连接串联电路和并联电路实验报告精编版

连接串联电路和并联电路实验报告精编版
连接串联电路和并联电路实验报告精编版

八开民族中学物理实验报告单

年级班姓名:

时间:同组人:

连接简单的串联电路和并联电路实验分析报告单

连接简单的串联电路和并联电路实验分析报告 单 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

连接简单的串联电路和并联电路实验报告 班级:________ 小组合作者____________________ 活动时间:__________ 【实验目的】:1、初步学会串联电路、并联电路的连接方法。 2、了解串联电路、并联电路中开关的连接和控制作用。 3、了解串联电路和并联电路的特点。 4、通过电路的连接等,培养学生良好的电学实验习惯。 【实验器材】小灯泡2只,灯座2个、电池组,开关3个,导线若干。 【实验过程】 一、电路连接的注意点: 1、 2、 3、 二、练一练:组装简单电路 三、连接简单的串联电路 1、断开开关,按照图1电路图连接电路。 2、经检查(亦可以生生互检或由老师检查)电路连接无误后,闭合和断开开关,观察开关控制两只灯泡的发光情况记录在下表中。 教师批阅: 四、体会开关反向控制的应用 1、闭合S 1 S 2 时,亮,不亮。

2、根据实验归纳得到串联电路的特点: ① ② 教师批阅: 五、连接简单的并联电路 1、断开开关,按照图2电路图连接电路。 2、经检查(亦可以生生互检或由老师检查)电路连接无误后,闭合和断开开关,观察开关控制两只灯泡的发光情况记录在下表中。 教师批阅: (4)体会短路的后果 S 2 ,出现现象: 2 ① ② 教师批阅: 三、评估与交流: 1、连接电路时为什么要断开开关 2、连接电路要按照一定的顺序进行,你是怎么做到的和大家一起交流一下。 3、开关和用电器总是______联的。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

RLC串联电路的谐振特性研究 实验报告

大学物理实验设计性实验 实验报告 实验题目:RLC串联电路谐振 特性的研究 班级: 姓名:学号: 指导教师:

一.目的 1.研究LRC 串联电路的幅频特性; 2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具 DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线 三.实验原理 LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为 则串联电路的总阻抗为 串联电路的电流为 式中电流有效值为 电流与电压间的位相差为 它是频率的函数,随频率的变化关系如图3.12-2所示. 电路中各元件电压有效值分别为 C j Z L j Z R Z C L R ωω1= ==) 112.3()1 (-- +=C L j R Z ωω) 212.3() 1 (-=- += = ? ? ? ωωj Ie C L j R Z I U U ) 312.3() 1 (2 2 -- += = C L R U Z U I ωω) 412.3(1 arctan -- =R C L ωω?) 512.3() 1 (2 2 -- += =C L R R RI U R ωω) 612.3() 1 (2 2 -- += =U C L R L LI U L ωωωω) 712.3() 1 (1 1 2 2 -- += = U C L R C I C U C ωωωω 图3.12-1 /π-/π(b) 图3.12-2

(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示. (3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当 时,?=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有 从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不 出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为 (3.1211)C ωω= =- 式中Q 为谐振回路的品质因数.如果满足2 1> Q ,可得相应的极大值分别为 电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换 ) 912.3(1 0-=LC ω) 1012.3(21 11 2202 2 2--=-=ωωQ C R LC L )1312.3(4111 422 2 2 LM -- = -=Q QL Q U Q U ) 1412.3(4112 CM -- = Q QU U 2 2 ) 1 ()I(C L R U ωωω- += ) 812.3(1 -=L C ωω (a) 图3.12-3

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

串联电路实验报告

串联电路实验报告 篇一:实验报告:组成串联电路和并联电路a 连接串联电路和并联电路 一、实验目的:掌握_____________、______________的连接方式。 二、实验器材: __________、__________、__________、__________、___________。 三、步骤: (一).组成串联电路 1.按图1-1的电路图,先用铅笔将图1-2中的电路元件,按电路图中的顺序连成实物电路图(要求元件位置不动,并且导线不能交叉)。在连接实物电路过程中,开关是 2.经电路连接无误后,闭合和断开结果填入表格中。 3.把开关改接到L1和L2之间,再改接到L2和电池负极间,观察开关控制两只灯泡的情况。将观察结果填入表格中。 (二)组成并联电路 1、在图方框中画出由两只灯泡L1、L2组成的并联电路。要求三个开关中的开关S控制干 路,开关S1和S2分别控制两个支路,并按电路图连接实物及实物图。 2、经检查电路连接无误后,把

3、闭合S1和S2,断开与闭合干路中的开关S,观察它控制哪个灯泡?将观察结果填入表 格中。 4、闭合S和S2,断开与闭合支路中的开关S1,观察它控制哪个灯泡?将观察结果填入表 格中。 5、闭合S和S1,断开与闭合支路开关S2,观察它控制哪个灯泡?将观察结果填入表格中。 (三)实验结论 串联电路:在串联电路里只有条电流路径;用电器)工作,它们之间(选填“会”或“不会”)相互影响;开关控制_____ ____用电器;如果开关的位置改变了,开关的控制作用_________. 并联电路:在并联电路里有条电流路径;用电器)工作,它们之间(选填“会”或“不会”)相互影响;干路开关控制_________用电器,支路开关控制_________用电器(四)、结束实验,整理仪器,把器材分类放好,依次推出实验室。 电学实验规则: 1.实验开始时:首先要依据实验要求,能正确地画出电路图。 2.选择器材时:要依据画出(含“给出”)的电路图,

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

(完整word版)日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

RLC串联电路暂态特性的研究实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称: RLC串联电路暂态特性的研究 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、研究方波电源加于RC 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充电、放电规律的认识。 2、了解当方波电源加于RLC 电路时产生的阻尼衰减震荡的特性及测量方法。 二、 实验原理: 1、RC 串联电路的暂态过程 在由R 、C 组成的电路中,暂态过程是电容的充放电的过程。图1为RC 串联电路。其中信号源用方波信号。在上半个周期内,方波电源(+E )对电容充电;在下半个周期内,方波电压为零,电容对地放电。充电过程中回路方程为 (1) 由初始条件t=0时,U C =0,得解为 (2) 从U C 、U R 二式可见,U C 是随时间t 按指数函数 规律增长,而电阻电压U R 随时间t 按指数函数规律 衰减,如图2中U-t 、U C -t 及U R -t 曲线所示。 在放电过程中的回路方程为 (3) 由初始条件t=0时,U C =E ,得解为 (4) 物理量RC=τ具有时间量纲,称为时间常数,是表征暂态过程进行得快慢的一个重要物理量。与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t)下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为 T 1/2=τ ln 2=0.693τ (或τ=1.443T 1/2) (5)

3、RC 串联电路的暂态过程 s c c c u t u t t u RC t t u LC =++)()()(22d d d d RLC 串联电路 求解微分方程,可以得出电容上的电压)t (U C 。再根据dt )t (du C )t (i c =,求得)t (i 。改变初始状态和输入激励可以得到不同的二阶时域响应。全响应是零状态响应和零输入响应的叠加。零输入响应的模式完全由其微分方程的特征方程的两个特征根 202222,1)LC 1()L 2R (L 2R p ω-δ±δ-=-±-= 式中:L 2R =δ,LC 10=ω 由于电路的参数不同,响应一般有三种形式: (1)当C L 2R >,特征根1p 和2p 是两个不相等的负实数,电路的瞬态响应为非振荡性的,称为过阻尼情况。 (2)当C L 2R =,特征根1p 和2p 是为两个相等的负实数,电路的瞬态响应仍为非振荡性的,称为临界阻尼情况。

电路分析基础实验报告

电路分析基础课程实验报告

院系专业:信系科学与技术软件工程 年级班级:2011 级软件五班(1105) 姓名:涂明哲 学号:20112601524 本课程实验全部采用workbench 作为试验仿真工具。 实验一基尔霍夫定理与电阻串并联 实验目的:学习使用workbench 软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 1、基尔霍夫电流、电压定理的验证

解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 实验原理图: 12.DJ "VI 山 *---- 'XAAi- 112 与理论计算数据比较分析: i3 = i1 + i2; u1 + u2 + u7 + u6 = 0; u4 + u3 +u7 + u5 = 0; u1 + u2 + u3 + u4 + u5 + u6 = 0; 2、电阻串并联分压和分流关系验证 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 实验原理图:

与理论计算数据比较分析: 200Q + 100 Q=300Q; (100Q+200 Q)//600 Q = 200 Q; 11= 15/(200+200+100) = 30mA 12= i1*(600/900) = 10mA 13= i1*(300/900) = 20mA u1 = u3*(200/300) = 4v u2 = u3*(100/300) = 2v 实验心得: 1.使用大电阻可以减小误差 2.工具不能熟练的使用而且有乱码实验二叠加定理

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

实验三 RLC串联电路的暂态过程实验报告

实验三RLC串联电路的暂态过程实验报告 14级软件工程班 候梅洁14047021

【实验目的】 1.用存储示波器观察RC,RL电路的暂态过程,理解电容,电感特性及电路时间常数τ的物理意义。 2.用示波器观察RLC串联电路的暂态过程,理解阻尼振动规律。 3.进一步熟悉使用示波器。 【实验仪器】 电感箱、电容箱、电阻箱、函数信号发生器、示波器、导线等。【实验原理】 在阶跃电压作用下,RLC串联电路由一个平衡态跳变到另一平衡态的转变过程,这一转变过程称为暂态过程。暂态过程期间,电路中的电流及电容,电感上的电压呈现出规律性的变化,称为暂态特性。 1.RC电路的暂态过程。 电路如图所示:

【实验结果与分析】 1.观测U c波形时:方波信号500Hz输出;分别取:第一组R=1000?,C=0.5uF,第二组R=500?,C=0.2uF; 用示波器观测波形后,我们在坐标纸上绘制了U、U c、U R 的 波形图,从图中可以看到:U、U R 、U c三者周期、相位均相同。且 U R =U-U c。U、U c都是呈指数型变化的,然而U比U c变化的缓一些。在阶跃电压的作用,U c是渐变接近新的平衡值,而不是跃变, 这是由于电筒C储能元件,在暂态过程中不能跃变。而U R 变化幅度 很大,理论上,U R 的峰值应该是是U的峰值的两倍,因为开关接1时,给电容正向充电时,R两端的电压为E,当反向电容放时,R两 端电压为-E,两者之差为2E,就是U R 的峰值。而事实上,我们看到 的波形图中U R 的峰值小于2U,这可能是由于: (1)电阻内部有损耗、欠阻尼振荡状态下的电感和电容存在着附加损耗电阻,并且其阻值随着振荡频率的升高而增大.故实际上电路中的等效阻值大于R与用万用表测出的电感阻值之和. (2)数字示波器记录的数据精确度有限造成误差。 (3)数字示波器系统存在内部系统误差。 (4)外界扰动信号会对示波器产生影响。 (5)电器元件使用时间过长,可能造成相应的参数有误差。 (6)电源电压不稳定. 2.测量RC串联电路的时间常数:我们取一个峰值处为t 1 ,取与其最 近的一个零点处为t 2,调节示波器将t 1 和t 2 时间段的波形放大到合适

连接简单的串联电路和并联电路实验报告单

连接简单的串联电路和并联电路实验报告班级:________ 小组合作者____________________ 活动时间:__________【实验目的】:1、初步学会串联电路、并联电路的连接方法。 2、了解串联电路、并联电路中开关的连接和控制作用。 3、了解串联电路和并联电路的特点。 4、通过电路的连接等,培养学生良好的电学实验习惯。【实验器材】小灯泡2只,灯座2个、电池组,开关3个,导线若干。【实验过程】 一、电路连接的注意点: 1、 2、 3、 二、练一练:组装简单电路 三、连接简单的串联电路 1、断开开关,按照图1电路图连接电路。 2、经检查(亦可以生生互检或由老师检查)电路连接无误后,闭合和断开开关,观察开关控制两只灯泡的发光情况记录在下表中。

S S1 S 2L1发光情况L2发光情况闭合闭合闭合 断开闭合闭合 闭合断开闭合 闭合闭合断开 闭合闭合闭合从灯座上取掉 闭合闭合闭合从灯座上取掉 教师批阅: 四、体会开关反向控制的应用 1、闭合S 1 时,亮,再闭合S 2 时,亮,不亮。 2、根据实验归纳得到串联电路的特点: ① ② 教师批阅: 五、连接简单的并联电路 1、断开开关,按照图2电路图连接电路。 2、经检查(亦可以生生互检或由老师检查)电路连接无误后,闭合和断开 L1 L2 S1 S2

开关,观察开关控制两只灯泡的发光情况

记录在下表中。 教师批阅: (4)体会短路的后果 1、闭合S 1 ,则亮,闭合S 2 ,出现现象: 2、根据实验归纳得到并联电路的特点: ① ② 教师批阅: 三、评估与交流: 1、连接电路时为什么要断开开关? 2、连接电路要按照一定的顺序进行,你是怎么做到的?和大家一起交流

谐振电路实验报告

竭诚为您提供优质文档/双击可除 谐振电路实验报告 篇一:RLc串联谐振电路的实验报告 RLc串联谐振电路的实验研究 一、摘要: 从RLc串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建RLc串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的

应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L、电容c和电阻R的串联谐振电路中,需要研究在不同频率正弦激励(:谐振电路实验报告)下响应随频率变化的情况,即频率特性。multisim仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLc串联谐振电路的频率特性曲线。 (2)实验原理: RLc串联电路如图所示,改变电路参数L、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ω

实验二基尔霍夫定律和叠加原理的验证实验报告答案(供参考)

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表 1 块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

电路分析实验报告

本科生实验报告 实验课程电路分析 学院名称信息科学与技术学院 专业名称物联网工程 学生小源 学生学号201513060114 指导教师阴明 实验地点6B602 实验成绩

二〇一六年三月——二〇一六年六月

实验一、电路元件伏安特性的测绘 摘要 实验目的 1、学会识别常用电路元件的方法。 2、掌握线性电阻、非线性电阻元件伏安特性曲线的测绘。 3、掌握实验台上直流电工仪表和设备的使用方法。 实验步骤 U 测量线性电阻的伏安特性 按图接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表中记下相应的电压表和电流表的读数。 R为各个值时所测得数据如下:

I(mA) 0 0.99 2 2.98 3.99 4.99 5.99 6.97 8.02 8.98 9.98 R=900Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.10 2.22 3.34 4.42 5.55 6.67 7.77 8.89 9.98 10.1 R=800Ω时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 1.2 2.4 3.7 5 6.3 7.5 8.9 10.1 11.3 12.6 线性电阻的伏安特性曲线如下: 白炽灯时: U(v) 0 1 2 3 4 5 6 7 8 9 10 I(mA) 0 0 0.3 1.1 0.9 0.7 1 1.3 1.8 1.8 2

伏安特性曲线如下: 为IN4007时: 正向 U(v) 0 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.73 I(mA) 0 0 0 0.1 0.4 1.3 3.7 11 1.1 反向 U(v) 0 -2 -4 -6 -8 -10 -12

电工实验报告答案

实验四线性电路叠加性和齐次性验证 表4—1实验数据一(开关S3 投向R3侧) 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 3 测量项目实验内容U S1 (V) U S2 (V) I1 (mA) I2 (mA) I3 (mA) U AB (V) U CD (V) U AD (V) U DE (V) U FA (V) U S1单独作用120 U S2单独作用0-6 U S1, U S2共同作用12-6 2U S2单独作用0-12 S1S2S1S2 直接短接? 答: U S1电源单独作用时,将开关S1投向U S1侧,开关S2投向短路侧; U S2电源单独作用时,将开关S1投向短路侧,开关S2投向U S2侧。 不可以直接短接,会烧坏电压源。 2.实验电路中,若有一个电阻元件改为二极管,试问叠加性还成立吗?为什么? 答:不成立。二极管是非线性元件,叠加性不适用于非线性电路(由实验数据二可知)。 实验五电压源、电流源及其电源等效变换 表5-1 电压源(恒压源)外特性数据 R2(Ω 470400 300 200 100 0 I (mA U (V R2(Ω 470400 300 200 100 0 I (mA U (V 表5-3 理想电流源与实际电流源外特性数据 R2(Ω)470 400 300 200 100 0 R S=∞ U (V)0 R S=1KΩI (mA) U (V)0 U(V)I(mA)图5-4(a)

相关文档
最新文档