midas_迈达斯05_斜拉桥考虑未闭合配合力正装分析

midas_迈达斯05_斜拉桥考虑未闭合配合力正装分析
midas_迈达斯05_斜拉桥考虑未闭合配合力正装分析

用MIDAS/Civil做斜拉桥正装分析

1. 斜拉桥正装分析和未闭合配合力功能

在斜拉桥设计中,可通过成桥阶段分析得到结构的一些必要数据、拉索的截面和张力等,除此之外斜拉桥还需要进行施工阶段分析。

根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。

进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。

采用这种分析方法,工程师普遍会经历的困惑是:

1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。

2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。

产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下:

1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。

2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。

从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容

易求出来的,但是小位移分析要通过考虑假想位移来计算拉索的张力是很难的。MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。

未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。进行正装分析时,把计算的拉索与合拢段的未闭合配合力反映在索张力和合拢段闭合内力上,就能使初始平衡状态和施工阶段正装分析的最终阶段的结果相同。

1.1 未闭合配合力的计算 – 拉索

首先,在安装拉索的前一阶段,求出拉索两端节点的位移。

利用拉索两端的位移,求拉索变形前长度(L)与变形后长度(L’)之差。根据差值求出相应的拉索附加初拉力(ΔT)。把求出的附加初拉力(ΔT)和初始平衡状态分析时计算得出的初拉力

L' - L L = Vb Ub Cos Sin θθ=?+

EA ?T = ?L L

f i T =T + T ?

1.2 未闭合配合力的计算 – 合拢段

三跨连续斜拉桥的中间合拢段合拢时,不会产生内力(只产生自重引起的内力),所以合拢段与两侧桥梁段之间形状是不连续的。为了让合拢段连续地连接在两侧桥梁段上,求出合拢段两端所需的强制变形值,将其换算成能够产生此变形的内力,并将其施加给合拢段后连接在两侧桥梁段上。

1.3 MIDAS/Civil软件考虑未闭合配合力的方法

首先把要计算未闭合配合力的索单元或梁单元定义为一个结构组。

然后在“施工阶段分析控制数据”对话框里的 “赋予各施工阶段中新激活构件初始切向位移”选项和“未闭合配合力”选项前面打勾,然后在右侧的列表里面选择要计算未闭合配合力的结构组。未闭合配合力控制是安装拉索时找出所需拉索张力的功能,在“索初拉力控制”里面选择体内力”。

1.4 析时安装拉索和输入张力的阶段,不能激活和钝化除索单元和索张力以外的单元和其它荷载。

考虑未闭合配合力的施工阶段正装分析注意事项

正装分

2. 测试例题 – 1 (两跨非对称斜拉桥)

图1 模型-01的模型

2.2 初始平衡状态分析

首先利用优化方法计算出成桥状态使加劲梁位移最小的索的张力。

拉索 初拉力 (kN)

M1 1007.782

M2 1068.000

M3 1179.248

M4 1328.768

M5 1505.199

主跨

M6 1700.184

M7 1908.042

M8 2125.000

M9 2348.537

M10 2576.941

背索 B1~B10 1767.767

初始平衡状态位移 (单位:mm)

图2 初始平衡状态的位移 初始平衡状态的弯矩 (单位 : kN-m)

图3 初始平衡状态弯矩 初始平衡状态的索力 (单位 : kN)

图4 初始平衡状态索力

2.3 施工阶段正装分析

各施工阶段模型

Stage 1 Stage 6

Stage 14 Stage 19

Stage 24 Stage 29(最终阶段)

图5 各施工阶段模型和荷载

桥面板的自重用集中荷载来考虑,在设置拉索的阶段除索单元和索的张力以外没有激活其他的单元或荷载。

2.4 最终弯矩

图6 初始平衡状态分析

图7 输入倒拆分析中求得的施工控制张力-最终阶段

图8 考虑未闭合配合力的正装分析-最终阶段

2.5 最终阶段索的张力

拉索号

未考虑未闭合配合力 考虑未闭合配合力 成桥阶段 1

1007.77 1007.77 1007.77 2

1068.03 1068.03 1068.03 3

1179.30 1179.30 1179.30 4

1328.82 1328.82 1328.82 5

1505.24 1505.24 1505.24 6

1700.19 1700.19 1700.19 7

1908.03 1908.03 1908.03 8

2124.97 2124.97 2124.97 9

2348.50 2348.50 2348.50 10

2576.89 2576.89 2576.89 背索

1767.77 1767.77 1767.77

倒拆 正装 未闭合配合力 成桥阶段 图9 各分析方法的索力比较

2.6 最终阶段加劲梁变形

节点 成桥阶段 倒拆?正装 误差(%) 未闭合配合力 误差(%)

1 0.004048 0.00000499.90% 0.004048 0.00

2 0.000966 -0.3512736463.56% 0.000966 0.00

3 -0.00212 -0.70255-33101.70% -0.00212 0.00

4 -0.00520 -1.05382-20173.64% -0.0052 0.00

5 -0.00828 -1.4051-16871.86% -0.00828 0.00

6 -0.01136 -1.75638-15359.70% -0.01136 0.00

7 -0.01444 -2.10765-14492.90% -0.01444 0.00

8 -0.01752 -2.45893-13931.78% -0.01752 0.00

9 -0.02061 -2.81021-13537.80% -0.02061 0.00

10 -0.02369 -3.16148-13246.34% -0.02369 0.00

11 -0.02677 -3.51276-13021.99% -0.02677 0.00

12 -0.02985 -3.86403-12843.97% -0.02985 0.00

13 -0.03293 -4.21531-12699.65% -0.03293 0.00

14 -0.03602 -4.56659-12579.68% -0.03602 0.00

15 -0.03910 -4.91786-12478.61% -0.0391 0.00

16 -0.04218 -5.26914-12392.33% -0.04218 0.00

17 -0.04526 -5.62041-12318.06% -0.04526 0.00

18 -0.04834 -5.97169-12253.01% -0.04834 0.00

19 -0.05142 -6.32297-12195.75% -0.05142 0.00

20 -0.05451 -6.67424-12144.97% -0.05451 0.00

21 -0.05759 -7.02552-12099.62% -0.05759 0.00

成桥阶段

未闭合配合力

倒拆 正装

图10 各分析方法的最终阶段位移

倒拆分析各阶段索力(CS1~CS29)

CS

Cable No.

21 22 23 24 25 26 27 28 29 30

1 1259.7

2 4283.1

3 1078.7 1132.0

4 1075.6 1311.1

5 1334.3 2999.7

6 1050.9 1150.3 1291.5

7 1026.8 1191.9 1387.5

8 1006.1 1854.1 2604.6

9 1028.7 1131.5 1276.4 1450.1

10 1005.5 1142.4 1316.0 1511.7

11 903.3 1483.7 2021.5 2489.5

12 1013.7 1114.9 1259.2 1432.9 1626.4

13 993.4 1115.9 1278.3 1466.1 1670.1

14 855.1 1311.9 1751.5 2148.4 2504.0

15 1003.1 1102.3 1245.3 1418.5 1611.8 1818.9

16 985.5 1099.5 1255.3 1438.5 1639.3 1851.9

17 826.3 1214.5 1599.7 1957.2 2285.4 2590.5

18 995.2 1092.5 1234.5 1407.0 1600.1 1807.1 2023.7

19 979.8 1088.2 1239.8 1419.9 1618.7 1830.0 2049.8

20 806.3 1151.7 1503.0 1836.1 2147.3 2440.6 2721.1

21 989.0 1084.9 1225.8 1397.9 1590.7 1797.6 2014.2 2237.7

22 975.4 1079.9 1228.5 1406.6 1604.0 1814.3 2033.5 2259.0

23 791.1 1107.5 1435.9 1752.6 2052.5 2337.9 2612.8 2880.4

24 984.0 1078.6 1218.8 1390.4 1583.0 1789.8 2006.4 2229.9 2458.5

25 971.7 1073.4 1219.9 1396.5 1592.9 1802.6 2021.3 2246.5 2476.4

26 778.6 1074.3 1386.5 1691.5 1983.2 2263.1 2534.2 2799.0 3059.5

27 979.8 1073.4 1212.9 1384.2 1576.6 1783.4 1999.9 2223.4 2452.0 2684.4

28 968.7 1068.2 1213.0 1388.5 1584.2 1793.4 2011.8 2236.8 2466.5 2699.8

29 1007.8 1068.0 1179.3 1328.8 1505.2 1700.2 1908.0 2125.0 2348.5 2576.9

正装分析各阶段索力 (CS1~CS29) – 未闭合配合力

CS

Cable No.

21 22 23 24 25 26 27 28 29 30

1 1259.7

2 4283.1

3 1078.7 1132.0

4 1075.6 1311.1

5 1334.3 2999.7

6 1050.9 1150.3 1291.5

7 1026.8 1191.9 1387.5

8 1006.1 1854.1 2604.6

9 1028.7 1131.5 1276.4 1450.1

10 1005.5 1142.4 1316.0 1511.7

11 903.3 1483.7 2021.5 2489.5

12 1013.7 1114.9 1259.2 1432.9 1626.4

13 993.4 1115.9 1278.3 1466.1 1670.1

14 855.1 1311.9 1751.5 2148.4 2504.0

15 1003.1 1102.3 1245.3 1418.5 1611.8 1818.9

16 985.5 1099.5 1255.3 1438.5 1639.3 1851.9

17 826.3 1214.5 1599.7 1957.2 2285.4 2590.5

18 995.2 1092.5 1234.5 1407.0 1600.1 1807.1 2023.7

19 979.8 1088.2 1239.8 1419.9 1618.7 1830.0 2049.8

20 806.3 1151.7 1503.0 1836.1 2147.3 2440.6 2721.1

21 989.0 1084.9 1225.8 1397.9 1590.7 1797.6 2014.2 2237.7

22 975.4 1079.9 1228.5 1406.6 1604.0 1814.3 2033.5 2259.0

23 791.1 1107.5 1435.9 1752.6 2052.5 2337.9 2612.8 2880.4

24 984.0 1078.6 1218.8 1390.4 1583.0 1789.8 2006.4 2229.9 2458.5

25 971.7 1073.4 1219.9 1396.5 1592.9 1802.6 2021.3 2246.5 2476.4

26 778.6 1074.3 1386.5 1691.5 1983.2 2263.1 2534.2 2799.0 3059.5

27 979.8 1073.4 1212.9 1384.2 1576.6 1783.4 1999.9 2223.4 2452.0 2684.4

28 968.7 1068.2 1213.0 1388.5 1584.2 1793.4 2011.8 2236.8 2466.5 2699.8

29 1007.8 1068.0 1179.3 1328.8 1505.2 1700.2 1908.0 2125.0 2348.5 2576.9 如果模型里没有合拢段时,倒拆分析和前正装析的各阶段索力相同。

3. 测试例题-2(三跨斜拉桥)

模型-01是比较简单的模型,加劲梁假定为刚体,主塔也没有建立到模型中,且没有合拢段,也没有在边跨生成支承条件的过程。但在实际工程中大部分的斜拉桥会有临时支承、塔梁临时连接等影响结构不闭合的诸多因素。考虑未闭合配合力的斜拉桥正装分析为了能够适用于实际结构,要证明它能够适用于各种类型的结构情况。

下面通过包含合拢段的合拢过程、施工阶段边界变化、临时支承的安装和拆除过程的简单模型来验证未闭合配合力功能在实际工程上的应用。

单元类型 弹性模量 (kN/m2) 容重(kN/m3) 拉索 桁架 1.57E7 7.85

加劲梁 梁单元 2.1E7 7.85

上 梁单元 2.1E7 7.85

主塔

下 梁单元 2.5E6 2.5

3.2 初始平衡状态分析

先通过初始平衡状态分析,计算成桥阶段的索力。此模型通过控制水平位移和加劲梁的弯矩来计算满足条件的索拉力。

图12 成桥模型

约束条件

主塔水平位移 : 34号节点水平位移(DX) = 0

加劲梁弯矩 : 适当限制弯矩

图13 成桥阶段索初拉力 (单位 : tonf)

图14 初始平衡状态索张力(单位:tonf)

图15 初始平衡状态加劲梁弯矩 (单位:tonf-m)

图16 初始平衡状态竖向变形图 (单位:mm)

3.3 考虑未闭合配合力的正装分析

利用初始平衡状态分析得出的拉索初拉力进行正装分析。只对中间跨的合拢段和第二施工阶段激活的边跨部分使用了未闭合配合力功能。中间跨合拢段的合拢和边跨连接支座过程都是结构体系变化的阶段,所以也对边跨的加劲梁考虑了未闭合配合力。

各施工阶段的施工内容如下。

施工阶段 施工内容 备注

Stage1 主塔、边跨端部支座、塔梁临时连接部位临时支承

Stage2 边跨加劲梁 考虑未闭合配合力 Stage3 施加挂篮荷载

Stage4 拆除临时支承, 边跨拉索(S1) 考虑未闭合配合力 Stage5 中间跨加劲梁

Stage6 中间跨拉索 (C1) 考虑未闭合配合力 Stage7 移动挂篮荷载

Stage7-1 边跨拉索(S2) 考虑未闭合配合力 Stage8 中间跨加劲梁

Stage9 中间跨拉索(C2) 考虑未闭合配合力 Stage10 移动挂篮荷载

Stage11 拆除挂篮荷载

Stage11-1 合拢段闭合 考虑未闭合配合力 Stage12 塔梁连接体系转换 刚体连接?弹性连接Stage13 施加二期荷载

桥梁博士迈达斯使用

家在使用桥博、midas的时候经常会遇到些问题,希望大家把这些问题发出来,省的其他人在犯!! 我先来说几条 A:桥博 0、桥博裂缝输出单位为mm,力输出单位为KN,弯矩输出单位KN*m,应力输出单位Mpa 1、从CAD中往桥博里面导入截面或者模型时,CAD里面的坐标系必须是坐标系。 2、桥博里面整体坐标系是向上为正,所以我们在输荷载的时候如果于整体坐标系相反就要输入负值。 3、从CAD往桥博里导截面时,将截面放入同一图层里面,不同区域用不同颜色区分之。 4、桥博使用阶段单项活载反力未计入冲击系数。 5、桥博使用阶段活载反力已计入1.2的剪力系数。 6、计算横向力分布系数时桥面中线距首梁距离:对于杠杆法和刚性横梁法为桥面的中线到首梁的梁位线处的距离;对于刚接板梁法则为桥面中线到首梁左侧悬臂板外端的距离,用于确定各种活载在影响线上移动的位置。 7、当构件为混凝土构件时,自重系数输入1.04. 8、桥博里通过截面修改来修改截面钢筋时,需将“添加普通钢筋”勾选去掉,在截面里输入需要替换的钢筋就可以把钢筋替换掉。 9、在施工阶段输入施工荷载后,可以通过查看菜单中的“显示容设定”将显示永久荷载勾选上,这样就可以看看输入的荷载位置、方向是否正确。

10、桥博提供自定义截面,但是当使用自定义截面后,显示和计算都很慢,需要耐心。 11、桥博提供材料库定义,建议大家定义前先做一下统一,否则模型拷贝到其他电脑上时材料不认到那时就头疼了。 12、有效宽度输入是比较繁琐的事情,大家可以用脚本数据文件,事先在excel 中把有效宽度计算好,用Ultraedit列选模式往里面粘贴,很方便!! 14、当采用直线编辑器中的抛物线建立模型时,需要3个控制截面,第一个控制截面无所谓,第二个控制截面向后抛,第三个控制截面向前抛,桥博里面默认的是二次抛物线!! 15、当采用直线编辑器建立模型时,控制截面要求点数必须一致,否则告诉你截面不一致。 16、修改斜拉索面积时用斜拉索单元编辑器,在拉锁面积里需要输入拉索个数*单根拉索的面积。 17、挂篮操作的基本原理: 挂篮的基本操作为:安装挂篮(挂篮参与结构受力同时计入自重效应)、挂篮加载(浇筑混凝土)、转移锚固(挂篮退出结构受力、释放挂篮力及转移拉索索力)和拆除挂篮(消除其自重效应)。具体计算过程如下: ) 前支点挂篮:(一般用于斜拉桥悬臂施工) )如果挂篮被拆除,则挂篮单元退出工作,消除其自重效应。)如果挂篮转移锚固,则挂篮单元退出工作,释放挂篮力,并将拉索索力转到主梁上。 )如果安装挂篮,则将挂篮单元置为工作单元并与主梁联结,计算挂篮

迈达斯斜桥与弯桥分析

斜桥与弯桥分析 北京迈达斯技术有限公司 2007年8月

目录 1. 斜桥 (1) 1.1 概述 (1) 1.2 斜交桥梁的受力特点 (1) 1.3 建模方法 (2) 2. 弯桥 (3) 2.1 概述 (3) 2.2 弯桥的受力特点 (3) 2.3 建模方法 (4) 2.4 弯桥建模例题 (5)

1. 斜桥 1.1 概述 桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。斜交桥受力性能较复杂,与正交桥有很大差别。平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。 1.2 斜交桥梁的受力特点 a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘 起;(图1.2.1) b) 出现很大的扭矩;(图1.2.2) c) 板边缘或边梁最大弯矩向钝角方向靠拢。(图1.2.3 ~ 图1.2.4) 图1.2.1 斜交空心板桥支点反力 图1.2.2 斜交空心板桥扭矩图

图1.2.3 正、斜交板桥自重弯矩图(板单元) 图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元) 这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。如果斜交角度超过20度就必须考虑上述效应的影响。设计人员还应根据实际情况,找出适当的处理方案。 1.3 建模方法 对斜交桥梁多用梁格法建立模型。可用斜交梁格或正交梁格来建模。对于斜交角度小于20度时,使用斜交梁格是非常方便的。但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。 图1.3.1 斜交梁格与正交梁格

midas分析弯桥的一点经验总结

midas分析弯桥的一点经验总结 分析弯桥的一点经验总结(2007-05-24 21:23:31) 今天看了桥头堡的一个帖子感觉不错可以作为设计弯桥的借鉴。 关于MIDAS曲线桥双支座的模拟 用MIDAS建立了一个曲线桥的试验模型,模型所采用的材料是有机玻璃。模型分析的目的是根据各种工况下不同支承布置方式的不同来验证曲线梁桥支承布置方式的不同对桥梁内力分布的影响。。。实验基本资料见附图一。 首先我采取的是相关书籍都比较推崇的两端采用抗扭支座,而中间采用点铰支承。 我分别用MIDAS的梁单元以及板单元对该模型进行了模拟。。。 加载工况是在外腹板处加一个F=400N的力 其中,梁单元采取两种方式布置支座 1.截面下偏心,然后用弹性连接的刚性连接截面形心和沿桥横向即Y轴正负方向的两个节点,分别建立两个支左。 2.截面上偏心,先用刚性连接形心节点和其Y轴正负两侧的两个节点,然后用弹性连接中的刚性连接这两个节点和它们沿Z轴负向所对应的支左节点。 板单元则直接在支座相应的节点进行约束即可。 得出的分析结果梁单元的两种支座布置方式所得的支反力结果是相同的,均是曲桥内侧产生支座悬空现象出现拉力。而它们跟板单元的支反

力却有很大的差别(最明显的地方是表现在梁两端的抗扭支座的数值上,方向还是大致一样的) 我自己分析结果的差别主要是因为对梁单元进行分析的时候,我所加的集中力进行了力的平移动,也就是把位于腹板处的集中力平移到了箱梁质心处,变为了一个集中力加一个力矩,力矩的值为F*E(腹板中心到截面中心的距离)。但是我们知道曲线桥的实际的扭转中心并不是位于各截面形心的连线处的,所以我认为我的这个作用力的简化有问题。。。因此板单元所得出的分析结果肯定是相对准确的,可是按理说这个小小的错误也不能导致支座反力会有如此大的差别啊。。。 请大家讨论下MIDAS梁单元双支座的模拟,应该还有更多的错误需要发现,请大家指教一二。。。。 我发现了自己模拟支座时的错误。。。 原来我在用梁单元进行双支座模拟的时候,端部两侧的支座的间距跟用板单元分析的时候不一致,所以这就直接导致了结果的不同。发上我重新修改支座后的反力结果。。。 结果基本吻合,板单元的反力结果还是准确些的。我想梁单元反力的结果还是值得相信的,只是因为曲线桥的扭转中心跟各截面形心的连线是不重合的,而我的梁单元分析的时候却是始终以截面形心进行分析计算的。因此会产生误差。。。不过误差应该在允许范围之内。。。 下图是梁单元修正支座间距后的反力结果。可以跟板单元的反力结果做比较

桥梁博士+系+列+教+程(盖梁)

桥梁博士系列教程—小箱梁或T梁盖梁计算 上海同豪土木工程咨询有限公司 2008-4-22 教程概述

本例主要介绍利用桥梁博士对桥墩盖梁进行计算的过程和方法,重点在于虚拟桥面入盖梁活载的加载处理。 进行盖梁计算主要由以下几个步骤: 桥墩盖梁的结构离散(划分单元) 输入总体信息 输入单元信息 输入施工信息 输入使用信息 执行项目计算 查阅计算结果 本例教程桥墩构造参数

一、结构离散 首先对盖梁进行结构离散,即划分单元建立盖梁模型,原则是在支座处、柱顶、特征断面(跨中、1/4)处均需设置节点。如果需要考虑墩柱和盖梁的框架作用,还需要把墩柱建立进来;柱底的边界条件视情况而定,如果是整体承台或系梁连接,可视为柱底固结;如果是无系梁的桩柱,可以将桩使用弹性支撑或等代模型的方式来模拟。 二、输入总体信息 计算类型为:全桥结构全安计算 计算内容:勾选计算活载 桥梁环境:相对湿度为0.6 规范选择中交04规范。

输入单元信息,建立墩柱、盖梁及垫石单元模型,对于T 梁或小箱梁,因为支座间距比较大不能将车轮直接作用在盖梁上,我们还需要在盖梁上设置虚拟桥面单元来模拟车道面,与盖梁采用主从约束来连接,虚拟桥面连续梁的刚度至少大于盖梁的100倍。建立模型如下: 虚拟桥面为连续梁时,刚度可在特征系数里修改。

第一施工阶段:安装所有杆件 添加边界条件 添加虚拟桥面与盖梁的主从约束:虚拟桥面与盖梁的主从约束需要使用两种情况分别模拟:虚拟桥面简支梁和虚拟桥面连续梁;这两种方法分别是模拟墩台手册中的杠杆法和偏心受压法;其目的是杠杆法控制正弯矩截面;偏心受压法控制负弯矩截面。

midas分析总结

1.在midas中横向计算问题. 在midas中横向计算时遇到下列几个问题,请教江老师. 1.荷载用"用户定义的车辆荷载",DD,FD,BD均取1.3m,P1,P2为计算值,输入时为何提示最后一项的距离必须为0? 2.同样在桥博中用特列荷栽作用时,计算连续盖梁中中支点的负弯距相差很大.其他位置相差不多. 主要参数:两跨2X7.5m,bXh=1.4X1.2m,P1,P2取100 midas结果支点活载负弯矩-264.99kn.m 桥博结果支点活载负弯矩-430kn.m 通过多次尝试及MIDAS公司的大力支持,现在最终的结果如下: 肯定是加载精度的问题,可以通过将每个梁单元的计算的影响线点数改成6,或者,将梁单元长度改成0.1米,就能保证正好加载到这一点上。由这个精度引起的误差应该可以接受的,如果非要消除,也是有办法的。 2.梁板模拟箱梁问题 腹板用梁单元, 顶底板用板单元,腹板和顶底板间用什么连接,刚性?用这个模型做顶底板验算是否合适?在《铁道标准》杂志的“铁道桥梁设计年会专辑”上有一篇文章,您可以参考一下: 铁四院 康小英 《组合截面计算浅析》 里面讨论组合截面分别用MIDAS施工阶段联合截面与梁+板来实现,最后得出结论是用梁+板的结果是会放大板的内力。可能与您关心的问题有相似的地方。 建议您可以先按您的想法做一个,再验证一下,一定要验证!c 3.midas里面讲质量转换为荷载什么意思! 是否为“荷载转为质量”? 在线帮助中这么写: 将输入的荷载(作用于整体坐标系(-)Z方向)的垂直分量转换为质量并作为集中质量数据。 该功能主要用于计算地震分析时所需的重力荷载代表值。 直观的理解就是将已输入的荷载,转成质量数据,不必第二次输入。一般用得比较多的是将二期恒载转成质量。 另外,这里要注意的是,自重不能在这里转换,应该在模型--结构类型中转换。 准确来讲,是算自振频率时(特征值分析)时用的,地震计算时需要各振形,所以间接需要输入质量。

桥梁博士使用入门

1.1 项目组操作 1.新建项目组 ●从主菜单中选择文件>新建项目组;或<快捷键>:[Alt]+F>[Ctrl]+W。 ●显示名称为“新项目组”,右击项目组显示名称,在菜单中选择“标签重命名”(如 图错误!文档中没有指定样式的文字。-1所示),输入项目组显示名称,单击确 定。 图错误!文档中没有指定样式的文字。-1创建项目组 2.打开项目组 ●从主菜单中选择文件>打开项目组;或<快捷键>:[Alt]+F>[Ctrl]+G。 ●将弹出图错误!文档中没有指定样式的文字。-2所示对话框,选择项目组或项目 文件,打开。 图错误!文档中没有指定样式的文字。-2选择项目组文件对话框

●项目组文件后缀为pjw。 ●若打开项目文件(文件后缀为prj),此时将自动生成一同名的项目组文件。 3.关闭项目组 ●从主菜单选择文件>关闭项目组;或<快捷键>:[Alt]+F>[Ctrl]+L。 ●如果工程数据经过修改,关闭前会弹出对话框,询问是否保存已作的修改。 ●在关闭新项目组时,用户还需要指定这个项目组的存储文件名和存储路径。 ●关闭项目组后,桥梁博士恢复默认的窗口。 4.保存项目组 ●从主菜单选择文件>保存项目组;或<快捷键>:[Alt]+F>[Ctrl]+F ●输入文件名并选择保存目录,然后单击保存。 5.另存项目组 ●以另外一个文件名保存当前项目组。 ●从主菜单选择文件>项目组另存为;或<快捷键>:[Alt]+F>[Ctrl]+B。 ●输入文件名并选择保存目录,然后单击保存。 图错误!文档中没有指定样式的文字。-3保存项目组文件对话框 6.显隐项目组 ●从主菜单选择查看>项目组;或单击工具栏按钮“”,切换显示和隐藏项目管 理组窗口。 图错误!文档中没有指定样式的文字。-4项目组窗口 7.项目的快捷操作 ●选中项目单击鼠标右键,弹出右键菜单,可进行多项快捷操作:

桥博操作流程-心得

桥博操作流程 一、准备工作: 1.控制点的模型断面:使用AutoCAD以mm为单位绘制,将断面 放臵在同一个图层当中。 2.钢束:使用AutoCAD以mm为单位绘制,首先绘制梁板外框线, 然后按给定的纵横坐标(或两直线夹圆曲线半径等数据,以画圆中C→T命令)绘制钢束,将钢束设臵成红色,并且将每一根钢束放臵于一个图层中。全部绘制完毕后将整体图形的左上角点移至原点。当然,这是基于建模的参考基准点考虑的。 3.节点和单元:将梁板按支座位臵、横隔板位臵、区段小于1 米来划分控制断面。 二、桥博建模、计算: 1.打开桥梁博士3. 2.0。 2.创建新项目组。 3.点击项目→创建项目,填写项目名称,选择项目类型,点击 确定。 4.点击复制项目组保存至你想存的文件夹当中,并取合适的文 件名。 5.在工程描述中填写此次计算的相关内容。 6.在结构备忘描述中填写要计算的部位,为以后方便查看。 7.选择计算类别。

8.勾选计算内容。 9.填写结构重要性系数,按照《公路桥涵设计通用规范》(JTG D60-2004)4.1.6条和1.0.9条取用。 10.选择规范:是按旧规范还是新规范执行。 11.右键单击选择单元信息。 12.勾选单元性质,是否为全预应力构件、现场浇筑构件、桥 面单元。 13.填写自重系数:按照计算的构件砼相对C25容重比值。 14.右键单击选择从AutoCAD导入截面,图层名称一定要与CAD 中图层名称一致。其他参数不用修改直接点击确定。 15.选择快速编辑中“直线”,开始建模。 16.在直线单元编辑中勾选全部编辑内容。填写起终点的(X, Y)值,一般起点为(0,0),终点为(预制长度,0)。然后按照模型是否为变化截面来添加“控制点断面定义”。注意截面特征可以在控制点处添加修改。此处注意附加截面(湿接缝)的设臵,只与长高有关,与位臵无关;可按湿接缝总长和单高填写,一般为矩形。 17.编辑单元号:划分几个单元即为几个单元号,格式为1-N。 18.编辑左节点号:1-N。 19.编辑右节点号:1-(N+1)。 20.分段长度:按分段长度填写,中间用空格。如0.38 2*0.56 0.5 6*0.53 10*0.96 6*0.53 0.5 2*0.56 0.38。

桥梁博士-桥梁建模-数据输出讲解

第1章直线桥梁设计计算输出 本章介绍如何进行直线桥梁设计计算结果的输出。数据输出包括文字、表格和图形,数据信息需等待数据计算结果生成后才可输出,例如,如果需要输出第5施工阶段的结构永久荷载效应,则需要等待系统第5施工阶段计算结束后才可以输出。 桥梁结构设计分析计算内容繁多,数据庞大,系统对数据结果采用数据库技术进行详尽的输出,所有输出都可以按照用户的索引要求进行。同时文字输出和图形输出相结合,做到图文并茂。所许需要查看的内容以下将按照索引方式分类介绍。 单元的内力效应为局部坐标系效应值,位移为总体坐标系效应值,但如果桥面单元截面为竖直截面(总体信息输入时设定),则桥面单元的内力效应为总体坐标系效应值。各内力的方向和单位约定参见2.4节。 1.1 总体信息输出 1.打开界面:使用数据菜单下的输出总体信息命令,打开如下图所示的输出窗口。 图1-1总体信息输出窗口图1-2总体信息输出窗口-单元特征 图1-3总体信息输出窗口-单元数量

2.输出方法:总体信息输出主要是结构的一般信息汇总,可使用右键菜单 切换不同内容的输出,也可在查看菜单中使用显示内容设定,通过制表检索号来控制绘制表格的单元号,支持打印。 3.输出内容:内容包括结构的最大单元号、节点号、钢束号、施工阶段号,结构耗用 材料合计汇总,单元的基本特征列表(左右节点号、左右节点坐标、单元类型、安装与拆除阶段),单元的数量列表(左右梁高、面积、单位重和单元重量,单元的重量信息已经计入单元自重的提高系数)。 1.2 单元信息输出 1.打开界面:使用数据菜单下的输出单元信息命令,打开如下图所示的输出窗口。 图1-4单元的几何外形输出图1-5单元的总内力和位移输出 图1-6单元的施工阶段应力输出图1-7单元的施工阶段应力验算输出

迈达斯斜桥与弯桥分析

北京迈达斯技术有限公司 2007年8月

目录 1. 斜桥 (1) 1.1 概述 (1) 1.2 斜交桥梁的受力特点 (1) 1.3 建模方法 (2) 2. 弯桥 (3) 2.1 概述 (3) 2.2 弯桥的受力特点 (3) 2.3 建模方法 (4) 2.4 弯桥建模例题 (5)

1. 斜桥 1.1 概述 桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。斜交桥受力性能较复杂,与正交桥有很大差别。平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。 1.2 斜交桥梁的受力特点 a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘 起;(图1.2.1) b) 出现很大的扭矩;(图1.2.2) c) 板边缘或边梁最大弯矩向钝角方向靠拢。(图1.2.3 ~ 图1.2.4) 图1.2.1 斜交空心板桥支点反力 图1.2.2 斜交空心板桥扭矩图

图1.2.3 正、斜交板桥自重弯矩图(板单元) 图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元) 这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。如果斜交角度超过20度就必须考虑上述效应的影响。设计人员还应根据实际情况,找出适当的处理方案。 1.3 建模方法 对斜交桥梁多用梁格法建立模型。可用斜交梁格或正交梁格来建模。对于斜交角度小于20度时,使用斜交梁格是非常方便的。但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。 图1.3.1 斜交梁格与正交梁格

基于Midas Civil的连续刚构桥受力分析

基于Midas Civil的连续刚构桥受力分析 摘要:本案例通过Midas软件建立连续刚构桥受力结构模型,对连续刚构桥持久状况正常使用极限状态内力分析,清晰表达出其各使用阶段内力,从而更好地进行内力分析计算,为以后连续刚构桥施工受力分析方案提供理论依据。 关键词:Midas分析;连续刚构桥;内力分析 1 工程概况 本工程位于广东省,东莞麻涌至长安高速公路路线跨越漳彭运河后,于大娘涡、沙头顶之间跨越淡水河。淡水河上游接东江北干流和中堂水道,下游汇入狮子洋。淡水河特大桥设计起点从路线K20+060开始至K21+184终止。其中主桥为(82+2×140+80)m的连续刚构桥,梁部采用C60混凝土,根部梁高8m,高跨比为1/17.5,跨中梁高为3m,高跨比为1/46.67,跨中根部梁高之比为1/2.67,底板按1.8次抛物线变化,桩基采用9根φ2.2m桩(半幅桥)。 2 主要技术标准 本桥采用对称逐段悬臂灌注和支架现浇两种施工方法。先托架浇注0号块,再对称逐段悬臂浇筑其它块件。边跨端头块采用支架现浇法施工。先合拢边跨,再合拢中跨。中跨采用挂篮合拢。边跨采用支架施工,先现浇端头块,然后浇筑2m 长合拢段进行边跨合拢。相关计算参数如下所示: 1、公路等级:高速公路,双向八车道。 2、桥面宽度:2×19.85m。 3、荷载等级:公路-I级。 4、设计时速:100km/h 5、设计洪水频率:1/300。 6、设计通航水位:H5%=3.14m。 7、设计基本风速:V10%=31.3m/s 3 计算理论 构件纵向计算均按空间杆系理论,采用Midas Civil V7.41进行计算。(1)将计算对象作为平面梁划分单元作出构件离散图,全桥共划分711个节点和676个单元;(2)根据连续刚构的实际施工过程和施工方案划分施工阶段;(3)根据规范规定的各项容许指标,验算构件是否满足规范规定的各项要求。 4建立计算模型及离散图 4.1计算模型 主桥主墩采用桩基采用9根φ2.2m桩(半幅桥)。根据等刚度原则,将承台以下群桩模拟成二根短柱,柱底固接,桩顶与承台相接形成“门”形结构,令群桩和模拟的两根短柱在单位水平位移、单位竖向位移和单位转角时所需施加的外力相等,解决了桩土互相作用的计算问题。计算模型如下: 4.2构件离散图 5 计算分析 5.1 持久状况承载力极限状态计算 1)正截面受压区高度计算 按《公桥规》规定,混凝土受压区高度:x=ξbh0 相对界限受压区高度ξb=0.38(C60 混凝土、钢绞线)。对各截面受压区高度进行计算,受压区高度最小富余量为96.0cm。最小富余百分比65.7%。计算下表所示:

迈达斯midas梁桥专题—梁格.pdf

Integrated Solution System for Bridge and Civil Strucutres

目录 一、剪力-柔性梁格理论 1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5) 三、采用梁格建模助手生成梁格模型 二、单梁、梁格模型多支座反力与实体模型结果比较 1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24) 四、结合规范进行PSC 设计

Midas Civil悬索桥分析功能使用

MIDAS/Civil悬索桥分析功能使用说明 资料制作日期:2006-8-9 对应软件版本:Civil 2006 1.使用MIDAS/Civil分析悬索桥的基本操作步骤 A.定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; B.打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各参数意义请参考联 机帮助的说明以及下文中的一些内容); C.将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; D.运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元内力数据,并自动 生成“自重”的荷载工况; E.对模型根据实际状况,对单元、边界条件和荷载进行一些必要的编辑后,将主缆上 的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; F.定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收敛。运行完了后程 序会提供平衡单元节点内力数据; G.删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义为相应的结构组、 边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑 非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; H.运行分析后查看该施工阶段的位移是否接近于0以及一些构件的内力是否与几何刚 度初始荷载表格或者平衡单元节点内力表格的数据相同; I.各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态的各种分析; J.详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2.建模助手中选择三维和不选择三维的区别? A.选择三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽度,输入的桥面系 荷载将由两个索面来承担; B.不选择三维时,程序将给建立单索面的空间模型,不需输入桥面的宽度,输入的桥 面系荷载将由单索面来承担。 3.建模助手中主梁和主塔的材料、截面以及重量是如何考虑的? A.因为索单元必须考虑自重,因此建模助手分析中对于主缆和吊杆的自重,程序会自 动考虑; B.但在建模助手中主梁和主塔的材料和截面并不介入分析,程序只是根据输入的几何 数据,给建立几何模型,以便进行下一步的悬索桥精密分析。即,程序不会根据定

MIdas分析弯桥总结

midas分析弯桥的一点经验总结(2007-05-24 21:23:31) 今天看了桥头堡的一个帖子感觉不错可以作为设计弯桥的借鉴。 https://www.360docs.net/doc/375209989.html,/viewthread.php?tid=5196&extra=page%3D4 关于MIDAS曲线桥双支座的模拟 用MIDAS建立了一个曲线桥的试验模型,模型所采用的材料是有机玻璃。模型分析的目的是根据各种工况下不同支承布置方式的不同来验证曲线梁桥支承布置方式的不同对桥梁内力分布的影响。。。实验基本资料见附图一。 首先我采取的是相关书籍都比较推崇的两端采用抗扭支座,而中间采用点铰支承。 我分别用MIDAS的梁单元以及板单元对该模型进行了模拟。。。 加载工况是在外腹板处加一个F=400N的力 其中,梁单元采取两种方式布置支座 1.截面下偏心,然后用弹性连接的刚性连接截面形心和沿桥横向即Y轴正负方向的两个节点,分别建立两个支左。 2.截面上偏心,先用刚性连接形心节点和其Y轴正负两侧的两个节点,然后用弹性连接中的刚性连接这两个节点和它们沿Z轴负向所对应的支左节点。 板单元则直接在支座相应的节点进行约束即可。 得出的分析结果梁单元的两种支座布置方式所得的支反力结果是相同的,均是曲桥内侧产生支座悬空现象出现拉力。而它们跟板单元的支反力却有很大的差别(最明显的地方是表现在梁两端的抗扭支座的数值上,方向还是大致一样的) 我自己分析结果的差别主要是因为对梁单元进行分析的时候,我所加的集中力进行了力的平移动,也就是把位于腹板处的集中力平移到了箱梁质心处,变为了一个集中力加一个力矩,力矩的值为F*E(腹板中心到截面中心的距离)。但是我们知道曲线桥的实际的扭转中心并不是位于各截面形心的连线处的,所以我认为我的这个作用力的简化有问题。。。 因此板单元所得出的分析结果肯定是相对准确的,可是按理说这个小小的错误也不能导致支座反力会有如此大的差别啊。。。 请大家讨论下MIDAS梁单元双支座的模拟,应该还有更多的错误需要发现,请大家指教一二。。。。 我发现了自己模拟支座时的错误。。。 原来我在用梁单元进行双支座模拟的时候,端部两侧的支座的间距跟用板单元分析的时候不一致,所以这就直接导致了结果的不同。发上我重新修改支座后的反力结果。。。 结果基本吻合,板单元的反力结果还是准确些的。我想梁单元反力的结果还是值得相信的,只是因为曲线桥的扭转中心跟各截面形心的连线是不重合的,而我的梁单元分析的时候却是始终以截面形心进行分析计算的。因此会产生误差。。。不过误差应该在允许范围之内。。。 下图是梁单元修正支座间距后的反力结果。可以跟板单元的反力结果做比较

桥梁博士规范计算需注意的问题

桥梁博士规范计算需注意的问题 公共部分 1. 收缩、徐变的处理严格与所选规范一致; 2. 不均匀沉降的组合处理V3与V2是不同的,使用时应参照输入数据更改部分的内容。 3. 位移的自动组合:实际上是没有意义的,V3中放弃了自动组合,如果需要使用位移的组合需用户自行定义组合系数; 4. 位移的计算:是按照不开裂换算截面刚度计算的,未做折减处理。 5. 材料:升级版中的材料与选用规范严格配套,可能使用上有些麻烦,但我们认为确保数据是正确的更为重要,因此在规范之间不能相互引用材料,否则极容易导致用户数据混乱,如果需要做对照比较可使用自定义材料解决。 6. 钢筋混凝土构件的应力计算:由于截面开裂导致叠加原理失效,V3中是按照组合内力或累计内力计算截面应力的,并且应力的计算不考虑截面的施工过程。 7. 施工阶段中张拉预应力束:一般不要在支架上张拉,最好模拟为在脱架时张拉;先张拉后脱架导致产生含有预应力影响的支架反力,但脱架时系统不认为是预应力效应而作为外荷载处理,虽然应力的影响很小,但在承载能力极限状态强度验算时在扣除预应力效应时会漏掉部分影响,一般情况下两种模拟方法在应力上的差异可以忽略。 8. 计算截面:结构内力计算时采用全截面计算,在计算截面应力时采用有效截面计算(公路04规范中预应力产生的轴力引起的应力是按全

截面计算的); 1.1 公路04规范 1. 环境的相对湿度:在总体信息中由用户应自定义。 2. 钢束松弛率:由用户定义,松弛时间应添0,松弛完成过程系统自动按规范处理;如果松弛率添0,则松弛损失的计算是按照04规范6.2.6-1公式计算的,其中松弛系数取用0.3; 3. 收缩、徐变的计算天数:应在施工阶段中输入,使用阶段的收缩徐变天数用户可自己考虑,也可添0。新规范中的控制思想是结构在寿命期限内的应力指标,而不是仅仅几年内的指标。 4. 汽车的冲击系数:用户必须自己定义。 5. 预应力引起的截面应力:已经按照规范规定的算法计算,即轴力引起的应力按全截面计算,弯矩引起的应力按有效截面计算。 6. 系统中没有考虑B类构件(开裂截面)的应力计算。下一版本中解决。 7. 裂缝计算:对骨架钢筋直径应乘以1.3的系数系统没有考虑,用户可通过等代钢筋直径来解决,即保持面积不变、变化直径和根数;8. 构件抗裂验算:已经考虑了现浇和预制预应力混凝土构件的算法不同; 9. 预应力二次矩的计算:仅考虑竖向边界条件对变形的约束影响,框架结构在承载能力极限状态验算中一般不要考虑二次矩部分; 10. 圬工构件、叠合梁和钢构件:按公路04规范设计时用户需自行控制验算指标;

[整理]MIDAS连续梁桥建模详细介绍(1).

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,预应力荷载,钢束特性值,根据材料表中钢筋的规格及根数填入相关数据(松弛系数:0.3;导管直径:10cm) 2.钢束布置形状:荷载,预应力荷载,钢束布置形状,以T1为例:

midas桥梁抗震分析与设计例题-new0810

桥梁抗震分析与设计 北京迈达斯技术有限公司 2007年8月

前言 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。 从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。 随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录 一桥梁抗震分析与设计注意事项 (1) 1. 动力分析模型刚度的模拟 (1) 2. 动力分析模型质量的模拟 (1) 3. 动力分析模型阻尼的模拟 (1) 4. 动力分析模型边界的模拟 (2) 5.特征值分析方法 (2) 6.反应谱的概念 (3) 7.反应谱荷载工况的定义 (4) 8.反应谱分析振型组合的方法 (4) 9.选取地震加速度时程曲线 (5) 10.时程分析的计算方法 (5) 二桥梁抗震分析与设计例题 (7) 1. 概要 (7) 2. 输入质量 (8) 3. 输入反应谱数据 (10) 4. 特征值分析 (12) 5. 查看振型分析与反应谱分析结果 (13) 6. 输入时程分析数据 (18) 7. 查看时程分析结果 (20) 8. 抗震设计 (22)

桥梁博士常见问题整理

0、桥博内裂缝输出单位为mm,内力输出单位为KN,弯矩输出单位KN*m,应力输出单位Mpa 1、从CAD中往桥博里面导入截面或者模型时,CAD里面的坐标系必须是大地坐标系。 2、桥博里面整体坐标系是向上为正,所以我们在输荷载的时候如果于整体坐标系相反就要输入负值。 3、从CAD往桥博里导截面时,将截面放入同一图层里面,不同区域用不同颜色区分之。 4、桥博使用阶段单项活载反力未计入冲击系数。 5、桥博使用阶段活载反力已计入1.2的剪力系数。 6、计算横向力分布系数时桥面中线距首梁距离:对于杠杆法和刚性横梁法为桥面的中线到首梁的梁位线处的距离;对于刚接板梁法则为桥面中线到首梁左侧悬臂板外端的距离,用于确定各种活载在影响线上移动的位置。 7、当构件为混凝土构件时,自重系数输入1.04. 8、桥博里通过截面修改来修改截面钢筋时,需将“添加普通钢筋”勾选去掉,在截面里输入需要替换的钢筋就可以把钢筋替换掉。 9、在施工阶段输入施工荷载后,可以通过查看菜单中的“显示内容设定”将显示永久荷载勾选上,这样就可以看看输入的荷载位置、方向是否正确。 10、桥博提供自定义截面,但是当使用自定义截面后,显示和计算都很慢,需要耐心。 11、桥博提供材料库定义,建议大家定义前先做一下统一,否则模型拷贝到其他电脑上时材料不认到那时就头疼了。 12、有效宽度输入是比较繁琐的事情,大家可以用脚本数据文件,事先在excel中把有效宽度计算好,用Ultraedit列选模式往里面粘贴,很方便!! 14、当采用直线编辑器中的抛物线建立模型时,需要3个控制截面,第一个控制截面无所谓,第二个控制截面向后抛,第三个控制截面向前抛,桥博里面默认的是二次抛物线!! 15、当采用直线编辑器建立模型时,控制截面要求点数必须一致,否则告诉你截面不一致。 16、修改斜拉索面积时用斜拉索单元编辑器,在拉锁面积里需要输入拉索个数*单根拉索的面积。 17、挂篮操作的基本原理: 挂篮的基本操作为:安装挂篮(挂篮参与结构受力同时计入自重效应)、挂篮加载(浇筑混凝土)、转移锚固(挂篮退出结构受力、释放挂篮内力及转移拉索索力)和拆除挂篮(消除其自重效应)。具体计算过程如下: ) 前支点挂篮:(一般用于斜拉桥悬臂施工) )如果挂篮被拆除,则挂篮单元退出工作,消除其自重效应。 )如果挂篮转移锚固,则挂篮单元退出工作,释放挂篮内力,并将拉索索力转到主梁上。)如果安装挂篮,则将挂篮单元置为工作单元并与主梁联结,计算挂篮自重产生的结构效应。 )如果挂篮上有加载,则计算加载量值,并计算其结构效应。(挂篮加载时,挂篮必须为工作状态); 一般施工过程:安装空挂篮、调索、浇筑部分砼、调索、浇筑全部混凝土、调索、拉索锚固转移、移动挂篮,其中移动挂篮过程采用在同一阶段拆除和安装挂篮来模拟。 ) 后支点挂篮:(一般用于无索结构的悬臂施工,如连续梁、T构等) )如果挂篮被拆除,则挂篮单元退出工作,消除其自重效应。 )如果挂篮转移锚固,则挂篮单元退出工作,释放挂篮内力。 )如果安装挂篮,则将挂篮单元置为工作单元并与主梁联结,计算挂篮自重产生的结构效应。

利用桥梁博士进行横梁计算的教程_建模

利用桥梁博士进行横梁计算的教程 本文介绍桥梁博士进行箱梁横梁计算。红色字体内容为本文的操作步骤,黑体字为相应的一些说明和解释。 横梁为一个30+30m两跨预应力箱梁边墩(8号墩)上的边横梁。8号墩上预应力箱梁高2m,箱顶宽约46.1m,箱底宽36.5m。计算时横梁外形近似取为墩顶箱梁外形。横梁厚为150cm,为预应力横梁。预应力钢绞线规格为12Фs15.2,4束一股,钢绞线张拉控制应力取为1357.8MPa,其它参数可参见PDF版的CAD图。 一、新建项目组——创建项目——将项目名称命名为8号墩边横梁 二、输入总体信息: 计算类别:全桥结构安全验算,其它取为默认项 三、从CAD导入计算模型 1)在桥博的白色界面区域右键——输入单元信息 2)在桥博的白色界面区域右键——从AUTOCAD导入模型 事先应准备好模型图,本例中为“8号墩边横梁.dxf”,注意最好使单元1的起点位于CAD中的原点,这样导入模型后,桥博中模型的的单元1的左节点(节点1也将位于桥博系统中的坐标原点)。 从CAD导入计算模型的相关注意事项参见桥博帮助文件(V3使用手册,以下简称V3)的14.2节。这里稍微再做些解释: 1)长度单位:桥博中的单位采用的米,桥博认为dxf中的单位采用mm,1m=1000mm,也就是说如果要在桥博中建立一个1m长的单元,那么再CAD中的线长度应为1000mm。 2)图层:V3中有一个例子,其中存储单元的图层命名为0,但是并不意味着单元只能放在0图层里。理论上讲,导入模型时,“dim”和“sub”图层是有特定用途的,除了这两个图层,你可以任意建立其它的图层用来放置单元。而且单元也并不要求只能放于一个图层中,你可以放于两个或者多个图层中,但是一次只能导入一个图层中的单元。 3)单元节点文字:如果需要指定划分节点的单元节点号,可以在“dim”图层中输入文字进行说明,注意文字与节点文字的最小距离(在桥博中“从CAD导入模型”工作界面上指定)。因为本例中横梁模型较简单,故是在模型图中并未指定节点号,而是采用桥博导入后默认的节点单元号。

如何使用midas Civil快速建立任意曲线桥梁

midas Civil软件作为桥梁工程领域最主流的结构分析与设计软件,深受广大工程师喜爱,其广泛应用于桥梁结构设计、检测、施工、科研及教学领域。 最新的2012版已经实现结合新的《城市桥梁设计规范》和《城市桥梁抗震设计规范》进行设计验算的功能。 实际工程中,大家有时会碰到直线、圆曲线和缓和曲线任意组合的桥梁线形。这种情况如何实现呢? 如果是要建立梁格分析模型,推荐使用Civil自带的单箱多室箱梁梁格法建模助手,它支持直线、圆曲线和缓和曲线任意组合形式的箱梁梁格模型的自动建立。 对于如何建立任意线形的单梁模型,下面我告诉大家一个非常方便、快捷的方法。 midas Civil中的任意截面特性计算器(SPC),除了可以定义任意截面外,还有其他妙用,接下来我们就主要用到他的功能。 实现步骤如下: 1、处理CAD中的桥梁线形,在桥梁线形中需要生成控制点的地方(例如支座处、变截面处、钢束端点等),任意画一根线跟它相交。分解CAD的多段线,使其转化成直线,然后保存为DXF格式文件。(目的有两个:1.导入SPC中后,在两线相交位置可以生成节点; 2.多画出来的线,可以作为在midas Civil中建立模型时确定支座、变截面处等位置的参考线,有了参考线再建模就非常快速了。)

图1:CAD中的原始线形 2、打开Civil软件-工具-截面特性计算器(SPC),长度单位体系选择与CAD中一致,Angle Step中输入一个合适的角度,默认是10度,这个角度用来控制导入曲线的划分精度,角度越小,划分越细。(备注:CAD和SPC中都尽量用mm单位,这样可以提高精度,如果首次输的划分角度不满意,可以改一下再导入) 图2:SPC设置界面 SPC中,点击File-Import,导入DXF 文件,点击确认交叉分割。3、 图3:SPC划分后的线形 确认导入的线形划分满意后,点击File-Export,另起一个名字保存、4为DXF文件。

利用桥梁博士进行横梁计算的教程_计算

利用桥梁博士进行横梁计算的教程(续一) 本文介绍桥梁博士进行箱梁横梁计算。红色字体内容为本文的操作步骤,黑体字为相应的一些说明和解释。 基本情况在前文中有所介绍,这里主要介绍加载及边界条件的设定。 一、输入施工信息 共建立了三个施工阶段,阶段1安装所有单元;阶段2张拉所有钢束(钢束1、2),并灌浆;阶段3施加永久荷载。三个施工阶段的设置分别如图1.1-1.3所示。 图1.1 试工阶段1 在阶段3中所施加的永久荷载,是在求得8号墩上所承担的恒载(F0)的基础上,除以墩上箱梁的腹板数(n),而后在与腹板对应的位置处加以F0/n的集中力。如果要做的细,还可以按各腹板所承担的承载面积进行分配。 关于边界条件,可以在有支座的位置处设计边界条件,注意一般设一个横向约束即可,其它均可只设为竖向约束。图1.4给出了相应的约束和加载情况。

图1.2 试工阶段1 图1.3 试工阶段1

二、输入使用信息: 收缩徐变天数取为:3650。一般认为混凝土的收缩徐变可以持续数年。最在升温温差取为25度,降温温差也取25度。非线性温度按D60-2004中4.3.10定义,一个为正温差,一个为负温差。 活荷载描述:按公路一级车道荷载加载。因为本例中桥宽有40多m,故偏保守的取为10个车道。先按一个车道纵向影响线加载求得墩顶位置处承担的活荷载值,此例约为626KN,填入图2.1中鼠标处示处。 图2.1 活荷载输入 如图2.1所示,勾选横向加载——点横向加载有效区域按钮,将弹出如图2.2所示窗口。活载类别选择汽车,横向有效区域起点取为1m,终点为45.1m。 有必要说明下的是,采用桥博进行横向加载计算时并不用输入活载的横向分布调整系数,车道折减系数等,而是通过定义车道、横向有效分布区域等由桥博自行进行加载。

相关文档
最新文档