气化装置工艺流程叙述

气化装置工艺流程叙述

(1)磨煤及干燥单元(1500 单元)

来自原料煤贮仓的碎煤由称重给煤机按给定量加入到磨煤机内,被轧辊在磨盘上磨成粉状,并由高温惰性气体烘干。高温惰性气体来自惰性气体发生器。惰性气体进入磨煤机进口时温度为150,250? ,离开磨煤机时温度为100,120?。惰性气体将碾磨后的粉煤输送到磨煤机上部的旋转分级筛,筛出的粗颗粒返回到磨盘重新碾磨。出磨煤机的合格粉煤由惰性气体输送入粉煤袋式过滤器进行分离后,粉煤经旋转卸料阀、纤维分离器、及粉煤螺旋输送机送至粉煤贮罐,分离出的惰性气体小部分(约20%)排放至大气,剩余部分(约80%)经循环风机进入惰性气体发生器加热后循环使用。惰性气体发生器的燃料气正常情况下由老厂提供,并用燃烧空气鼓风机提供助燃空气。在粉煤袋式过滤器下游监测惰性气体露点,稀释氮气由稀释风机加入,以保证系统内惰性气体露点在要求的范围内。

磨煤及干燥单元设有四条生产线,每条线的处理能力满足单台气化炉100,负荷,采用三开一备的操作方式。

磨煤及干燥单元主要控制煤的颗粒尺寸(粒径分布)和粉煤的水分含量(v5%wt)。粉煤的典型粒径分布为:

1)颗粒尺寸?90卩m占90%(重量);

2)颗粒尺寸?5卩m占10%(重量)。

(2)煤加压及进煤单元(1600 单元)

煤加压及进煤单元设有三条生产线,对应三条气化及合成气洗涤生产线,该单元采用锁斗来完成粉煤的连续加压及输送。

在一次加料过程中,常压粉煤贮罐内的粉煤通过重力作用进入粉煤锁斗。粉煤锁斗内充满粉煤后,即与粉煤贮罐及所有低压设备隔离,然后进行加压,当其压力

升至与粉煤给料罐压力相同时,且粉煤给料罐内的料位降低到足以接收一批粉煤时,打开粉煤锁斗与粉煤给料罐之间平衡阀门进行压力平衡,然后依次打开粉煤锁斗和粉煤给料罐之间的两个切断阀,粉煤通过重力作用进入粉煤给料罐。粉煤锁斗卸料完成后,通过将气体排放至粉煤贮罐过滤器进行泄压,泄压完成后

重新与粉煤贮罐经压力平衡后联通,此时,一次加料完成。

粉煤锁斗加压是通过充入高压氮气完成的,高压氮气经充气锥、充气笛管、管道充气器和锁斗高压氮气过滤器进入粉煤锁斗。为了保证到烧嘴的煤流量的稳定,在粉煤给料罐和气化炉之间通过控制粉煤给料罐的压力保持一个恒定的压差,此压差的设定值根据气化炉的负荷确定。

(3)气化及合成气洗涤单元(1700 单元)

该单元是HT-L 加压粉煤气化工艺的核心。主要由氧气系统、粉煤进料系统、气化系统、气化汽水系统、合成气洗涤系统及排渣系统组成。

1)氧气系统

来自空分单元的氧气进入氧气缓冲罐,经氧气预热器加热至180?后与中压过热蒸汽混合后作为氧化剂经烧嘴的氧气/ 蒸汽通道送入气化炉。在开车点火及气化炉预热阶段,通过一条管线将常温氧气送至烧嘴的开工及点火氧气通道对烧嘴进行点火及对气化炉进行升温预热。

氧气流量与粉煤流量为比例控制,以防止气化炉超温。

2)粉煤进料系统

来自1600 单元的粉煤用高压二氧化碳(开车时为氮气)通过三条粉煤输送管线采用密相输送方式,送入气化炉烧嘴的三个煤粉通道。煤粉的流量通过粉煤管线上的温度、压力、速度、悬浮密度的测量仪表以及特殊的粉煤流量调节阀进行控制。

3)气化系统

氧气/ 蒸汽及粉煤通过烧嘴进入气化炉内,在气化炉内粉煤与氧气/蒸汽充分混合并在高温高压下(约1320?, 4.0MPa(G))进行气化反应。

气化炉由上部的水冷壁辐射燃烧反应室和下部的激冷室组成。在气化炉反应室内,在1320?和4.0MPa(G)条件下发生气化反应。反应室为表面覆盖耐火材料的盘管式水冷壁结构,在水冷壁和气化炉压力容器之间的环隙连续通入保护气(高压氧化碳),气化炉承压外壳的温度保持在大约200?左右。水冷壁向火侧有密集的渣钉,用来固定碳化硅耐火层,由于有水冷壁的冷却作用,耐火层表面温度低于灰渣的凝固温度,因而会在耐火层表面形成稳定的凝固渣层,对耐火

层起到保护作用。固化渣层的保温作用也使热损降到最低。

粗合成气的主要成分为氢气和一氧化碳,少量的其它组分(包括硫化物,氮,氩和甲烷)以及液态炉渣。这些物质离开反应室向下进入激冷室,经激冷环后流过下降管进入激冷室水浴,渣在水中固化并沉到气化炉的底部; 合成气通过和水的直接接触,其中携带的大多数的细颗粒被洗涤进入了水里,同时粗合成气也被水冷却、饱和。冷却后的合成气向上流过破泡板后离开气化炉。

激冷水通过下降管顶部的激冷环,沿下降管壁面向下流进激冷室。

激冷室中的激冷水含有少量的固体,在液位控制下连续排出送到渣及灰水处理系统的高压闪蒸罐, 进行高压闪蒸并对热量进行回收。

烧嘴是通过在其水夹套内通入冷却水来进行保护的,水在水夹套中连续循环流动。烧嘴冷却水系统包含烧嘴冷却水缓冲罐,烧嘴冷却水泵,烧嘴冷却水加热器和烧嘴冷却水过滤器。

开工时,使用开工氧气管线和点火燃料气系统对气化炉进行点火及升温,在升温阶段利用开工引射器在气化炉中形成部分真空,将烟气通过开工引射器分离罐排向大气。一旦气化炉中的氧气含量降至可接受的范围,立刻将烟气排向火炬,同时

气化炉进入升温升压阶段,待气化炉的压力升至 1.0MPa(G),炉膛温度大于800?

后,即可将氧气/ 蒸汽和粉煤投入气化炉进行煤烧嘴点火。

4) 气化汽水系统

为了保护气化炉压力容器及水冷壁盘管,水冷壁盘管内通过汽包循环水泵维持强制的水循环。管内流动的水吸收炉内部分氧化反应产生的热量,部分汽化,在汽包内进行汽液分离后产出5.4M Pa(G)的饱和蒸汽,气化炉产出的中压饱和蒸汽减压后送入厂内蒸汽管网。

5) 排渣系统

在气化炉底部的激冷室中收集的粗渣被破渣机破碎,然后通过渣锁斗系统排至捞渣机。

为了确保顺利排渣,在气化炉激冷室和渣锁斗之间设有一台锁斗循环泵,使渣水在渣锁斗和气化炉激冷室之间进行循环。

在渣锁斗与气化炉激冷室连通后,经过一段预定的时间,一般约为30分钟,锁斗卸料程序将会启动。首先关闭锁斗进口阀,将锁斗通向锁斗循环泵吸入口的

阀门关闭,由泵出口通向吸入口的再循环阀门打开,然后通过锁斗减压阀对锁斗进行泄压。泄压后,打开锁斗出口阀,将渣和水送入捞渣机,卸料过程约 2 分钟。在渣锁斗卸料过程中,通过锁斗冲洗水罐对锁斗进行冲洗,保证在卸料过程中锁斗始终充满水。经过预先设定的时间或者在锁斗冲洗水罐达到低液位后,锁斗出口阀门关闭。当锁斗出口高水位开关被激活后,锁斗冲洗水罐出口阀关闭。锁斗利用高压灰水进行加压,当锁斗和气化炉之间的压差小于设定值时,锁斗进口阀打开。与此同时,从锁斗通向锁斗循环泵吸入口的阀门打开,而泵出口通向吸入口的循环阀门关闭。总的卸料循环过程(降压、卸料、再次注水、加压)时间大约为30 分钟。

6) 合成气洗涤系统

从气化炉来的合成气进入文丘里洗涤器,气体中的固体被完全浸湿后进入合成气洗涤塔,向下经洗涤塔内的下降管进入洗涤塔底部直接冲击液面,大部分夹带的固体从气体中被除去。合成气通过下降管周围的环形空间向上经位于洗涤塔上部的四道喷淋塔盘,与来自变换单元的工艺冷凝液通过错流接触洗去其余的固体颗粒,再经除沫器进行汽液分离,基本上不含固体颗粒的合成气离开洗涤塔送至变换单元。在洗涤塔的合成气出口安装有在线分析仪,对CH4和C02等组分进行连续监测。在启动和停车阶段,合成气送往火炬燃烧。

由变换单元送来的工艺凝液一部分进入洗涤塔的塔盘,另一部分进入到塔釜,开工时变换单元送锅炉水替代变换工艺凝液。为了降低洗涤塔底水中的固体浓度及微量组分的富集,洗涤塔底部部分的水和固体在流量控制下被排放到黑水闪蒸系统。同时为了补充由合成气带走的水及由洗涤塔、气化炉排出的水,由洗涤塔给料泵送来的工艺水被补充到洗涤塔塔釜中。

从合成气洗涤塔底部抽出的激冷水经激冷水泵送至气化炉的激冷环及文丘里洗涤器。

(4) 渣及灰水处理单元(1800 单元)

渣及灰水处理单元包括黑水闪蒸系统和灰渣水处理系统。

1) 黑水闪蒸系统

从气化炉激冷室和合成气洗涤塔底部来的灰水在减压后送入高压闪蒸罐进

行闪蒸,闪蒸后顶部气体进入汽提塔与来自除氧水泵的除氧水逆流换热后,经过高压闪蒸冷凝器降温后,再经高压闪蒸分离罐分离,分离出来的冷凝液送到除氧器,不凝气送火炬。汽提塔底部排出的灰水经洗涤塔给料泵加压后,送到合成气洗涤塔。

高压闪蒸罐底部的黑水减压后送到真空闪蒸罐进一步闪蒸出其中溶解的气体,闪蒸气体经真空闪蒸罐顶冷凝器冷凝后,进入真空闪蒸分离罐,真空闪蒸分离罐排

出的水送至灰水槽,不凝气由真空闪蒸真空泵排至大气,真空闪蒸分离罐底液体进入灰水槽,真空闪蒸罐底部的液体和固体混合物自流进入沉降槽。在开车工况下,由渣池泵来的水,以及正常工况下取样冷却器排出的黑水,也送至真空闪蒸罐进行处理。

2) 灰渣水处理系统

从真空闪蒸来的含有固体的水、以及开工阶段由渣池来的水都进入沉降槽进行重力沉降固液分离。为了促进固体沉降,通过絮凝剂加药系统向沉降槽中加入絮凝剂,在沉降槽安装了一个缓慢转动的沉降槽耙料机把沉降下来的固体送到沉降槽底部的出口。在沉降槽底部沉降出的渣浆通过沉降槽底流泵送至真空带式过滤机进行过滤,过滤机滤出的滤饼用汽车送往厂外,滤液经沉渣池由沉渣池泵输送返回沉降槽。从沉降槽顶部溢流出来的水自流进入到灰水槽。

灰水槽是整个气化装置水系统的缓冲罐,整个系统的灰水均返回到灰水槽。灰水槽回收的灰水由低压灰水泵送出,一部分作为锁斗冲洗水送至锁斗冲洗水冷却器冷却后进入锁斗冲洗水罐,一部分送入除氧器。为了维持整个气化工艺水系统的微量组分及固体含量的稳定,一小部分水作为废水送至厂内污水处理厂。

为了避免在洗涤塔及气化炉激冷室发生氧腐蚀,系统中设置了旋膜除氧器来除去进入洗涤塔及气化炉的水中的氧气。各种水流在除氧器中,用来自管网低压蒸汽去除溶解的气体。低压蒸汽通过压力控制加入除氧器(V-1808) 。为了补充系统损失的水,向除氧器补充部分预热脱盐水或变换来的工艺冷凝液。(5) 气化公用工程(1900 单元)

1) 高压二氧化碳、氮气系统

高压氮气主要用于锁斗加压及在开车阶段输送粉煤、升压和吹扫等,在正常

操作时由高压二氧化碳代替氮气进行粉煤输送。

来自二氧化碳压缩单元的8.12MPa(G)、80?高压二氧化碳经二氧化碳预热器预

热至120?后进入高压二氧化碳缓冲罐中,然后减压至 5.10 MP a(G)送入气化二氧化碳管网,由二氧化碳分配系统送往各个用户。

来自空分装置液氮泵的8.1MPa(G)、36?高压氮气一路经氮气预热器预热至100?

后进入高压氮气缓冲罐中,然后减压至 5.1M Pa(G)送入气化氮气管网,由氮气分配

系统送往各个用户;另一路送入高压氮气缓冲罐,然后减压至 5.10MPa(G),为气化装置事故状态提供氧气路吹扫氮气。

2) 低压氮气系统

来自空分的0.44MPa(G)、40?的低压氮气进入低压氮气缓冲罐,再经气化低压氮气管网送往各用户。主要供给开停车时的吹扫,磨煤系统密封、消防用氮,以及粉煤贮罐的惰性化。

来自空分的0.005MPa(G)的低压氮气,送入磨煤及干燥单元的稀释风机入口, 经稀释风机加压后送入磨煤及干燥系统, 作为该系统的稀释氮气,保证系统的氧含量,8%。

(6) 其他

装置中所用的新鲜水、脱盐水、工厂空气、仪表空气、化学品等由全厂公用工程系统和空分装置统一供给。副产外输的中压饱和蒸汽(5.4MPa(G)、270?)并入蒸汽管网。

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

车间内部工艺流程

车间内部工艺流程 一、油漆工艺流程 干砂磨边刮灰打灰擦底得宝擦色底油修补打磨底油修补打磨颜色面油 二、各工序工艺要求 封闭: 1、平砂必须平整、手感光滑、无木皮砂穿; 2、板面不得有污迹现象; 3、木皮刮灰注意浓度、毛孔必填平; 4、打干净水砂、灰擦底得宝; 5、擦色必均匀一致; 6、底油必须把毛孔全部填平,保证无洞钟孔现象; 7、打磨不得把底油打穿,不得波浪、粗砂痕边角,边角打变形等现象; 8、颜色对照标准色板(侧台对主台); 9、台面面油后必须手感光滑,无明显颗粒、皱皮、流油、发白、油窝等不良现象。 开放: 1、干砂平整手感光滑、无木皮砂穿; 2、实木边水灰必须填满毛孔,木处不得有水灰; 3、打干净水灰,擦底得宝; 4、擦色必须均匀一致; 5、底油作业产品表面开放自然,周边封闭必须全部封闭; 6、打磨不得把底油磨穿,不得有波浪、粗砂痕等现象; 7、颜色对照标准色板;

8、面油作业注意开油浓度,保持板件干后,手感光滑、开放自然、均匀一致。 A.干砂操作方法: 1、首先检查砂带是否可正常使用,并拉紧砂带有少许绷紧状; 2、开启吸尘袋开关电源,把板件放在推动板上,木纹与砂带必须同一走向,然后调升降开关,把砂带距离调至离板约1.5mm左右; 3、开启砂带机电源,右手推动板件,右手握操纵杆向下稍压,并左右来回拉动互相配合,每次移动前后约50cm左右,右左移动20cm左右; 4、操纵杆必须从左到右或从前到后,有顺序的走动,直至板件光滑为止(木皮不砂穿); 5、把砂好的板件有顺序整齐的堆放在叉板上,注意叉板必放平,并放上平衡板板面保持无砂粒、硬粒状物; 6、全部砂好点齐无漏板件时移交上一工序。 B.打白胚操作方法 1、把干砂好的产品边角用120#砂纸打光滑毛刺、收水线打磨要注意线条干净、流畅、线条不变形,边角打磨保持原现状; 2、分清施工要求,如浅色木皮则无须刮水灰,深色木皮则分清开放、封闭、开放只实木边刮灰、封闭则全部刮灰; 3、水灰浓度适当,稀则封闭不良,浓则不好打磨,把水灰用滚桶均匀涂在板面上,再用刮刀刮平,开放则需把实木封边用胶纸分起,再擦水灰,板面不得有水灰; 4、水灰干后有120#砂纸用木板包起或用手提打磨机,把水灰打干净,然后再擦底得宝;

催化裂化的装置简介及工艺流程样本

催化裂化装置简介及工艺流程 概述 催化裂化技术发展密切依赖于催化剂发展。有了微球催化剂,才浮现了流化床催化裂化装置;分子筛催化剂浮现,才发展了提高管催化裂化。选用适当催化剂对于催化裂化过程产品产率、产品质量以及经济效益具备重大影响。 催化裂化装置普通由三大某些构成,即反映/再生系统、分馏系统和吸取稳定系统。其中反映––再生系统是全装置核心,现以高低并列式提高管催化裂化为例,对几大系统分述如下: (一)反映––再生系统 新鲜原料(减压馏分油)通过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提高管反映器下部,油浆不经加热直接进入提高管,与来自再生器高温(约650℃~700℃)催化剂接触并及时汽化,油气与雾化蒸汽及预提高蒸汽一起携带着催化剂以7米/秒~8米/秒高线速通过提高管,经迅速分离器分离后,大某些催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带催化剂后进入分馏系统。 积有焦炭待生催化剂由沉降器进入其下面汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部空气(由主风机提供)接触形成流化床层,进行再生反映,同步放出大量燃烧热,以维持再生器足够高床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后催化剂经淹流管,再生斜管及再生单动滑阀返回提高管反映器循环使用。 烧焦产生再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带大某些催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高并且具有约5%~10%CO,为了运用其热量,不少装置设有CO锅炉,运用再生烟气产

LNG气化站设计

LNG气化站工艺设计与运行管理 LNG(液化天然气)已成为目前无法使用管输天然气供气城市的主要气源或过渡气源,也是许多使用管输天然气供气城市的补充气源或调峰气源。LNG气化站凭借其建设周期短以及能迅速满足用气市场需求的优势,已逐渐在我国东南沿海众多经济发达、能源紧缺的中小城市建成,成为永久供气设施或管输天然气到达前的过渡供气设施。国内LNG供气技术正处于发展和完善阶段,本文拟以近年东南沿海建设的部分LNG气化站为例,对其工艺流程、设计与运行管理进行探讨。 1 LNG气化站工艺流程 1.1 LNG卸车工艺 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设置的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG 卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的

LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG 由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG 由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。 图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

化产车间工艺流程

HPF法脱硫 HPF法脱硫属液相催化氧化法脱硫,HPF催化剂在脱硫和再生全过程中均由催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF为催化剂的湿式氧化脱硫,煤气中的H2S等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为元素硫。HPF法脱硫选择使用HPF(醌钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。 二、HPF法脱硫工艺流程 1.HPF法脱硫工艺流程如图5-5所示,从鼓风冷凝工段来的煤气,温度约55℃,首先进入直冷式预冷塔6与塔顶喷洒的循环冷却水逆向接触,被冷至30~35℃;然后进入脱硫塔8。 预冷塔自成循环系统,循环冷却水从塔下部用预冷塔循环泵7抽出送至循环水冷却器3,用低温水冷却至20~25℃后进入塔顶循环喷洒。采取部分剩余氨水更新循环冷却水,多余的循环水返回鼓风冷凝工段,或送往酚氰污水处理站。 预冷后的煤气进入脱硫塔,与塔顶喷淋下来的脱硫液逆向接触以吸收煤气中的硫化氢、氰化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气含硫化氢降至50mg/m3左右,送入硫酸铵工段。

吸收了H2S、HCN的脱硫液从塔底流出,经水封槽4进入反应槽9,然后用脱硫液循环泵11送入再生塔10,同时自再生塔底部通入压缩空气,使溶液在塔内得以氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环吸收。 浮于再生塔顶部扩大部分的硫磺泡沫,利用位差自流入泡沫槽14,经澄清分层后,清液返回反应槽,泡沫用泡沫泵15送入熔硫釜16,经数次加热、脱水,再进一步加热熔融,最后排出熔融硫磺,经冷却后装袋外销。系统中不凝性气体经尾气洗净塔洗涤后放空。 为避免脱硫液盐累积影响脱硫效果,排出少量废液送往配煤。 自鼓风冷凝送来的剩余氨水,经氨水过滤器除去夹带的煤焦油等杂质,进入换热器与蒸氨塔底排出的蒸氨废水换热后进入蒸氨塔,用直接蒸汽将氨蒸出。同时将蒸氨塔上部加一些稀碱液以分解剩余氨水中的固定铵盐。蒸氨塔顶部的氨气经分凝器和冷凝冷却器冷凝成含氨大于10%的氨水送入反应槽,增加脱硫液中的碱源。

催化裂化装置工艺流程及设备简图

催化裂化装置工艺流程及设备简图 “催化裂化”装置简单工艺流程 “催化裂化”装置由原料预热、反应、再生、产品分馏等三部分组成~其工艺流程见下图~主要设备有:反应器、再生器、分馏塔等。 1、反应器,又称沉降器,的总进料由新鲜原料和回炼油两部分组成~新鲜原料先经换热器换热~再与回炼油一起分为两路进入加热炉加热~然后进入反应器底部原料集合管~分六个喷嘴喷入反映器提升管~并用蒸汽雾化~在提升管中与560,600?的再生催化剂相遇~立即汽化~约有25,30%的原料在此进行反应。汽油和蒸汽携带着催化剂进入反应器。通过反应器~分布板到达密相段~反应器直径变大~流速降低~最后带着3,4?/?的催化剂进入旋风分离器,使其99%以上的催化剂分离,经料腿返回床层,油汽经集气室出沉降器,进入分馏塔。 2、油气进入分馏塔是处于过热状态,同时仍带有一些催 化剂粉末,为了回收热量,并洗去油汽中的催化剂,分馏塔入口上部设有挡板,用泵将塔底油浆抽出经换热及冷却到 0200,300C,通过三通阀,自上层挡板打回分馏塔。挡板以上为分馏段,将反应 物根据生产要求分出气体、汽油、轻柴油、重柴油及渣油。气体及汽油再进行稳定吸收,重柴油可作为产品,也可回炼,渣油从分馏塔底直接抽出。

3、反应生焦后的待生催化剂沿密相段四壁向下流入汽提段。此处用过热蒸汽提出催化剂,颗粒间及表面吸附着的可汽提烃类,沿再生管道通过单动滑阀到再生器提升管,最后随增压风进入再生器。在再生器下部的辅助燃烧室吹入烧焦用的空气,以保证床层处于流化状态。再生过程中,生成的烟通过汽密相段进入稀相段。再生催化剂不断从再生器进入溢流管,沿再生管经另一单动滑阀到沉降器提升管与原料油汽汇合。 4、由分馏塔顶油气分离出来的富气,经气压机增压,冷却后用凝缩油泵打入吸收脱吸塔,用汽油进行吸收,塔顶的贫气进入二级吸收塔用轻柴油再次吸收,二级吸收塔顶干气到管网,塔底吸收油压回分馏塔。 5、吸收脱吸塔底的油用稳定进料泵压入稳定塔,塔顶液态烃一部分作吸收剂,另一部分作稳定汽油产品。 设备简图 反应器、再生器和分馏塔高、重、大。具体如:分馏塔高41.856m,再生器塔高31m,反应器安装后塔顶标高达57m。再生器总重为390t,反应器总重为177t,分馏塔总重为175t。 3再生器最大直径9.6m,体积为2518m。 1(两器一塔的主要外型尺寸及参数 再生器的外型尺寸参数见下图。

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

德士古煤气化工艺和炉型的选择

德士古煤气化工艺和炉型的选择 2008-02-24 09:27 以合成氨为例,使用人然气为原料的合成氨产量约占世界总产量的700}0。美国和前苏联两大人然气生产国以人然气为原料的合成氨和甲醇约占其木国总产量的90%以上,我国与世界情祝略有不同,人然气价格高,比中东高出4- 8倍,药为美国的1. 2- 1. 5倍,而其产量仅为美国的1/20,原苏联的1/ 30。因此,在利用和开采上都受到一定限制。我国煤炭资源丰富,日‘煤炭产地价格便宜,如山西、内蒙占、陕西几大煤炭产地,同等热值的煤价仅为世界煤价的2/ 3。以煤为原料民合成气生产己有150年的历史,选择适宜煤炭气化技术,不仅是有效地利用煤炭资源的重要途径,也是其工艺是否经济合理的关键环节。 1煤气化工艺的选择 以煤为原料制取合成氨原料气的技术主要有4种:德士占水煤浆气化、谢尔粉煤气化、鲁奇碎煤气化和 U G1常压气化。 U Gl常压气化技术成熟,工艺可靠,但必须使用无烟块煤,设备能力低,二废量大等缺点,不能满足大型化的要求。鲁奇气化技术虽然技术成,在我国已有大型化装置运转,但其最大缺点是气化温度低,产生的苯、酚、焦汕、废水等有害物质难以处理,污染大,原料可利用率低,粗合成气中甲烷含量高, 只适于作城市煤气,不宜作合成气。 谢尔干粉煤气化技术,虽然炭转化率高,有效气体成分高,水冷壁寿命为25年,喷嘴设计寿命为1年;但山于是干粉进料,气化压力不能太高,操作有一定难度,目前世界上工业装置只有1套生产粗煤气用于联合循环发电,另外该技术全而依赖进口,关键设备}+}内不能制造,技术支撑率较低, 用于生产合成气风险较大。 德士占水煤浆气化技术除氧耗高外,有如卜特点:①中一台炉处理煤量大,生产能力高;C气化压力高,合成气压缩功耗省,合成氨能耗低;C有效气(co+ Hz)含量高,适于作合成气;}k的适应性宽,可利用粉煤,原料利用率高;墓艺废量小,污染环境轻,废渣可做水泥原料;⑧国内已有4套装置运行,可借鉴的生产管理经验多;7科研部门已掌握了该技术,技术支撑率高,大部分设备国内能制造,设备能国产化。德士占 的最大缺点是,烧 嘴寿命短为45 d,但国内史换时间仅为4h,耐火砖每年需史换1次,史换时间为45 d,在两台气化炉生产,不考虑备用炉卜检修期内基木上能保持生产的进行。 鉴于德士占有以上特点,新建大型合成氨国产化工程气化部分采用德士占水煤浆气化技术。 2气化压力的选择 对于德士占水煤浆技术采用4. OMYa和6. 5 MYa两种工艺,气化消耗、采用6. 5 MYa气化具有 以卜优点: 1)气化压力高,煤气中有效气量略有卜降,氧气用量、原料煤消耗略有增加,增减幅度小于0. 20}0 ,影响甚微。但气化反应是体积增大的反应,压缩1. 0m3的氧气,相当于压缩3. 1 m3的煤气效果,可见提高操作压力可节省压缩功,还可缩小设备体积,使布置史为紧凑。 2) 6. 5 MPa气化时气化炉为2台,而4. OMPa气化为3台,后者设备增加17台,不仅增加了设备 投资,而I I.增加了日常维护管理的作业量。

车间生产工艺流程图

车间生产工艺流程图 实木车间 1.文件柜类: 素板→大平砂→开毛料→贴面→精截→封边→钻孔→ 试装→半成品 2.茶几或沙发架: 锯材→干燥→截断→纵剖→压刨→划线→铣型→ 开榫头、榫槽→钻孔→手工组装→打磨→半成品 3.班台或会议桌: 素板(锯材)→大平砂(干燥)→开毛料(截断)→加 厚(纵剖)→精截(压刨)→加宽(胶贴)→贴面(热压) →铣型(精截)→手工组装(包括打磨、打腻子、封 边、钻孔)→试装→半成品 油漆车间 白坯→机磨(大平面)→手磨(小面、曲边)→擦色(打水灰、打底得宝、打腻子)→机磨(大平面)→手磨(小面、曲面)→PU(第1道底漆) → 机磨(打平面)→手磨(小面、曲面)→PE(第2道底漆)→打磨(机 磨、 手磨)→修补→修色→手磨→面漆→干燥→试装→包装 板式车间 1.开料→手工→封边→钻孔→镂铣、开槽→清洗→试装→包装 2.开料→力刨→涂胶→贴面→冷压→精截→手工→封边→钻孔 →镂铣、开槽→清洗、修边→试装→包装

沙发车间 裁皮、开棉→打底(电车)→粘棉→扪皮(组装)→检验→包装 转椅车间 裁布(皮)、开棉→车位、粘绵→扪皮→组装→检验→包装 屏风车间 开料(铝材)→喷胶→贴绵→扪布(打钉)→组装→试装→包装 五金车间 1.椅架类: 开料→弯管→钻孔、攻牙→焊接→打磨→抛光→喷涂 2.钢板类: 开料→冲板(圆孔、圆凸、方孔、方凸、小梅花、大梅花、 网孔、菱凸)→折弯→焊接→打磨→喷涂 3.台架类: 开料→冲弯→钻孔、攻牙→焊接→打磨→抛光→喷涂 4.电镀类: 开料→开皮→冲弯→焊接→打磨→精抛→电镀 总:开料(裁剪、剪板)→制造(冲床、弯管、钻孔、攻牙)→成型(焊接、打磨、抛光)→喷涂、电镀 喷涂车间 清洗→凉干→打磨→喷漆(喷粉)→电烤→包装

催化裂化装置工艺流程

催化裂化装置工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: 一反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370?左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650?~700?)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650?~68 0?)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 二分馏系统

催化裂化地装置简介及实用工艺流程

催化裂化的装置简介及工艺流程 概述 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: (一)反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 (二)分馏系统 分馏系统的作用是将反应/再生系统的产物进行分离,得到部分产品和半成

LNG气化站工艺流程图

LNG气化站工艺流程图 如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。

德士古气化炉简介与基本原理和特点

德士古气化炉 TeXaCo(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946 年研制成功的, 1953年第一台 德士古重油气化工业装置投产。在此基础上, 1956 年开始开发煤的气化。本世纪 70 年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛 (Montebello) 研究所建设了日处理 15t 的德士古气化装置,用于烧制煤和煤液化残渣. 目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉. 典型代表产品我厂制造过的德士古气化炉典型的产品有 : 渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。 1992 年为渭河研制的德士古气化炉是国际 80 年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它 的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉 内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的 裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气 二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开 反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣 罐,经排渣系统定时排放.煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在 90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低 污染的新型清洁燃料[1].具有较好的发展与应用前景。水煤浆的气化是将一定粒 度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体 ,与氧气在加压 及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率 高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注 ,我国也将水煤 浆气化技术列为“六五"、“七五”、“八五"、“九五”的科技攻关项目。 本 文基于目前我国水煤浆气化技术的现状,以TeXaCo 气化炉为研究对象,根据对气化 炉内流动、燃烧和气化反应的特性分析,将TeXaCO 气化炉膛分成三个模拟区域,即 燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿 真模型.该模型 德 士 古气 化 炉

生产车间工作流程

生产部生产作业流程 文件名称:生产车间生产管理规范文件编号:XXXX 制订日期:20XX年X月XX日 版本版次:A/1 制定:XXX 核准:XXXX 总共页数:6页

生产部生产作业流程 1.目的 通过生产过程的管理,确保生产品质、交期、成本、安全的目标实现。 2.流程角色 主导部门:生产部 配合部门:业务部、采购部、工程部、研发部、品管部、仓库 3.流程说明: 对生产全程进行管控,实行有序管理; 管理目标追踪落实。 4.职责定义 4.1生产部 4.1.1跟进收集各部门对各类产品的需求信息,制定合理的生产计划并实施; 4.1.2按照产品作业指导书的工艺工序要求,组织调度生产资源落实领料、生 产、入库过程管理; 4.1.3对生产自检的不合格物料跟进退换。 4.2业务部 4.2.1依据已签订的供货合同,转化为生产通知单并及时有效下发; 4.2.2依据业务员提报产品交期需求,整理发布出货计划单; 4.3采购部 4.3.1在生产通知发布后,及时制定对应的到料计划并实施,确保生产物料的 供应; 4.4工程部。 生产部生产作业流程

4.4.1发行各类产品的标准作业规范(SOP),工艺流程图(PDF)并监督生产落 实执行; 4.4.2协助生产技术支持,确保生产顺利进行。 4.5研发部 4.5.1发行各类产品的产品物料清单(BOM)及各类技术图纸、文件; 4.6品管部 4.6.1依据生产自检后的物料退换要求,进行责任方判定以确认不合格物料的 处理决定; 4.6.2对制程中的原物料与半成品加强制程检测,对入库前的制成品执行入库 检测。 4.7仓库 4.7.1根据生产通知单和产品物料清单(BOM)及时出具领料单; 4.7.2依据出货计划单即时按单备料,根据生产部需求履行发料、退料、报废、 入库等作业流程。 5.生产作业流程图

德士古水煤浆气化技术概况与发展讲解

毕业设计(论文) 题目德士古水煤浆气化技术概况与发展 专业 学生姓名 学号 小组成员 指导教师 完成日期 新疆石油学院 1、论文(设计)题目:德士古水煤浆气化技术概况与发展

2、论文(设计)要求: 3、论文(设计)日期:任务下达日期 完成日期 4、系部负责人审核(签名): 新疆石油学院 毕业论文(设计)成绩评定 1、论文(设计)题目:德士古水煤浆气化技术概况与发展 2、论文(设计)评阅人:姓名职称 3、论文(设计)评定意见:

成绩:5、论文(设计)评阅人(签名): 日期:

德士古气化技术概况与发展 摘要本文简要介绍了德士古气化技术现状、原理、工艺流程,以及一些存在的问题。 煤气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。1984年我国建设了我国第一套Texaco水煤浆气化装置,气化炉是水煤浆加压气化技术的关键设备之一。目前,国内外最常用的水煤浆气化炉是德士古气化炉。Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道。介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30 m /s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。 最后是对德士古气化技术的展望,还有新型煤气化技术发展前景,及发展重要意义。从我国经济发展全局出发,结合我国的能源资源结构和分布,寻求行之有效的替代石油技术,以缓解我国石油进口的压力.水煤浆代替燃油技术在国内外已经成熟,用水煤浆代替原油对我国国民经济发展具有重要的战略意义. 关键词德士古煤气化,水煤浆,气化炉,工艺烧嘴

生产车间技术工艺流程

产品技术工艺档案表 编号: BT/SC003-001/A NO:20130125-01-03 文件号版本号修改号 产品名称编码产品类型 条码商标名称标准计量 执行标准包装规格保质期产 产品评价品 特 点 描 述 序号物料名代码单位数量品牌商家 1 2 3 产4 5 品 6 配 7 8 料 9 10 11 12 13 14 工 原料油入罐混合调配理瓶计量灌装 艺 贴标包装材料检验入库 流 程 制表人:工艺师确认: 档案附件: 1、产品成形式样图片;2、产品成品包装电子版图样与图样说

3、产品商标电子版图样与样品; 4、工序操作流程。

生产车间操作工艺流程一、原料油入库 流程图 1.原油入罐准备 2.取样 退货 3.检验 不合格 4.不合格处理 合 格 让步接收 5.罐号确认、 6.进油监视 7.资料登记 8.清洁 说明责任人 1.确定停车位置,检查油管对接管道的老化 1.技术员 情况。《设备日常维护记录表》、《原油入库 2.技术员 /检 登记表》 验员 2.查看封条,确认封条完整后,取样。《原材 料报检单》 3. 检验员 3.对样品进行各项技术指标分析,填写《检 4. 质检部长 验报告单》。 4.根据质检部出具的检验报告对不合格品做 出相应处理(退货、让步按收),并通告车 间技术员与物流部门再呈送总经办,对让 5. 技术员 步接收的产品要进行使用跟踪。 5.确认存油罐号,理清所有管道,并将抽油 6. 技术员 管道清理干净。 6.启动输油系统,并密切监视进油情况。 7. 技术员 7.对输入的原油进行“ 《原油入库登记表》、《检 验报告单》和《重量单据》”登记。 8. 技术员 8.原油入库结束,清理现场。

相关文档
最新文档