减重并提高了使用性能。美国DWA公司用SiC颗粒增强6092铝基复合材料代替铝合金,大规模用于F16战斗机的垂直尾翼,提高寿命17倍;代替树脂基复合材料用于B777和C-17GlobemasterⅢ的P&W4000发动机风扇出口导流叶片,大幅提高使用寿命并降低成本33%。美国DWA公司和英国AMC公司将SiC/Al批量用于EC-120和EC-135直升机旋翼系统,大幅提高构件刚度和寿命。这些关键结构件的成功应用说明美国和英国对这种材料的应用研究已相当成熟。

研究发展电子器件封装用高导热、低热膨胀金属基复合材料是国际上金属基复合材料研究发展的最新动态之一。美国已研制成功了SiCp/Al、Sip/Al、C/Al等高性能电子封装用复合材料,用于高功率密度、高集成密度的电子器件,成为解决电子器件迅速传热、散热问题的关键材料。针对正迅速发展的高集成度、高功率密度电子器件的需求,最近研究发展的电子封装复合材料有:碳化硅颗粒增强铝基复合材料(SiCp含量为60%~75%);超高模量、高导热性沥青石墨纤维(k1100)增强铝基、铜基复合材料及银基复合材料。这些材料的导热系数为120~630W/(m·k),热膨胀系数0.5~8×10-6K-1。电子器件用金属基复合材料使用性能要求高、用量大,将成为金属基复合材料最主要的发展方向之一。

汽车、高速列车和高速机械用金属基复合材料是当前及今后另一个重要研究方向。铝基复合材料(如SiCp/Al)具有重量轻、导热性好和耐磨的特点,是一种新型的刹车盘、活塞、连杆材料,成为汽车及高速列车轻量化的关键新材料。美国Ford公司已研制成SiCp/Al复合材料刹车盘,批量用于高级轿车Lincoln Town Car上。德国一家公司成功研制了高速列车制动盘,运用在地铁和城郊列车上,取得了巨大的经济效益。此外,美国、英国等国家已经生产出SiCp或B4Cp增强铝基复合材料自行车,并在市场上销售。综观国际上PRA的研究与开发,不难看出,PRA的大规模生产已经获得成功,只要进一步降低这种新材料的成本,提高性能、价格比,则这种复合材料不但将应用于航空、航天和军事领域,而且大规模商业应用也指日可待。

2陶瓷基复合材料

陶瓷基复合材料(CMC)的增韧材料主要有碳纤维(CF)、碳化硅纤维(SiCf)、玻璃纤维、氧化物纤维,以及碳化物和氧化物颗粒等,基体材料主要有氧化物陶瓷、碳化物陶瓷和氮化物陶瓷等。CMC种类繁多,由于其“耐高温和低密度”特性优于金属和金属间化合物,因而美国、英国、法国、日本等发达国家一直把CMC

列为新一代航空发动机材料的发展重点,而连续纤维增韧的CMC是重中之重。

Cf/SiC、SiCf/SiC和SiCf/Al2O3等连续纤维增韧的CMC具有耐高温、密度低、耐腐蚀、类似金属的断裂行为、对裂纹不敏感和没有灾难性损毁的特点。美国NASA Lewis研究中心制定高温发动机材料计划(HITEMP)明确发展连续纤维增韧的CMC,这一点在国际上已达成共识。

目前,Cf/SiC、SiCf/SiC和SiCf/Al2O3等连续纤维增韧的CMC已在推重比9~10一级的多种型号军用发动机和民用发动机中等载荷静止件上试验成功,主要试验应用的部位有燃烧室、燃烧室浮壁、涡轮外环、火焰稳定器和尾喷管(矢量喷管)调节片等。实践表明,航空发动机采用CMC构件大大节约了冷却气量,提高了工作温度,降低了结构重量并提高了使用寿命。美国、英国和法国在推重比5~20发动机的研制中,CMC更成为不可缺少的材料,应用部位显著增加,目前已进行了大批试验和应用。

在CMC中,碳化硅陶瓷基复合材料还是一种新型制动材料。20世纪90年代中期,为了满足高速列车、装甲车、重载卡车、高级轿车等安全行驶的需求,西方工业发达国家开始进行将碳化硅陶瓷基复合材料应用于制动领域的研究,现已经成为高性能制动材料的一个重要方向。2001年波尔舍汽车公司生产出碳化硅陶瓷基复合材料陶瓷制动盘,与金属制动材料相比质量减轻了50%,而有效摩擦力提高了25%。英国SAB Wabco公司已经研制出了碳化硅陶瓷基复合材料制动闸瓦,试用于法国TGV-NG高速列车。日本新干线正在试用碳化硅陶瓷基复合材料的制动闸瓦。

2003年,美国国防部授权发表的《面向21世纪国防需求的材料研究》报告指出,到2020年,CMC的性能最有潜力获得20%~25%的大幅提升,被列为优先发展的材料。

3聚合物基复合材料

聚合物基复材料(PMC)是以热固性或热塑性树脂为基体材料和另外不同组成、不同性质的短切的或连续纤维及其织物复合而成的多相材料。常用的增强纤维材料有玻璃纤维、碳纤维、高密度聚乙烯纤维等。

聚合物基复合材料密度低、比强度高,耐腐蚀、减振性能好,模量高和热膨胀系数低,是一种高性能工程复合材料,广泛应用于汽车、航空航天和军事等领域。美国A V-8B垂直起降飞机和F-18战斗机均采用了聚合物基复合材料,与采用传统材料相比,它们的质量分别减轻了27%和10%。波音777飞机上采用聚合物基复合材料用量达到9900kg,占结构总质量的11%。聚合物基复合材料应用于汽车,可显著减轻汽车自重,降低油耗,提高汽车安全舒适性,降低汽车的制造与使用综合成本。另外聚合物基复合材料在交通、建筑、环保、体育用品等方面的应用也日趋广泛,已占复合材料用量的90%以上。在民用领域,某些功能性聚合物基复合材料具有防静电、抗菌除臭的效果,市场上出现的抗菌冰箱,无菌塑料餐具等便是这种技术的应用。

自20世纪90年代以来,纳米技术和纳料材料得到飞速发展,科学家将具有纳米尺寸(小于100nm)的金属或金属氧化物材料采用填充、共混、增强等技术分布于聚合物基体中,利用纳米材料独特的小尺寸效应、界面效应及量子效应引起的一系列特异的声、光、热、电等性能,开发出具有特殊功能的聚合物基纳米复合材料,能吸收和衰减电磁波、减少反射和散射,用于隐形飞机、隐形军舰等其他需要电磁波屏蔽场所的涂敷。美国F-117A先进战术隐身战斗机、A-12先进战斗机和最新的F-22战机,均采用了聚合物基纳米复合材料作为隐身材料。世界上正在研制的第四代超音速歼击机,机体结构采用聚合物基复合材料、翼身融合体和吸波涂层,配合电磁波吸收涂料和电磁、屏蔽涂料的使用,使其真正具有了隐身功能。美国、俄罗斯等国家的新一代导弹正朝着轻质、宽频带吸波、具有空气动力学和热稳定性良好的聚合物基隐身材料方向发展。

4炭/炭复合材料

炭/炭(C/C)复合材料是以碳纤维增强炭基体的复合材料,其使用温度高达2000℃以上,密度低于2.0g/cm3,比强度是高温合金的5倍,是一种优秀的轻质高温结构材料。从20世纪60年代美国NASA的Apollo登月计划实施以来,C/C复合材料已成为航空航天领域不可替代的热结构材料当今,无论是火箭发动机喷管、导弹的再入防护还是航空刹车副,C/C复合材料都是首选材料。很难想像,如果没有C/C复合材料的存在,世界航空航天事业能否会有今天这样的辉煌成就。

C/C复合材料早在20世纪70年代末80年代初已成功用于航天飞机的鼻锥帽和机翼前缘,满足了航天飞机

多次往返飞行的需求。C/C复合材料在高温非结构方面因能够很好地满足各种苛刻技术要求而崭露头角,其应用正向多个方向发展,其中最重要的应用对象有:①火箭喷管,如美国和法国的直径为3.0~3.2m的固体火箭发动机喷管的喉径接近1m;俄罗斯的潜地导弹发动机的喷管延伸锥是采用直径为2.5m的薄壁C/C 件;②导弹鼻锥(端头帽),如美国MX和侏儒导弹就是采用三维细编穿剌C/C鼻锥。更具有挑战性的应用是在多次重复的高温氧化环境下长期工作的初级或次级承力结构,这是当前C/C研究的重点和热点。

C/C复合材料还是一种优异的航空刹车材料它不仅重量轻(仅为金属基的1/4左右)、寿命长(是金属基的5~7倍)、热容大,而且工作更加可靠。因此,国内外新一代的飞机(无论是民航机还是军用机),其刹车副已大多采用C/C复合材料它代表了新型航空刹车材料的发展方向。

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

碳纤维增强复合材料分层缺陷的检测研究

碳纤维增强型复合材料分层缺陷的检测研究 贾继红【1】,许爱芬【1】,路学成【2】,谢霞【2】 摘要:碳纤维增强型复合材料由于其高温下仍保持高硬度、高强度,质量轻等 性能被广泛应用于军事工业,但复杂的制造过程使得缺陷不可避免并影响使用。本 文采用正交小波对碳纤维复合材料的探伤信号进行多尺度分析,通过对小波基、分 解层数地选取以及对细节信息地处理和分析,总结出判定分层缺陷的损伤程度的方 法,使得材料在失效前被提早发现。实验表明该方法有效。 关键词:碳纤维;复合材料;小波分析;无损检测 Tisting Study On Lamination Of Carbon fibrerein forced composite material Jia Ji Hong[1],Xu Ai Fen[1],Lu Xue Cheng[2],Xie Xia[2] Abstract: Carbon fibrerein Composite materials was widely used in war industry for keeping high-hardness、high-strength,and light weight etc,but the defect could not be helped after complicated manufacturing,and influenced use. Applied the orthogonal wavelet to explore carbon fibre reinforced composite material for the multiple-dimensioned analysis, put forward a method for estimating damaging degree by selecting basic wavelet、decomposing layer-number and detail signal processing. It’s advantage is that prevent the materal from invalidating,,and this method was proved effective. Key words:Carbon fibrerein ;Composite materials;Wavelet analys;nondestructive test 1.引言 近年来,碳纤维增强型复合材料在工业甚至国防建设中有了长足发展,特别是在飞机制造上,机体结构的复合材料化程度是衡量飞机先进性的一个重要指标。然而,碳纤维复合材料是复杂的各项异性多相体系,其质量存在离散性,成型过程与服役条件极其复杂,环境控制、制造工艺、运输以及操作等都可能造成材料缺陷【2】,使得结构失效。因此,结构材料的无损检测(NDT)无论是在制造上还是在实时应用上都显得尤为重要。 分层缺陷是碳纤维复合材料中最常见的缺陷形式,复合材料层合板在压缩载荷作用下将依次发生脱粘分层、分层扩展、再屈曲、最后压缩破坏。含分层损伤的复合材料层合板在面内压缩载荷作用下,其圆形分层缺陷上下端点的局部区域内材料受横向拉应力作用为主;分层缺陷大小对复合材料层合板的抗压强度和屈曲临界载荷影响显著;分层缺陷大小对复合材料层合板的压缩弹性模量影响不显著;对于4.40 mm厚复合材料层合板,当分层缺陷尺寸达到孔隙30 %就要考虑修补【3】。 超声检测是目前无损检测中应用最广泛的一种。在超声缺陷检测中,回波信号通常是一种被探头中心频率调制的宽带信号,该信号是属于时频有限的非平稳信号,因此选用具有时频局部放大能力的小波变换技术对信号进行处理和分析非常适宜。

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.360docs.net/doc/374965259.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

复合材料的分层研究(谷风文书)

复合材料的分层缺陷 引言 目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的50%以上[1]。 分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。 1.1分层产生的原因 Pagano 和Schoeppner [2] 根据复合材料构件的形状,将分层产生的原因分为两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。 以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨胀所产

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/374965259.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

复合材料界面制备技术的研究发展现状

复合材料界面制备技术的研究发展现状 孟明艾复合1001 3100706025 摘要:材料界面直接影响着材料的物理、化学、力学等性能与应用范围, 复合材料整体性能的优劣与复合材料界面结构和性能关系密切。分析材料界面的物理与化学过程、物质传输、能量转化及研究材料界面的结构与性能间的关系,对研究新材料和传统材料及其应用有着愈来愈重要的意义。 复合材料界面介绍 复合材料是由两种或两种以上不同物理、化学性质的以微观或宏观的形式复合而组成的多相固体材料。复合材料中增强体与基体接触构成的界面,是一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相——界面相(界面层)。界面是复合材料极为重要的微结构,它是增强体和基体相连接的“纽带”,也是应力及其他信息传递的桥梁,其结构与性能直接影响着复合材料的性能。因此,深入研究复合材料界面的的制备、技术形成过程、界面层性质、结合强度、应力传递行为对宏观力学性能的影响规律,从而有效进行控制界面,是获得高性能复合材料的关键。 复合材料界面及其组成 界面相并没有十分清晰的界限。界面相内部即使是同一组分其内部性质也有很大的不同,无论从物理状态还是化学情况,界面相各个组分之间都存在着相互扩散和相互影响,并不是一个绝对规整的结构。对于界面相,界面层的形成和结构大体可分为:1.表面的粗糙及活性而形成的吸附层;2.表面的化学物质与基质发生化学反应而成的物质;3.表面诱导的结晶层;4.聚合物和纤维冷却时,因收缩差所引起的残留应力层。 复合材料界面研究现状 界面与材料的各种性能的关系是复合材料研究的前沿领域,当前界面研究的重点是界面润湿、界面结构、界面结合机制和界面稳定性,它对颗粒的分布往往起着决定性的作用。因此,有关润湿机理、改善途径及影响因素仍是今后界面研究的重要课题。 但是,由于界面尺寸很小且不均匀,化学成分及结构复杂,对于界面的结合强度、界面的厚度、界面的应力状态尚无直接和准确的定量的方法,对于界面结合状态、形态、结构以及它对复合材料的影响尚没有适当的试验方法,需要借助电子质谱、红外扫描等试验逐步摸索和统一认识。因此,迄今为止,对复合材料界面的认识还不是很充分,主要表现在:(1)界面表征手段测试手段存在局限;(2)界面改善方法:无法解释界面在材料失效过程的确切作用;(3)材料力学研究:理论模型与材料加工的实际过程有很大差异。 复合材料界面制备技术的研究 制备技术不仅很大程度上影响着复合材料的性能,同时也是它进一步应用发展的重要因素。材料界面制备技术主要是接合。所谓接合,是指为得到具体指定特性的坯料而使用的一种材料复合手段。接合形式有物理吸附、化学反应、

石墨烯复合材料在电磁领域的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第43卷,第9期2015年9月 V ol.43,No.9Sept. 2015 143 doi:10.3969/j.issn.1001-3539.2015.09.029 石墨烯复合材料在电磁领域的应用研究进展 王雯1,黄成亮1,郭宇1,宋宇华1,张颖异1,刘玉凤1,杜汶泽2 (1.中国兵器工业集团第五三研究所,济南 250031; 2.总装备部装甲兵驻济南地区军代室,济南 250031) 摘要:石墨烯以其独特的二维结构和优异的力学、电学、光学、热学性能成为材料领域的研究热点,石墨烯复合材料是石墨烯应用领域中重要的研究方向。概括了国内外石墨烯复合材料在电磁波吸收及电磁屏蔽领域的应用研究进展,并展望了未来石墨烯复合材料在此领域的发展趋势。 关键词:石墨烯;石墨烯复合材料;微波吸收;电磁屏蔽;应用 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2015)09-0143-04 Application Research Progress of Graphene Composites in Electromagnetic Fields Wang Wen 1, Huang Chengliang 1, Guo Yu 1, Song Yuhua 1, Zhang Yingyi 1, Liu Yufeng 1, Du Wenze 2 (1. CNGC Institute , Jinan 250031, China ; 2. Jinan Regional Office of Armoured Force Military Representative Bureau , Jinan 250031, China) Abstract :Graphene has become a hot research spot at home and abroad in recent years due to its unique two-dimensional structure and excellent mechanical, electrical, optical and thermal properties. Graphene composites is an important research direction in the area of graphene application. The application research progress in the microwave absorption and electromagnetic interference shielding fields of graphene composites were summarized. The developmental trend of graphene composites in the fields was expected. Keywords :graphene ;graphene composite ;microwave absorption ;electromagnetic interference shielding ;application 石墨烯是单层碳原子紧密堆积而形成的一种超薄碳质新材料,厚度只有0.34 nm ,是目前世界上最薄的二维材料 [1–2] 。自2004年英国曼彻斯特大学的物理学教授A. Geim 和 K. Novoselov 等用机械剥离方法观测到单层石墨烯,其独特的物理性能和在电子领域的潜在应用成为国际研究的热点,并引起科学界新一轮“碳”热潮[3–6]。 碳材料是电磁屏蔽和吸波材料研究的重要内容,对于石墨、碳纤维、碳纳米管等材料的电磁屏蔽和吸收性能的研究已经相当广泛。然而,作为一种新型碳材料的石墨烯具有纵横比、电导率和热导率高、比表面积大、密度低等特点,其本征强度高达130 GPa ,常温下的电子迁移率可达到15 000 cm 2/(V ·s),是目前电阻率最小的材料。并且石墨烯具有室温量子霍尔效应和良好的铁磁性[7–10],与石墨、碳纤维、碳纳米管等材料相比,拥有独特性能的石墨烯可以突破碳材料原有的局限,成为一种新型有效的电磁屏蔽和微波吸收材料[11–14]。因此,以石墨烯为研究方向,结合金属纳米材料或聚合物材料,通过结构设计研制性能优异的石墨烯复合材料,有望广泛应用于电磁波吸收及电磁屏蔽等民用及军事领域。笔者根据国内外学者的研究情况,重点介绍石墨烯复合材料在电磁波吸收以及电磁屏蔽领域中的研究进展,并对未来石墨烯复合材料的发展进行了展望。 1 石墨烯复合材料在电磁波吸收领域中的应用 随着无线电探测技术和探测手段的发展以及其它非可见光探测技术和各种反伪装技术的逐渐完善和应用,传统武器装备的生存受到严峻的挑战。因此,研制高效吸收雷达波的轻型材料是提高武器装备系统生存能力的有效途径之一,是现代战争中最具有价值、最有效的战术突防手段。可见,高性能轻型微波吸收材料研制及在武器装备中的应用至关重要。 二维片状的石墨烯具有高的比表面积(2 630 m 2/g)[9] 以及特异的热、电传导功能,对微波能产生较强的电损耗。与传统吸收剂相比,石墨烯材料以其优异的电磁性能成为一种有效的新型微波吸收材料。传统的铁磁类吸收剂,如Fe ,Ni ,Co ,Fe 3O 4,Co 3O 4等铁磁性纳米物质对电磁波具有较强的磁损耗。通过结构设计,将石墨烯与此类纳米粒子复合后,得到石墨烯片层中镶嵌强吸收电磁波纳米磁性粒子结构的复合材料,并且可实现对微波较强的介电损耗和磁损耗。此类复合材料将石墨烯与磁性纳米粒子的优异性能结合在一起,有效提高了石墨烯材料的磁损耗,并可显著提高我国吸 联系人:王雯,工程师,博士,主要从事新型碳材料的制备及应用方面的研究 收稿日期:2015-06-22

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

软磁复合材料研究进展

软磁复合材料研究进展 刘颖,Andrew Peter Baker,翁履谦 哈尔滨工业大学深圳研究生院材料科学与工程学科部,深圳(518055) E-mail:liuying05@https://www.360docs.net/doc/374965259.html, 摘要:本文根据绝缘包覆材料的不同,综述了近年来开发的各种软磁复合材料及其生产工艺;介绍了软磁复合材料的主要性能特点及影响因素;最后简要介绍了软磁复合材料在电气设备中的应用情况,对将来研究方向提出看法。 关键词:软磁复合材料,高温绝缘包覆层,压坯 中图分类号:TB333 文献标识码:A 1.引言 随着电气设备小型化趋势,对各式微型粉芯[1]的需求日益显著。为了研制出能效更高,体积更小,重量更轻的粉芯,开发新型软磁复合材料(Soft Magnetic Composite, SMC)已成为当前一个热点。SMC材料不仅能有效降低高频涡流损耗,而且还结合了粉末冶金技术的生产优势,在未来几年它将在航空、汽车、家用电器以及其他领域得到广泛的应用。 本文从SMC材料生产工艺、研究进展、性能及影响因素、应用及前景等方面,综述了近几年来SMC材料的发展。 2.软磁复合材料 在生产铁粉基软磁材料时,为降低涡流损耗有两种常用方法[2]。 一种是利用合金添加剂来提高材料电阻率,降低涡流损耗,如铁-硅合金(通常含Si3%),铁-磷合金(一般含P0.45%-0.75%),铁-镍合金(含铁50%,含镍50%)等。但这样降低了饱和磁感应强度,而且合金含量在商业使用上还有一定限度。这种方法适合应用于直流或较低频率交流装置。 另一种方法则是对磁性颗粒进行绝缘包覆处理,这类就是SMC材料,其结构如图1[3]所示。SMC材料,有时也称“绝缘包覆铁粉”,是近来逐渐发展起来的一种新型铁基粉末软磁材料。它通常选用高纯铁粉为基材,经有机材料和无机材料绝缘包覆处理,利用粉末冶金技术使混合粉末成为各向同性的体材料[4,5]。 利用SMC材料生产各类铁芯具有许多突出的优点[6-8]: 1.各向同性:这大大增加了设计自由度,单位重量可获得更大转矩以及更大铜的填充率,实现重量更轻、体积更小的目的。 2.利用粉末冶金技术能压制成型为最终形状的产品,材料利用率提高,成本损耗降低,产品控制更精准,复杂形状加工能力更强。 此外,SMC电机还能采用模块式结构,装卸方便,这使材料回收和再利用容易,十分有利于环保。 叠层硅钢片和软磁铁氧体是两类传统的铁芯材料。硅钢片在直流和交流较低频率时,具有高磁通密度和磁导率;但随着频率增加,涡流损耗急剧增加。铁氧体铁芯虽然高频磁性能优良,电阻率大,铁损低;但存在磁通密度低的缺点。它们均在交流设备小型化过程中均遇到了困难。目前,利用粉末冶金技术生产SMC材料已成为当前研究和开发的热点。研究表

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

高性能有机纤维增强复合材料的界面性能研究

高性能有机纤维增强复合材料的界面性能 研究 201001130606 高同舜

高性能有机纤维增强复合材料的界面性能研究 摘要:为了改善超高分子量聚乙烯(UHMWPE)纤维、芳纶纤维增强树脂基复合材 料的界面粘结性能,本文从树脂基体入手,依据相似相容原理和纤维的结构特点开发出两种新型热固性树脂—PCH 树脂和AFR 树脂,分别用作UHMWPE 纤维复合材料和芳纶复合材料的基体,以未经表面处理的纤维作增强材料,采用热压成型法制备了UHMWPE 纤维/PCH 和芳纶/AFR 复合材料,并通过测定接触角、层间剪切强度(ILSS)、横向拉伸强度和扫描电镜观察形貌等方法研究了复合材料 的界面粘结性能。结果表明:UHMWPE 纤维和PCH 树脂浇注体的溶度参数相近,PCH 树脂溶液在UHMWPE 纤维表面的接触角为15.6°,说明对其具有良 好的浸润性;UHMWPE/PCH 复合材料的ILSS 和单丝拔出强度分别为42.6MPa 和21.8MPa,均远大于UHMWPE/环氧树脂(EP)复合材料的相应强度,扫描电镜分析也表明UHMWPE 纤维增强PCH树脂基复合材料具有优异的界面粘结性能。AFR 树脂溶液与芳纶纤维的接触角为42.8°,而EP 与芳纶的接触角为68°,说明AFR 树脂对芳纶的润湿性优于EP;芳纶/AFR 复合材料的ILSS、横向拉伸强度和纵向拉伸强度分别为74.6MPa、25.3MPa、2256 MPa,比芳纶/EP 复合材料的相应强度分别提高了28.7%、32.5%和13.4%,其复合材料破坏面的形貌也 说明芳纶与AFR 树脂之间的界面粘结性能较好。 Abstract:In order to improve the interfacial adhesion of UHMWPE fiber and aramid fiber reinforced polymer matrix composites, two new thermosetting resin systems (PCH and AFR) have been developed according to law of similar mutual solubility and the structural characteristics of fibers. The adhesion properties of UHMWPE fiber/PCH and aramid /AFR composites were investigated by the methods of the contact angle, interlaminar shear strength, transverse tensile strength and scanning electron croscopy etc. Test results show that a strong interaction occurs between fibers and the matrix due to the structural and polar similarity. In the case of slight ifference between solubility parameters of UHMWPE fiber and cured PCH resin, it is found that the wettability of PCH resin on surface of the fiber can be improved and UHMWPE /PCH composite has excellent transverse tensile strength, interlaminar shear strength and the pull-out strength together with the outstanding interfacial bond property. The contact angle (42.8 °) between AFR resin and aramid fiber is smaller than the contact angle (68°) between the epoxy resin (EP) and aramid fibers. Therefore, the AFR resin had better wettability with the aramid fibers. The nterlaminar shear strength, transverse tensile strength and longitudinal tensile trength of aramid/AFR composite are respectively 74.6 MPa, 25.3MPa and 2256 MPa, increasing by 28.7%, 32.5% and 13.4% respectively compared with aramid fibers/EP composite. According to the SEM photograph of aramid fibers/AFR composite, AFR resin had good interface bonding performance with aramid fibers . 关键词:超高分子量聚乙烯(UHMWPE)纤维芳纶纤维复合材料界面粘结性Keywords: UHMWPE fiber; aramid fiber; composites; interfacial adhesion

复合材料层合板分层疲劳性能研究进展

复合材料层合板分层疲劳性能研究进展 发表时间:2019-03-13T16:03:02.393Z 来源:《中国西部科技》2019年第2期作者:陈春露单鹏宇[导读] 介绍了近年来复合材料层合板分层疲劳模型、数值模拟、以及Ⅰ型Ⅱ型和混合型分层疲劳性能试验的研究进展,并对复合材料层合板分层疲劳性能进一步的研究进行了展望。哈尔滨玻璃钢研究院有限公司复合材料层合板具有比强度高、比刚度大、抗疲劳性能好等一系列优点,能满足飞机结构重量轻、寿命长和可靠性高等特殊技术要求,已广泛应用于各航天航空领域。与此同时,许多和复合材料有关的问题逐渐凸显出来,如疲劳和耐久性,以及疲劳下的裂纹扩展及由 此引起的分层现象。由于复合材料层合板在工作中经常受到交变载荷的作用,所以对于层合板的疲劳研究,人们给予越来越多的关注[1],层合板的疲劳性能对复合材料的损伤容限设计、耐久性设计等有重要的意义。1传统疲劳模型 传统的疲劳模型,如剩余刚度模型[2、3、5]、剩余强度模型[3、4]和疲劳寿命模型[6-11],是通过建立材料结构的S-N曲线来估算材料结构的疲劳可靠性。这类宏观模型作为设计工具,已广泛应用于工程结构。但是,宏观模型的估算结果通常是保守的,并且不能够建立损伤和循环数间的关系。 2分层疲劳模型 研究疲劳损伤扩展问题最著名的,也是最为广泛应用的是Paris法则。该法则将疲劳裂纹扩展速率与能量释放率和模式比联系起来。 3 模拟 F.Shen[12]等采用虚拟裂纹闭合技术使用三维有限元模型模拟了含不同厚度圆形分层的编织和非编织复合材料的分层,计算了分层前缘应变能量释放率分布和分层前缘随循环次数的增长,并讨论了对称和非对称边界的情况,结果显示:纤维排布方向对局部应变能释放率分布有很大的影响;为节省计算时间普遍采用的四分之一模型由于边界作用会带来一定的误差。S.C.Pradhan和T.E.Tay[13]采用三维有限元单元用ABAQUS软件模拟了中间带圆孔的聚四氟乙烯分层对碳纤维编织复合材料在压缩疲劳载荷下应变能释放率随分层前缘的变化,并用超声C扫描仪确定分层的扩展状态。模拟与实验结果显示良好的吻合。4三种不同类型试验研究4.1Ⅰ型和Ⅱ型

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

相关文档
最新文档