STM8教程-第六章-STM8S207-的外部电路

STM8教程-第六章-STM8S207-的外部电路
STM8教程-第六章-STM8S207-的外部电路

第六章STM8S207 的外部电路

本章主要介绍STM8S207 的硬件连接方法。由于STM8S207 是LQFP 封装的,一般需要打样板。一般两层板就会满足所需,STM8S207 几乎可以单片运行。

6.1 STM8S207 开发板电路

STM8S207 开发板实物图如下:

在STM8S207 自带丰富的外设下,添加了不少实在而有用的外设,特别之处是USB下载以及串口的功能。可以实现程序代码的下载以及与PC 机的UART 通信。

6.1.1 晶振电路

STM8S207 可以选择三个时钟源,有内部高速RC 振荡器,提供16MHz 频率或者分频使用;内部RC 低速振荡器提供128KHz 频率方便低速外设时钟或者待机状态;外部晶振或者时钟驱动,最高可以高达24MHz。为了显示出STM8S207 的最高性能,外部选择了24MHz 的无源晶振,方便程序选择时钟源。

6.1.2 复位电路

复位引脚NRST 内部集成了弱上拉电阻RPU,即可作为输入,也可作为开漏输出。

一个在复位引脚上宽度最小为500ns 的低电平脉冲即可产生一个外部复位。对于复位的检测是异步进行的,因此即使MCU 处于停机(Halt)模式,也有可能进入复位状态。

复位引脚也可以作为开漏输出用于对外部设备进行复位。无论内部复位源是什么,一旦复位,内部复位电路都会产生一个至少脉宽为20us 的复位脉冲。当没有外部复位发生时,内部弱上拉电阻可保证复位引脚处于高电平。

为了保证STM8S207 更好的性能,所以在原理图设计的时候还是外接了上拉电阻,NRST 内部电路如下图所示:

我们采取的原理图为如下所示:

6.1.3 电源电路

STM8S207 开发板采用的是USB 供电,USB 可以提供500mA 的电流已经足够STM8S207 所有功能的实现。在这里采用线性稳压芯片LM1117 3.3V,把USB 的供电分压为3.3V 供电给STM8S207 主控制芯片。

STM8 芯片有个特点是有4 组供电,分别是

●VDD/VSS:主电源(3V 到5.5V)

●VDDIO/VSSIO:I/O 口供电电源(3V 到5.5V)

●VDDA/VSSA:模拟部分供电电源

●VREF+/VREF-:ADC 参考电源

为了更好的性能和稳定性,这里采用了电感作为隔离,更好防止各个电源之间的干扰,提高稳定性。

6.1.4 UART 转USB

UART 可以直接采用Max232 等芯片,但是考虑到现在的电脑和手提主板都没有提供串口,所以直接转为USB 接口,方便使用。这里使用了性价比最高的USB转串口芯片PL2303,方便用户下载程序和调试串口。当使用为调试串口时,下载完用户程序后,复位后就可以直接使用串口调试功能了。这是因为STM8 制定了大概1S 内没有ISP 下载时直接运行用户程序。

电路图如下所示:注意的是TXD 引脚要接上拉,这里为了方便观察数据流另加了一个LED 指示灯。

6.1.5 SWIM 接口

STM8S207 是支持SWIM 接口调试的,只是调试仿真器相对来说也是一个比较大的支

出,所以一般不建议购买,可以实现IAR 纯软件仿真

6.1.6 SD 卡电路

为了显示STM8S207 更优异的性能,配了SD 卡套接口,方便显示LCD 图片和文件操作。具体电路如下所示:

6.1.7 LED

一块开发板不能缺少的功能就是LED,这是方便一开始使用学习的功能。或者方便调试的时候用作指示灯。这里配了 4 个独立LED,其中PD3 是TIM 的输出口,可以用LED3 演示PWM 调制LED 亮度的实验

6.1.8 按键

对于开发板来说,按键也是必不可少的,具体电路如下所示:

6.1.9 LCD

STM8S207 完全有能力驱动ili9320 控制TFT,这里配置了TFT 的接口。

6.1.10 AT24C02

不错,STM8S207 内部自带丰富的EEPROM,而且比AT24C02 更快的速度读写。这里为什么配置AT24C02 是为了熟悉IIC 接口协议。IIC 协议在单片机系统中非常常见,为此还是配置了AT24C02

电路如下:

6.1.11 W25X16

相对于AT24C02 来说,W25X16 是Flash 类型,更快的速度和更大的储存空间,而且更为重要的是这里使用了另一种非常常见的协议---SPI,所以在这里使用了W25X16 大容量Flash。

6.1.12 LM386 以及蜂鸣器

STM8S207 自带了一个BEEP 接口,可以根据程序选定1、2、4KHz 的频率输出。而且BEEP 接口也是TIM 的一个通道,可以输出任意自定义的频率,从而输出音符。为了更好的音色和更大的增益。这里用了LM386 运放的选频放大电路,而且使用了无源蜂鸣器突出更好的音色。

6.1.13 光敏及热敏

STM8S207 拥有丰富的ADC 功能,所以这里使用了光敏电阻和热敏电阻分别作为AD 的输入而验证STM8S207 的ADC 功能。

6.2 本章小结

本章详细介绍了STM8S207 开发板的基本应用电路。这些电路在嵌入式系统中经常使用到,读者也可以根据自己自身的实际需求,做必要的修改。

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

8.7非线性瞬态分析步骤帮助学习

8.7. Performing a Nonlinear Transient Analysis Many of the tasks that you need to perform in a nonlinear transient analysis are the same as (or similar to) those that you perform in nonlinear static analyses (described in Performing a Nonlinear Static Analysis) and linear full transient dynamic analyses (described in Structural Static Analysis). However, this section describes some additional considerations for performing a nonlinear transient analysis. Remember that the Solution Controls dialog box, which is the method described in Performing a Nonlinear Static Analysis, cannot be used to set solution controls for a thermal analysis. Instead, you must use the standard set of ANSYS solution commands and the standard corresponding menu paths. 8.7.1. Build the Model This step is the same as for a nonlinear static analysis. However, if your analysis includes time-integration effects, be sure to include a value for mass density [MP,DENS]. If you want to, you can also define material-dependent structural damping [MP,DAMP]. 8.7.2. Apply Loads and Obtain the Solution 1.Specify transient analysis type and define analysis options as you would for a nonlinear static analysis: ?New Analysis or Restart [ANTYPE] ?Analysis Type: Transient [ANTYPE] ?Large Deformation Effects [NLGEOM] ?Large Displacement Transient (if using the Solution Controls dialog box to set analysis type) 2.Apply loads and specify load step options in the same manner as you would for a linear full transient dynamic analysis. A transient load history usually requires multiple load steps, with the first load step typically used to establish initial conditions (see the Basic Analysis Guide). The general, nonlinear, birth and death, and output control options available for a nonlinear static analysis are also available for a nonlinear transient analysis. In a nonlinear transient analysis, time must be greater than zero. See Transient Dynamic Analysis for procedures for defining nonzero initial conditions.

ANSYS稳态和瞬态分析步骤简述

ANSYS 稳态和瞬态热模拟基本步骤 基于ANSYS 9.0 一、 稳态分析 从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量: =0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。 基本步骤:(为简单起见,按照软件的菜单逐级介绍) 1、 选择分析类型 点击Preferences 菜单,出现对话框1。 对话框1 我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。 2、 定义单元类型 GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框 2 对话框2 (3-1)

点击Add,出现对话框3 对话框3 在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。 3、选择温度单位 默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units 选择需要的温度单位。 4、定义材料属性 对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。 GUI: Preprocessor>Material Props> Material Models 出现对话框4 对话框4 一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5. 对话框5

ANSYS瞬态动力学分析步骤

ANSYS模态分析步骤 第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes 第2步:指定分析标题/工作名/工作路径,并设置分析范畴 1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory 2 设置分析范畴Main Menu>Preference,单击Structure,OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。第5步:划分网格 Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。当内存不足时,取消SmartSize 第6步:进入求解器并指定分析类型和选项 Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。 第7步:施加边界条件 Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。 第8步:指定要扩展的模态数 Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。 注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。 第9步:进行求解计算 Main Menu>Solution>Solve>Current LS。浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。在出现警告(不一定有)“A check of your model data produced 1 Warning。Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。 第10步:列出固有频率 Main Menu>General Postproc>Results Summary。 第11步:动画显示模态形状 查看某阶模态的变形,先读入求解结果。执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。 第12步:结束分析SA VE_DB; Main Menu>Finish

ANSYS瞬态动力学分析步骤

瞬态动力学分析步骤 进行瞬态动力学分析主要有:FULL(完全法)、Reduced(缩减法)和Mode Superposition(模态叠加法)。书上介绍的一般都是FULL法,其分析过程主要有8个步骤: (1)前处理(建立模型和划分网格) (2)建立初始条件 (3)设定求解控制器 (4)设定其他求解选项 (5)施加载荷 (6)设定多载荷步 (7)瞬态求解 (8)后处理(观察结果) 1 Full法步骤具体步骤如下: 第1步:载入模型Plot>V olumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径Main Menu>Preference ,单击Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框, 单击Add出现Library of Element Types 对话

框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:建立初始条件 Main Menu>Preprocessor>Loads>define loads>Apply>Initial Condit’n>Define,弹出Define Initial Conditions拾取菜单,在大端面拾取一节点,单击OK,弹出对话框,在Lab DOF to be specified 选择相应的方向,以及初始位移和初始速度 第7步:设定求解类型和求解控制器 Main Menu>Solution>Analysis Type>New analysis,选择Transient,然后选择Full,其他默认,单击OK。 设置求解控制器:Main Menu>Solution>Analysis Type>Sol’n

ANSYS瞬态分析实例

例题:一根钢梁支撑着集中质量并承受一个动态载荷(如图1所示)。钢梁长为L,支撑着一个集中质量M。这根梁承受着一个上升时间为t1的值为F1 的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间t max和响应y max。 图1 钢梁支撑集中质量的几何模型 材料特性:弹性模量为2e5MPa,质量为M=,质量阻尼为8; 几何尺寸为:L=450mm,I=800.6mm4,h=18mm; 载荷为:F1=20N,t1= GUI操作方式: 1.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现一个对话框,单击“Add”,又出现一个对话框,在对话框左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择“2D elastic 3”,单击“Apply”,在对话框左面的列表栏中选择“Structural Mass”,在右边选择“3D mass 21”,单击“OK”,在单击“Options”,弹出对话框,设置K3为“2-D W/O rot iner”,单击“OK”,再单击“Close”。 2.设置实常数:Main Menu>Preprocessor>Real Constants> Add/Edit/Delete,出

现对话框,单击“Add”,又弹出对话框,选择“Type1 BEAM3”,单击“OK”,又弹出对话框,输入AREA为1,IZZ=,HEIGHT=18,单击“OK”,在单击“Add”,选择Type 2 MASS21,单击“OK”,设置MASS为,单击“OK”,再单击“Close”。; 3.定义材料属性:Main Menu>Preprocessor>Material Props>Material Modls,出现对话框,在“Material Models Available”下面的对话框中,双击打开“Structural>Linear>Elastic>Isotropic”,又出现一个对话框,输入弹性模量EX=2e5,泊松比PRXY=0,单击“OK”,单击“Materal>Exit”。 4.建立模型: 1)创建节点:依次单击Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS,在弹出对话框中,依次输入节点的编号1,节点坐标x=0,y=0,然后单击“Apply”,输入节点编号2,节点坐标x=450/2,y=0,然后单击“Apply”,输入节点编号3,节点坐标x=450,y=0。单击“OK”。 2)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点1和2,2和3,单 击“OK”。 3)指定单元实常数:Main Menu>Preprocessor>Modeling>Create>Elements> Elem Attributes,弹出对话框,设置TYPE为2,REAL为2,单击“OK”。4)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点2,单击“OK”。

ANSYS瞬态传热分析教程

ANSYS瞬态传热分析教程 瞬态传热分析的定义 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步。载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示。 对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 瞬态热分析中的单元及命令 瞬态热分析中使用的单元与稳态热分析相同。要了解每个单元的详细说明,请参阅《A NSYS Element Reference Guide》 ANSYS 瞬态热分析的主要步骤 建模 加载求解 后处理 建模 确定jobname、title、units, 进入PREP7; 定义单元类型并设置选项; 如果需要,定义单元实常数; 定义材料热性能:一般瞬态热分析要定义导热系数、密度及比热; 建立几何模型; 对几何模型划分网格。 加载求解 1、定义分析类型 如果第一次进行分析,或重新进行分析 GUI: Main Menu>Solution>Analysis Type>New Analysis>Transient Command: ANTYPE,TRANSIENT,NEW 如果接着上次的分析继续进行(例如增加其它载荷) GUI: Main Menu>Solution>Analysis Type>Restart Command: ANTYPE,TRANSIENT,REST 2、获得瞬态热分析的初始条件 ①、定义均匀温度场 如果已知模型的起始温度是均匀的,可设定所有节点初始温度 Command:TUNIF

瞬态动力学分析02

§3.4.2.3零初始位移和非零初始速度 非零速度是通过对结构中需指定速度的部分加上小时间间隔上的小位移来实 现的。比如如果=0.25,可以通过在时间间隔0.004内加上0.001的位移来实现,命令流如下: ... TIMINT,OFF! Time integration effects off D,ALL,UY,.001! Small UY displ. (assuming Y-direction velocity) TIME,.004! Initial velocity = 0.001/0.004 = 0.25 LSWRITE! Write load data to load step file (Jobname.S01) DDEL,ALL,UY! Remove imposed displacements TIMINT,ON! Time integration effects on ... §3.4.2.4非零初始位移和非零初始速度 和上面的情形相似,不过施加的位移是真实数值而非“小”数值。比如,若= 1.0且= 2.5,则应当在时间间隔0.4内施加一个值为1.0的位移:... TIMINT,OFF! Time integration effects off D,ALL,UY,1.0! Initial displacement = 1.0 TIME,.4! Initial velocity = 1.0/0.4 = 2.5 LSWRITE! Write load data to load step file (Jobname.S01) DDELE,ALL,UY! Remove imposed displacements TIMINT,ON! Time integration effects on

相关主题
相关文档
最新文档