[2]如何用origin9.0某点切线

[2]如何用origin9.0某点切线
[2]如何用origin9.0某点切线

[2]如何用origin9.0某点切线

这部分介绍如何用origin做曲线的切线。

1>在origin的官*网下载tangent工具,将他保存放在放在桌面上备用。

2>打开origin9.0首页面,将桌面上的tangent插件拖到,origin9.0的首页上,在首页上会出现如下的工具。

3>随即输入一组数据,如下图所示。

4>我们将这些点做成平滑的曲线,既可以用plot→symbol→scatter,也可以直接在工具里找。

5>做好曲线后,我们点击我们之前做好的tangent工具中的“”,在我们想做切线的点上“单击”变成大的红十字后“双击“。其中,通过左右箭头键可以移动红十字。

6>如上图,我们的切线就做好了。如果我们要知道切线的直线方程,我们可以在选中切线的情况下,执行如下操作:analysis→Fitting→linear fit→open dialog后点击ok即可。这样,我们可以得到切线方程的相关数据。

注:非原著,原著作者来自如下网站

(https://www.360docs.net/doc/382290053.html,/user/npublic?un=自定义sunny)

本人仅对其进行了稍微的修改,纠正等辅助工作,后期会逐步添加作者本人在使用该软件过程中的方法。

用导数求切线方程的四种类型84657

题型一:利用导数去切线斜率 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为 解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,. 类型二:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例2 求过曲线32y x x =-上的点(11)-,的切线方程. 类型三:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例3 求过点(20),且与曲线1y x =相切的直线方程. 题型二:利用导数判断函数单调性 总结求解函数f(x)单调区间的步骤: 练习:判断下列函数的单调性,并求出单调区间。 (1)确定函数f(x)的定义域; (2)求f(x)的导数f'(x); (3)解不等式 f'(x)>0 ,解集在定义域内的部分为 增区间; (4)解不等式 f'(x)<0 ,解集在定义域内的部分为 减区间. 例1.:已知导函数 的下列信息: 注意: x x x f x x x f x x x x f ln 2 1 )()3(7 62)()2(),0(,sin )()1(223-=+-=∈-=π图像的大致形状。 试画出或当或当当)(0)(,1,40)(,1,40)(,41x f x f x x x f x x x f x ='==<'<>>'<<3211 11(1)2231(11)y x y x x =-+-=-+-练习:、在,处的切线方程 、在,处的切线方程1(01)x y xe =+-3、曲线在,处的切线方程sin 20x y x e x =++=5、曲线在处的切线方程

圆的切线的性质和判定(教案)

切线的判定与性质(复习)教案 一、教学内容:中考数学复习——切线的判定与性质 二、教学目标: 1、知识技能: (1)掌握切线的判定定理,能判断一条直线是否为圆的切线; (2)掌握切线的性质定理,能利用切线的性质定理解决相关问题。 2、能力技能 (1)通过观察、比较切线的判定方法,发展学生的推理与归纳能力; (2)学生通过运用切线的性质解决问题的过程,逐渐形成用数学语言表述问题的能力。 (3)通过学习添加辅助线,提高思维能力。 3.情感、态度与价值观 经历复习圆的切线的判定与性质的过程,发展学生的数学思考能力;通过积极引 导,帮助学生有意识地积累学习经验,获得成功的体验;利用数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望. 三、重、难点: 重点:掌握切线的判定定理和性质定理 难点:切线的判定定理和性质定理应用 四、教学过程 (一)知识简要归纳——温故而知新 1. 2.判断一条直线是否为圆的切线,现已有 种方法: 一是看直线与圆公共点的个数: ( 与圆有 公共点的直线是圆的切线) 二看圆心到直线的距离d与圆的半径之间的关系;(当d r 时,直线是圆的切线) 三是利用 。 3.认真观察下列图形,看看下列说法是否正确 (1).与圆有公共点的直线是圆的切线. ( ) (2).和圆心距离等于圆的半径的直线是圆的切线; ( ) (3).垂直于圆的半径的直线是圆的切线; ( ) (4) 4 (二)、合作探究 图(1) 图(2) 图(3) 图(4) 图(5)

例1 直线A B 经过⊙O 上的点C , 并且O A =O B ,C A =C B , 求证:直线A B 是⊙O 的切线. 归纳小结: 象例1 这种证明方法可简记为: 有“切点”,连半径,证垂直。 例2:已知:O 为∠B A C 平分线上一点,O D ⊥A B 于D ,以O 为圆心,O D 为半径作⊙O 。 求证:⊙O 与A C 相切。 归纳小结:象例2这种证明方法可简记为: 无“切点”,作垂直,证半径 。 例3 如图,AB 是⊙O 的直径, C 为⊙O 上一点, AD 和过点C 的切线互相垂直,垂足为D. 求证:AC 平分∠DAB . 归纳小结:象例3这种证明方法可简记为: 知切点,连半径,得垂直 . (三)随堂练习 1.如图,PA 、PB 切⊙O 于点A 、B, ∠P=70°, 则∠C= ( B ), A. 70°, B. 55°, C. 110°, D. 140°. 2、如图:△ABC 的边AB ,经过圆心O ,交⊙O 于点A 、D ,∠BAC=∠B = 30°, 边BC 交圆于点C 。BC 是⊙O 的切线吗?为什么? 3.已知如图,△ABC 为等腰三角形,O 是底边BC 的中点, ⊙O 与腰AB 相切于点D 。AC 与⊙O 相切吗?为什么? 4.AB 是⊙O 的直径,BE 平分∠ABC 交⊙O 于点E,过点E 作⊙O 的 第1题图 第2题图

“切线的判定与性质”教学设计及反思

“切线的判定”教学设计 教材分析: “切线的判定”是人教版九年义务教育24章第二节的内容,是学生已经学习了直线和圆的三种位置关系之后提出来的。切线的判定定理、性质定理是研究三角形的内切圆、切线长定理以及后面研究正多边形与圆的关系的基础。学好它,对今后数学、物理等学科的学习会有很大的帮助。 针对义务教材特点和我所教学生的实际水平,本着因材施教的教学原则,本节课在重点处理完本课内容切线的判定定理和例1后,我引导学生进行例2的探究,与例1结合起来,构成了有关切线证明问题中常见的两种类型,以及常用的两种辅助线作法。 设计理念: 为将新课程标准真正落实到本课的教学中,我改变了“复习引入—讲授新知—巩固新知—课堂小结—布置作业”这种传统的教学模式。对本课的教学内容进行开放性设计,注重引导学生在小组合作学习中探究和体验,落实在“做中学”。 教学目标: 1、通过学生自己探究(猜想、类比、演绎)过程,让学生发现切线的判定定理,并能说明方法的正确性。 2、在定理的发现过程中,让学生体验“观察—猜想—论证—归纳”的数学研究的方法。 3、通过这节内容的教学,使学生获得猜想的认识过程以及“添加辅助线”的解决问题的方法。 4、培养学生动手操作的能力,通过直观教具的演示好指导学生动手操作的过程,激发学生学习几何的主动性和积极性。 教学重点:发现并证明切线的判定定理,认识切线在实际生活中的应用。 教学难点: 体验圆的切线证明问题中辅助线的添加方法。 教学准备: 1、教师课前制作的多媒体课件。 2、教师自制的课堂演示教具。 教学过程 一、问题的提出:(多媒体显示问题) 1.直线与圆有哪三种位置关系?判断的标准是什么? 2.什么叫圆的切线?怎样判定一条直线是不是圆的切线?(学生先观察、猜想,在让学生和教师一道用自制教具进行演示) 通过以上演示探究,我们发现可以用切线的定义来判定一条直线是不是圆的切线,但有时使用起来很不方便。为此,我们有必要学习切线的判定定理。

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

切线的判定和性质(说课稿)

切线的性质和判定说课稿 一、说教材: 1.本节教材所处的地位和作用 切线的判定和性质的教学在平面几何乃至整个中学数学教学中都占有重要地位和作用:除了在证明和计算中有着广泛的应用外,它也是研究三角形内切圆的作法,切线长定理以及后面研究两圆的位置关系和正多边形与圆的关系的基础,所以它是《圆》这一章的重要内容,也可以说是本章的核心。除了要求学生能够较灵活地运用有关知识解题外,还要求学生掌握一些解题技巧,在培养学生的逻辑思维能力和综合运用知识解决问题的能力方面也起了重要作用。 2. 教学目标 (1)知识与技能 记住圆的切线判定定理,并能判定一条直线是否是圆的切线;掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线;能综合运用切线的判定和性质解决问题。 (2)过程与方法 通过演示直线与圆相切,培养学生观察图形并能从图形的位置去判断图形的性质和能力。 (3)情感、态度与价值观 通过学生自己实践发现定理,培养学生学习的主动性和积极性 3.教学重点与难点 重点:圆的切线的识别方法和圆的切线的性质。 难点:在识别圆的切线时,培养学生的逻辑推理能力。 二、说教法 本课注重直观,注重动手,注重探索能力的培养,并且九年级学生经过两年多的学习,已经积累了动手操作,探究问题的经验,也具备了这种探究问题,合作交流的能力。因此,根据本节课的内容和学生的认知水平,主要采用“教师引导,学生探究、发现”的教学方法。 三、说学法 为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,

探索新知的能力,要充分体现学生的主体地位。为此,在本课的学习过程中学生主要使用探究式的学习方法。根据平面几何的特点,尽量让学生在动口说、动脑想、动手操作中获得更多的参与机会,从中学会分析、解决问题的方法。本节是定理的教学,我认为要指导学生做好如下两方面的工作: (1)学习定理一定要注重对基本图形的把握,理解和灵活运用定理是证题的基础,这正是学生感到困难的地方。从几何定理的特征出发,要解决这个难题,就要下功夫把定理内容和相应的基本图形建立起联系,使定理在头脑中活灵活现出来; (2)常见的辅助线一定要了解,本节添加辅助线的关键在于“已知条件中是否明确了直线和圆的公共点。”如果无公共点就作垂线证d=r,有公共点的话,连半径证垂直,即“有点连线证垂直,无点作垂线证d=r。” 四、说教学过程 (一)、创设情景,诱发动机 1、根据下图,回答以下问题 (1)、图1、图2、图3中的直线分别和⊙O是什么关系? l l (a)(b)(c) (2)、在上图中,哪个图中的直线是圆的切线?你是怎样判定的?还有更好的判定方法吗? 【设计意图】因为相切是直线和圆的三种位置关系中重点研究的内容,所以通过在学生已有的知识结构上提出问题,复习巩固直线和圆的三种位置关系、定义、性质和判定,达到“温故而知新”的目的。(顺势引出课题) (二)实践操作,探索新知 1、探究:圆的切线的判定定理 (1)实验发现 如图所示,画一个圆O及半径OA,经过圆的半径OA的外端A画一条直线L 垂直于这条半径OA。这条直线和圆有几个公共点?

(完整版)切线的判定与性质、切线长定理练习题

切线的判定与性质、切线长定理 1.如图,AB为⊙O的直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12㎝,∠B =300,则∠ECB=,CD=。 2.如图,CA为⊙O的切线,切点为A。点B在⊙O上,如果∠CAB=550,那么∠AOB 等于。 3.如图,P是⊙O外一点,PA、PB分别和⊙O相切于点A、B,C是⌒ AB上任意一点,过C作⊙O的切线分别交PA、PB于点D、E,(1)若PA=12,则△PDE的周长为____; (2)若△PDE的周长为12,则PA长为;(3)若∠P=40°,则∠DOE=____度。 (1题图) (2题图) (3题图) 4.下列说法:①与圆有公共点的直线是圆的切线;②垂直与圆的半径的直线是切线;③与 圆心的距离等于半径的直线是切线;④过圆直径的端点,垂直于该直径的直线的是切线。 其中正确命题有() A.①②B.②③C.③④D.①④ 5.如图,AB、AC与⊙O相切与B、C,∠A=500,点P是圆上异于B、C的一动点,则 ∠BPC的度数是。 6.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( ) A.三条中线的交点B.三条高的交点 C.三条角平分线的交点D.三条边的垂直平分线的交点 7.如图,⊙O分别与△ABC的边BC、CA、AB相切于D、E、F,∠A=800,则∠EDF =。 (5题图)(6题图)(7题图) 8.点O是△ABC的内心,∠BAO=200,∠AOC=1300,则∠ACB=。 9.已知:Rt△ABC中,∠C=900,AC=4,BC=3,则△ABC内切圆的半径 为。

10.若直角三角形斜边长为10㎝,其内切圆半径为2㎝,则它的周长为。 11.如图,BA与⊙O相切于B,OA与⊙O 相交于E,若AB=5,EA=1,则⊙O的半 径为。 12.如图,在△ABC中,I是内心,∠BIC=1300,则∠A的度数是。 13.如图,△ABC的内切圆⊙O与各边相切于点D、E、F,若∠FOD=∠EOD=1350,则 △ABC是() A.等腰三角形; B.等边三角形; C.直角三角形; D. 等腰直角三角形; E F D O C A B (11题图)(12题图)(13题图) 14.如果两圆的半径分别为6cm和4cm,圆心距为8cm,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 15.若已知Rt△ABC中,斜边为26cm,内切圆的半径为4cm,那么它的两条直角边的长分 别为()cm A、7、27 B、8、26 C、16、18 D、24、104 16.已知两圆的半径分别是方程0 2 3 2= + -x x的两根,圆心距为3,则两圆的位置关系是__________. 17.两圆半径分别为5cm和4cm,公共弦长为6cm,则两圆的圆心距等于()cm。 A. 7 4+ B. 7 4- C. 7 4+或7 4- D. 41 18.从圆外一点向半径为9的圆作切线,已知切线长为18,?从这点到圆的最短距离为 (). A.3 9B.()1 3 9-C.()1 5 9-D.9 19.如图,AB为⊙O的直径,BC是圆的切线,切点为B,OC平行于弦AD,求证:DC 是⊙O的切线。

(完整版)用导数求切线方程教案

用导数求切线方程 一、教学目标: (1)知识与技能: 理解导数的几何意义. 能够应用导数公式及运算法则进行求导运算. (2)过程与方法: 掌握基本初等函数的导数公式及运算法则求简单函数的导数. (3)情感态度与价值观: 通过导数的几何意义的探索过程,掌握计算简单函数的导数,培养学生主动探索、勇于发现之间的联系的精神,渗透由特殊到一般的思想方法. 二、重点、难点 重点:能用导数的几何意义求切线方程. 难点:用导数求切线方程. 三、学情分析 学生在前面已学习导数的概念,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,本节课进一步研究和学习导数的几何意义与切线方程之间的联系。根据学生好动、观察能力强的特点,让他们采用小组合作、讨论的形式归纳本节课的知识,突出本节课的重点、难点。 四、教学过程: 【知识回顾】 1. 导数的概念 函数()y f x =在0x x =处的导数是 _____________________.

2. 导数的几何意义 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率,即________=k . 3. 基本初等函数的导数公式: 1)若()f x c =(c 为常数),则()________'=x f ; 2)若()f x x α=,则()________'=x f ; 3)若()sin f x x =,则()________'=x f ; 4)若()cos f x x =,则()________'=x f ; 5)若()x f x a =,则()________'=x f ; 6)若()x f x e =,则()________'=x f ; 7)若()log x a f x =,则()________'=x f ; 8)若()ln f x x =,则()________'=x f . 4. 导数的运算法则 1)()()[]_______________'=±x g x f 2)()()[]_________________'=?x g x f 3)()_______________________')(=?? ????x g x f 4)()'________cf x =???? 【新课引入】 1. 用导数求切线方程的四种常见的类型及解法: 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-- B.32y x =-+ C.43y x =-+ D.45y x =- 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=

《圆的切线的判定和性质》教学设计与反思

《圆的切线的判定和性质》教学设计与反思 教学目标 1、记住圆的切线的判定定理,并能判定一条直线是否是圆的切线; 2、记住切线的性质定理; 3、会运用切线的判定定理和性质定理解决问题。 重点: 切线的判定定理和切线判定的方法 难点: 切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径。 学习流程 一、揭示目标 二、自学指导 1、复习下列内容 (1)、直线与圆的位置关系有几种?分别是那些关系?直线与圆的位置关系的判断方法有哪几种? (2)、直线与圆相切有哪几种判断方法? (3)、思考作图:已知:点A为⊙o上的一点,如和过点A作⊙o的切线呢? 交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA的垂线 2、知识导入: ______ 如图:直线BC和⊙O的位置关系是____,直线BC叫⊙O的_____,公共点A叫 思考:如图所示,它的数学语言该怎样表示呢? 3、思考探索; (1)、直线l垂直于半径OA,直线l是⊙O的切线吗? (2)、直线l经过半径OA的外端A,直线l是⊙O的切线吗?

小结: 判定一条直线是圆的切线的三种方法 (1)、利用定义:与圆有唯一公共点的直线是圆的切线。 (2)、利用定理:与圆心距离等于圆的半径的直线是圆的切线。 (3)、利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 4、例题精析: 例1、(教材103页例1)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB, 求证:直线AB是⊙O的切线。 o A B C 练习1: AB是⊙O的直径,TB=AB, ∠TAB=45°直线BT是⊙O的切线吗?为什么? 练习2、如图已知直线AB过⊙O上的点C,并且OA=OB,CA=CB 求证:直线AB是⊙O的切线 例2.如图:点O为∠ABC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作圆。 求证:BC是⊙O 的切线。 练习3、如图,⊙O的半径为8厘米,圆内的弦AB为83厘米,以O为圆心,4厘米为半径作小圆,求证:小圆与直线AB相切。

导数之一:导数求导与切线方程

本章节知识提要 考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何 意义. 2.导数的运算 (1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y = x 1,y =x 的导数; (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次); (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题:会利用导数解决某些实际问题. 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义 导数(1):求导与切线 ?知识点梳理? 1. 求导公式与求导法则:

0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x sin )'(cos -= x x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf 法则2 '''[()()]()()f x g x f x g x ±=±. 法则3 [()()]'()()()f x g x f x g x f x g x '= +, [()]'(cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ??-=≠ ??? 3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=- 曲线f (x )在A (m,n )处的切线方程求法: ①求函数f (x )的导数f ′(x ). ②求值:f ′(m )得过A 点的切线的斜率 ③由点斜式写出切线方程:y –n = f ′(m )(x-m) ?精选例题? 例1.求下列函数的导函数 1. x x f =)( 2.2)(e x f = 3.y=2x+3 4.x x f = )( 5.y=x 2+3x-3 6. 1y x = 7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+= 例2:.求函数12+=x y 在-1,0,1处导数。 例3:已知曲线313y x =上一点P (2,38 ),求点P 处的切线的斜率及切线方程?

《圆的切线的判定和性质》导学案

《圆地切线地判定和性质》教案 ---- 泓泉27 教案目标:理解切线地判定定理和性质定理并熟练掌握以上内容解决一些实际问题. 重<难)点:切线地判定定理;切线地性质定理及其运用它们解决一些具体地题目: 教案流程 一、复习下列内容 1?直线和圆有哪些位置关系? 2.什么叫相切? 3?我们学习过哪些切线地判断方法? 二新授1思考作图:已知:点A为。o 上地一点,如何过点A作。o地切线呢? 2?交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA 地垂线 从作图中可以得出: 经过 _________________ 且_____________ 这条半径地地直线是圆地切线 思考:如图所示,它地数学语言该怎样表示呢? 3、思考探索;如图,直线I与。O相切于点是过切点地半径, A i 直线I与半径OA是否一定垂直?你能说明理由吗?

1.过半径地外端地直线是圆地切线< ) 2.与半径垂直地地直线是圆地切线< ) 3.过半径地端点与半径垂直地直线是圆地切线< ) 利用判定定理时,要注意直线须具备以下两个条件,缺一不可: (1> 直线经过半径地外端。 (2> 直线与这半径垂直. 小结:1. 想——想 判断一条直线是圆的切线,你现在会有多少种方法 有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是圆的切线。 2.利用d与r的关系作判断:当d = r时直线是圆的切线。 3.利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切 线。 2.切线地性质定理:圆地切线垂直于过切点地半径.<1 )圆地切线 < )过切点地半径. <2) —条直线若满足①过圆心,②过切点,③垂直于切线这三条中 地< )两条,就必然满足第三条

切线的判定和性质教学设计 人教版〔优秀篇〕

《切线的判定和性质》教案 第16课时:切线的判定和性质(二) 教学目标: 1、使学生理解切线的性质定理及推论; 2、使学生初步运用切线的性质证明问题. 3、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力 教学重点: 切线的性质定理和推论1、推论2. 教学难点: 本节中要利用“反证法”来证明切线的性质定理.学生对这种间接证明法运用起来不太熟练.因此在教学中教师可指导学生复习第一册几何中“垂线段最短”.指出反证法在本节中的三大步骤是: (1)假设切线AT不垂直于过切点的半径OA, (2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则由直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾. (3)承认所要的结论AT⊥OA. 教学中的疑点是性质定理的推论1和2.教学中要采用直观演示,让学生直接从观察中得到推论内容. 教学过程: 一、新课引入: 我们已经学习过用不同的方法来判定一条直线是圆的切线.本课我们来学习圆的切线会产生怎样的性质. 二、新课讲解: 实际上我们学到的圆的切线的定义,本身就产生了切线的一种性质.那就是圆的切线和圆只有一个公共点.除此之外,圆的切线还有哪些性质呢?请同学们动手在练习本上画一画想一想. 学生动手画,教师巡视全班,若只有少数几个学生产生结论,教师可适当点拨学生围绕切线、切点、过切点的半径、半径所在直线,广泛展开讨论. 最终教师指导学生完成切线的性质定理和推论1和2. 切线的性质定理:圆的切线垂直于经过切点的半径. 分清定理中题设和结论中涉及到的三个要点:切线、切点、垂直.结合“过已知点只有一条直线与已知直线垂直”,通过演示、观察得到三个要点中只要发生两个,定能产生第三个.从而产生切线性质定理的推论. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂于切线的直线必经过圆心. 在总结两个推论时,学生只要把意思表达对了,不一定要一字不差,然后由教师和学生一起得到结论. (三)重点、难点的学习与目标完成过程 圆的切线的性质定理是强调切线所产生的位置关系.因此我们在解决圆的切线的问题时,常常需要作出过切点的半径.这作为辅助线的规律之一教师在例题中就要强化.而推论1是对切点的认定;推论2是对圆的直径的认定.它们各自的作用务必使同学们清楚.

切线的判定与性质定理的教案

课题:圆的切线的判定与性质 主稿:饶爱红审核:备课组上课日期:______周课时数:_____ 总课时数:_____ 知识与技能:1、理解圆的切线的判定与性质, 2、会利用圆的切线的判定与性质解题, 3、了解用反证法证明切线的性质定理的过程。 过程与方法:学生预习、小组讨论、合作探究、共同讲解、综合应用 情感态度与价值观:培养学生的自主学习的能力和团结协作的精神。 教学重点:利用圆的切线的判定与性质解题 教学过程备注本期导学 1、切线的判定定理是什么? 2、切线的性质定理是什么? 3、如何应用它们解题? 知识回顾 1.直线和圆有哪些位置关系? 。。。。相切、相离、相交 2.什么叫相切? 。。。。直线与圆只有一个交点 3.我们学习过哪些切线的判断方法? 。。。。1、与圆只有一个交点,2、d=r 新知探究 1、设问 切线的判定还有什么方法吗? 切线还有什么性质吗? 2、引入思考 提问:如图,直线L经过点A,并且垂直半径OA,,问L与圆O是什么关系? OA既是半径,又是点O到直线L的距离,所以d=r ,由前面所学的可知,直线L与圆是相切 的关系。 给出切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 几何符号表达: ∵OA是半径,OA⊥l于A ∴l是⊙O的切线。 3、例题讲解 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。 证明:连结OC(如图)。 ∵OA=OB,CA=CB, ∴OC是等腰三角形OAB底边AB上的中线。 ∴AB⊥OC。 ∵OC是⊙O的半径 ∴AB是⊙O的切线。 已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 半径作⊙O。 求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。 ∵AO平分∠BAC,OD⊥AB ∴OE=OD ∵OD是⊙O的半径 ∴AC是⊙O的切线 4、归纳总结 (1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简 记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂 线段长等于半径长。简记为:作垂直,证半径 5、练习 如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线 6、用反证法推出切线的性质定理,并利用它练习课后习题。 课堂小结 学生小结,说出本节课的知识点和重点。 练习与作业: 练习册和课后习题 教学反思:

切线的判定和性质

切线的判定和性质(一) 教学目标: 1、使学生深刻理解切线的判定定理,并能初步使用它解决相关问题; 2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的水平; 3、通过学生自己实践发现定理,培养学生学习的主动性和积极性. 教学重点:切线的判定定理和切线判定的方法; 教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视. (一)复习、发现问题 1.直线与圆的三种位置关系 在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系? 2、观察、提出问题、分析发现(教师引导) 图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义能够判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢? 如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这

时我们来观察直线l与⊙O的位置. 发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理. (二)切线的判定定理: 1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线. 2、对定理的理解: 引导学生理解:①经过半径外端;②垂直于这条半径. 请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可. 图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端. 从以上两个反例能够看出,只满足其中一个条件的直线不是圆的切线. (三)切线的判定方法 教师组织学生归纳.切线的判定方法有三种: ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理. (四)应用定理,强化训练' 例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线.

圆的切线的判定与性质教学设计

备课人:杨智刚时间:2013年11月18日 【教学目标】 一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。 2.会过圆上一点画圆的切线。 二、过程与方法:以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定定理和性质定理,领会知识的延续性,层次性。 三、情感态度与价值观:让学生感受到实际生活中存在的相切关系,有利于学生把实际的问题抽象成数学模型。 【教学重点】探索切线的判定定理和性质定理,并运用。 【教学难点】探索切线的判定方法。 【教学方法】自主探索,合作交流 【教学准备】尺规 【教学过程】 一、导语:通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交。而相切最特殊,这节课我们专门来研究切线。 师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。 二、探究新知 (一)切线的判定定理 1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,因为d=r直线l和⊙O相切,这里的d是圆心O到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.分析: 1、垂直于一条半径的直线有几条? 2、经过半径的外端可以做出半径的几条垂线? 3、去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢? 师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O相切”尝试改写为切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 设计意图:过学生亲自动手画图,进行探究,得出结论。 思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件? 总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线。 思考2:现在可以用几种方法证明一条直线是圆的切线? ①圆只有一个公共点的直线是圆的切线②到圆心的距离等于半径的直线是圆 的切线③上面的判定定理. 师生行为:教师引导学生汇总切线的几种判定方法 思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线? 2. 定理应用 ①完成课本例1 分析:已知点C是直线AB和圆的公共点,只要证明OC⊥AB即可,所以需要连接OC,作出半径。 知道一条直线经过圆上某一点,则连接这点和圆心,证明该直线与所作半径垂直即可 . ②如图,O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,以OD为半径作⊙O. 求证:⊙O与AC相切 分析:题中没有给出直线AC与⊙O的公共点,过点O作直线AC的垂线OE,证明垂线段OE等于半径OD即可。不知道直线和圆有无公共点,则过圆心作已知直线的垂线,证明垂线段

切线的判定和性质切线的判定和性质(一)

切线的判定和性质 切线的判定和性质(一) 教学目标: 1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题; 2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力; 3、通过学生自己实践发现定理,培养学生学习的主动性和积极性. 教学重点:切线的判定定理和切线判定的方法; 教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视. (一)复习、发现问题 1.直线与圆的三种位置关系 在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导) 图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢? 如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置. 发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理. (二)切线的判定定理: 1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线. 2、对定理的理解: 引导学生理解:①经过半径外端;②垂直于这条半径. 请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可. 图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线. (三)切线的判定方法 教师组织学生归纳.切线的判定方法有三种: ①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理. (四)应用定理,强化训练' 例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线. 分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC 的外端,只需证明OC⊥OB。 证明:连结0C ∵0A=0B,CA=CB,” ∴0C是等腰三角形0AB底边AB上的中线. ∴AB⊥OC. 直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线. 练习1判断下列命题是否正确. (1)经过半径外端的直线是圆的切线.

利用导数求切线方程

切线方程的求法 ●基础知识总结和逻辑关系 一、 函数的单调性 求可导函数单调区间的一般步骤和方法: 1) 确定函数的()f x 的定义区间; 2) 求'()f x ,令'()0f x =,解此方程,求出它在定义区间内的一切实根; 3) 把函数()f x 的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来, 然后用这些点把函数()f x 的定义区间分成若干个小区间; 4) 确定'()f x 在各个区间内的符号,由'()f x 的符号判定函数()f x 在每个相应小区 间内的单调性. 二、 函数的极值 求函数的极值的三个基本步骤 1) 求导数'()f x ; 2) 求方程'()0f x =的所有实数根; 3) 检验'()f x 在方程'()0f x =的根左右的符号,如果是左正右负(左负右正),则() f x 在这个根处取得极大(小)值. 三、 求函数最值 1) 求函数()f x 在区间(,)a b 上的极值; 2) 将极值与区间端点函数值(),()f a f b 比较,其中最大的一个就是最大值,最小的一个就 是最小值. 四利用导数证明不等式 1) 利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.具体有如下几种形式:

① 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减) 区间,自变量越大,函数值越大(小),来证明不等式成立. ② 把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目 的. 2) 利用导数求出函数的最值(或值域)后,再证明不等式. 导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立.从而把证明不等式问题转化为函数求最值问题. ●解题方法总结和题型归类 1导数的几何意义及切线方程的求法 1)曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 2)解决方案:解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”,然后求某点处的斜率,用点斜式写出切线方程. 【题】求过曲线cos y x =上点1 (,)32 P π且与在这点的切线垂直的直线方程. 【答案】:22032 x π--+= 【难度】* 【点评】

用导数求切线方程的四种类型

用导数求切线方程的四种类型 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可.例1 曲线在点处的切线方程为( ) A.B. C.D. 解:由则在点处斜率,故所求的切线方程为,即,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线的平行的抛物线的切线方程是( ) A.B. C.D. 解:设为切点,则切点的斜率为. . 由此得到切点.故切线方程为,即,故选D. 评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,代入,得,又因为,得,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线上的点的切线方程. 解:设想为切点,则切线的斜率为. 切线方程为. . 又知切线过点,把它代入上述方程,得. 解得,或.

故所求切线方程为,或,即,或. 评注:可以发现直线并不以为切点,实际上是经过了点且以为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法. 类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点且与曲线相切的直线方程. 解:设为切点,则切线的斜率为. 切线方程为,即. 又已知切线过点,把它代入上述方程,得. 解得,即. 评注:点实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性. 例5 已知函数,过点作曲线的切线,求此切线方程. 解:曲线方程为,点不在曲线上. 设切点为, 则点的坐标满足. 因, 故切线的方程为. 点在切线上,则有. 化简得,解得. 所以,切点为,切线方程为. 评注:此类题的解题思路是,先判断点A是否在曲线上,若点A在曲线上,化为类型一或类型三;若点A不在曲线上,应先设出切点并求出切点.

相关文档
最新文档