洛必达法则word版

洛必达法则word版
洛必达法则word版

第十七讲

Ⅰ 授课题目:

§3.2 洛必塔法则 Ⅱ 教学目的与要求:

1.掌握用罗必塔法则求极限;

2.明了使用罗必塔法则的条件;

3.了解将罗必塔法则与极限运算性质结合使用常能简化运算。 Ⅲ 教学重点与难点:

重点:各种类型的未定式转化为

00或∞

型的未定式 难点:罗必塔法则与极限运算性质的结合使用 Ⅳ 讲授内容:

§3.2 洛必塔法则

如果当a x →(或∞→x )时,两个函数)(x f 与)(x F 都趋于零或都趋于无穷大,那末极限)()

(lim

)

(x F x f x a x ∞→→可能存在、也可能不存在.通常把这种极限叫做未定式,并

分别简记为

00或∞∞.在第一章第六节中讨论过的极限x x x sin lim 0→就是未定式0

0的一个

例子.对于这类极限,即使它存在也不能用“商的极限等于极限的商”这—法则.

下面我们将根据柯西中值定理来推出求这类极限的一种简便且重要的方法. 我们着重讨论a x →时的未定式

的情形,关于这情形有以下定理: 定理1 设 (1)当a x →时,函数)(x f 及)(x F 都趋于零;

(2)在点a 的某去心邻域内,)(x f '及)(x F '都存在且0)(≠'x F ; (3))

()

(lim

x F x f a

x ''→存在(或为无穷大), 那么 )

()

(lim )()(lim

x F x f x F x f a x a

x ''=→→. 这就是说,当)()(lim x F x f a

x ''→存在时,)()(lim x F x f a x →也存在且等于)()(lim x F x f a x ''→;当)

()

(lim x F x f a x ''→为

无穷大时,

)

()

(lim

x F x f a

x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必塔(L ’Hospital )法则 证明 因为求

)

()

(x F x f 当a x →时的极限与)(a f 及)(a F 无关,所以可以假定0)()(==a F a f ,于是由条件(1)、(2)知道,)(x f 及)(x F 在点a 的某一邻

域内是连续的.设x 是这邻域内的一点,那么在以x 及a 为端点的区间上,柯西中值定理的条件均满足,因此有

)

()

()()()()()()(ξξF f a F x F a f x f x F x f ''=--= (ξ在x 与a 之间). 令a x →,并对上式两端求极限,注意到a x →时a →ξ,再根据条件(3)便得

说明: 1.如果)()

(lim

x F x f a x ''→仍属于0

0型, 且)(x f '和)(x F '满足洛必达法则的条件,可继续使

用洛必达法则, 即 =''''=''=→→→)

()

(lim )()(lim )()(lim

x F x f x F x f x F x f a x a x a x ;

2.当∞→x 时, 该法则仍然成立, 有)()(lim )()(lim x F x f x F x f x x ''=∞→∞→;

3.对a x →(或∞→x )时的未定式∞∞,也有相应的洛必达法则;

4. 洛必达法则是充分条件,反之不成立;

5. 如果数列极限也属于未定式的极限问题,需先将其转换为函数极限,然后使用

洛必达法则,从而求出数列极限.(因为数列不连续,不能求导) 例1 求下列极限

(1)x x

x tan lim 0→, (00型) (2)123lim 2331+--+-→x x x x x x , (0

0型) 解 原式=)()(tan lim 0''→x x x =11sec lim 20=→x x 原式= 12333lim 221---→x x x x = =-→266lim 1x x x 2

3

注 上式中的2

66lim

1-→x x

x 已不是未定式,不能对它应用洛必达法则,否则要导致错误

结果.以后使用洛必达法则时应当经常注意这一点,如果不是未定式,就不能应用洛必达法则.

(3)x

x x 1arctan 2

lim -+∞

→π

, (0

0型) 原式=22

111

lim

x

x x -+-

+∞

→=221lim x x x ++∞→=1 (4)bx ax x sin ln sin ln lim

0→, (∞

∞型). 原式= ax bx b bx ax a x sin cos sin cos lim

0??→= ax bx x cos cos lim 0→=1

(5)x

x x 3tan tan lim 2

π→, (∞∞型) 原式=x x x 3sec 3sec lim 222π→= x x x 22

2cos 3cos lim 31π→= x x x x x sin cos 23sin 3cos 6lim 312

--→π

= x x x 2sin 6sin lim 2

π→

= 32cos 26cos 6lim 2

=→x x

x π

注意:洛必达法则是求未定式的一种有效方法,但与其它求极限方法结合使用,效果更

好.

例2 求下列极限

(1)x x x

x x tan tan lim 20-→ 原式30tan lim x x x x

→-== 22031sec lim x x x -→=220tan lim 31x x x →=31 (2)0ln lim ln(1)x x x e +→- 原式0001

111lim lim lim 11

x x x x x x x x e x x e x e x e

e +++

→→→-==?=?=- (3)1ln cos(1)lim 1sin 2

x x x

π

→-- 原式2111sin(1)2

sin(1)4cos(1)cos(1)lim lim lim cos cos sin 2222x x x x x x x x x x ππππππ→→→--

---===--

24

π

=-

练习:(1)30arcsin lim sin x x x

x

→- (2)20ln(1)lim sec cos x x x x →+- 二.0

,1,0,,0∞∞-∞∞?∞

型未定式的求法

关键: 将其它类型未定式化为洛必达法则可解决的类型00型和∞∞型.

1.∞?0型未定式的求法 步骤:,1

0∞?∞?

∞?或0

100??∞? 例3 求下列极限

(1).lim 2x

x e x -+∞

→ 原式=2lim x e x x +∞→=x e x x 2lim +∞→2lim x

x e +∞→=.+∞=

(2)0

lim cot x x x → 原式20011

lim

lim tan 22sec 2

x x x x x →→===

型∞-∞.2

步骤:0101-?

∞-∞.0

000?-? 例4 求下列极限 (1)).1sin 1(

lim 0

x x x -→ 原式=x

x x x x sin sin lim 0?-→x x x x x cos sin cos 1lim 0+-=→.0=

(2)011lim ln(1)x x x →?

?

-?

?+??

原式20001

1ln(1)ln(1)1lim lim lim ln(1)2x x x x x x x x x x x x

→→→--+-++===+ 011lim

2(1)2

x x →==+

型00,1,0.3∞∞

步骤: ?????∞??∞???→???

???∞∞ln 01ln 0

ln 01000取对数.0∞??

例3 求下列极限

(1)

.lim 0

x

x x +→ 原式=x

x x e

ln 0

lim +→x

x x e

ln lim 0+

→=x

x

x e 1

ln lim 0+→=2011lim x

x

x e

-+

→=0e =.

1=

(2)11cos 0

sin lim x

x x x -→??

???

原式0

lnsin ln 1lim

1cos 3

...x x x x

e

e →--

-===

例4 求下列极限

(1).lim

111

x

x x

-→ 原式=x x

x e

ln 11

1

lim -→x

x x e

-→=1ln lim

11

1lim 1-→=x x e .1-=e

(2)10

lim(1sin )x

x x →+ 原式00cos ln(1sin )1sin lim lim 1

x x x

x x x

e

e

e →→++===

例5 求下列极限

(1).)

(cot lim ln 10

x

x x +→ 原式20011

ln(cot )

cot sin lim

lim

1ln 1/x x x x x x x

e e

e ++

→→-

?-===

(2)()1lim ln x

x x →+∞

原式11

ln(ln )ln lim lim 01

1x x x x x x

e

e

e →+∞→+∞?====

例6 求)]2

4(

[tan lim n

n

n +→∞

π

解 设)]24(

[tan )(x x f x +=π

,则)]24([tan )(n

n f n +=π 因为)]2

4tan(

ln lim exp[)(lim x

x x f x x +=+∞

→+∞

→π

=]1)

2

4tan(ln lim

exp[x x x ++∞→π])

2

4tan(1)2)(24(sec lim exp[222x x

x x x +--+=+∞→ππ=4e 从而 原式=4)(lim )(lim e x f n f x n ==+∞

→∞

练习:1))1(cot lim 0x

x x -→ (2)x x x ln 1

0)(cot lim +→ (3)x

x x tan 0lim +→

(4)x

x x 2tan 4

)

(tan lim π

(5)x

x x cot 0

)

sin 1(lim -→

Ⅴ 小结与提问:

小结:1.使用罗必塔法则之前应该验明其是否满足罗必塔法则条件。

2.罗必塔法则是求未定型极限的有效方法,但不是万能的。 提问:求极限x

x x

x x cos 23sin 3lim -+∞→时能否使用罗必塔法则?

Ⅵ 课外作业:

137P 1. (6) (7) (9) (12) (16) 4.

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

导数的应用洛必达法则

导数的应用洛必达法则 1.设函数21)(ax x e x f x ---=. (1) 若0=a ,求)(x f 的单调区间; (2) 若当0≥x 时,0)(≥x f ,求实数a 的取值范围. 解:(1) 定义域为R ,当0=a 时,有题知x e x f x --=1)(,则1)('-=x e x f . 令0)('>x f ,得e x >;令0)('x 时,当210)(x x e a x f x --≤?≥时,设)0(,1)(2>--=x x x e x g x ,则4 42]2)2[(2)1()1()('x x e x x x x x e x e x g x x x ++-=?----= 设)0(,2)2()(>++-=x x e x x h x ,显然)(x h 在),0(+∞为增函数,所以 0)0()(=>h x h ,所以0)('>x g ,所以)(x g 在),0(+∞上为增函数 由洛必达法则得 2122 211)(000200lim lim lim lim ===-=--=→→→→e e x e x x e x g x x x x x x x 所以2 1)(>x g 因为)(x g a ≤在),0(+∞恒成立,所以21≤ a . 即实数a 的取值范围为]21,(-∞ 2.设函数x e x f --=1)(. (1) 证明:当1->x 时,1)(+≥ x x x f ; (2) 设当0≥x 时,1 )(+≤ax x x f ,求实数a 的取值范围. 解:(1) 证明: 当1->x 时,011)(≥--?+≥ x e x x x f x . 设)1(,1)(->--=x x e x g x ,则1)('-=x e x g . 令0)('>x g ,得0>x ;令0)('

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:101lim ()lim ()0t x x t f x f t = →∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 0000221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim () ()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'()x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠,则 0()lim()0() x x f x k g x →+≠ 有00()()+()lim()=lim ()() x x x x f x f x kg x k g x g x →→+

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

洛必达法则的一些应用

1 引言 18世纪数学本身的发展,以及这个世纪后期数学研究活动的扩和数学教育的改革都为19世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布·伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语.雅各布·伯努利的弟弟约. 翰·伯努利在莱布尼茨的协助之下发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“0/0”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限. 约翰·伯努利的学生、法国数学家洛必达的《无限小分析》(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模著作,他在书中规了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力.我们应当对任何知识都认真的学习、研究及做出总结.不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础.不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷.本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题.文章还将法则的适用围推广至求数列极限,然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当a x →(或∞→x )时,两个函数)(x f 与)(x g 都趋于零或都趋于无穷大,那么极限

13洛必达法则教案

教学过程:

1. 0 0型和∞ ∞型未定式的解法:洛必达法则 定义:若当a x →(或∞→x )时,函数)(x f 和)(x F 都趋于零(或无穷大),则极 限) ()(lim ) (x F x f x a x ∞→→可能存在、也可能不存在,通常称为0 0型和∞ ∞型未定式. 例如 x x x tan lim 0 →, (0 0型); bx ax x sin ln sin ln lim 0 →, (∞ ∞型). 定理1:设 (1)当0→x 时, 函数)(x f 和)(x F 都趋于零; (2)在a 点的某去心邻域内,)(x f '和)(x F '都存在且0)(≠'x F ; (3) ) ()(lim ) (x F x f x a x ∞→→存在(或无穷大), 则) ()(lim )()(lim x F x f x F x f a x a x ''=→→ 定义:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的 方法称为洛必达法则 证明: 定义辅助函数 ???=≠=a x a x x f x f ,0),()(1, ???=≠=a x a x x F x F , 0),()(1 在),(δa U ? 内任取一点x , 在以a 和x 为端点的区间上函数)(1x f 和)(1x F 满足柯西中值定理的条件, 则有 ) ()() ()()()(a F x F a f x f x F x f --= )()(ξξF f ''=, (ξ在a 与x 之间) 当0→x 时,有a →ξ, 所以当A x F x f a x =''→)()(lim , 有A F f a =''→) ()(lim ξξξ 故A F f x F x f a a x ='' =→→) ()(lim )()(lim ξξξ. 证毕 说明: 1.如果)()(lim x F x f a x '' →仍属于0 0型, 且)(x f '和)(x F '满足洛必达法则的条件,可继 续使用洛必达法则, 即Λ=''''=''=→→→) () (lim )()(lim )()(lim x F x f x F x f x F x f a x a x a x ; 2.当∞→x 时, 该法则仍然成立, 有) ()(lim ) ()(lim x F x f x F x f x x ''=∞ →∞ →; 3.对a x →(或∞→x )时的未定式∞ ∞,也有相应的洛必达法则;

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

洛必达法则求极限教学

洛必达法则求极限教学 摘要:本文结合教学实际对洛必达法则及其在求未定式极限方面的应用进行了分析,同时还分析了学生易错的洛必达法则求函数极限失效的情况。 关键词:洛必达法则;未定式;极限 求极限是微积分中的一项非常基础和重要的工作。教学中发现对于普通的求极限问题,学生解决起来问题不大,但是对于形如:■,■,∞-∞,0·∞,∞0,1∞,00的7种未定式,学生虽然能联系到洛必达法则,但是经常出错。 一、洛必达法则及应用 (一)洛必达法则 若函数f(x)与函数g(x)满足下列条件: 1. (或∞),(或∞); 2.f(x)与g(x)在x=a点的某个去心邻域内可导; 3. (或∞)。则 洛必达法则所述极限结果对下述六类极限过程均适用: 。 (二)洛必达法则的应用 1. 基本类型:未定式直接应用法则求极限 解:这是■型未定式。直接运用洛必达法则有 解:这个极限是■型未定式,于是 2. 未定式的其他類型:0·∞、∞-∞、00、∞0、1∞型极限的

求解 除了■型或■这两种未定式外,还可以通过转化,来解其他未定式。 解:这是∞-∞型,设法化为■型: 解:这是1∞未定式 解:这是∞0未定式,经变形得, 故 例6 求 解:这是0·∞型未定式,可变形为,成了■ 型未定式,于是 解:这是00型未定式,由对数恒等式知,xx=exInx,运用例8可得 二、洛必达法则对于实值函数的失效问题 洛必达法则可谓是在求不定式极限中作用最为显赫的一种方法,当然,它也有失效的时候。“失效”的原因则是因为题目本身不满足可以使用洛必达法则的几个条件。所以,在要使用洛必达法则时,要检验该题目是否符合洛必达法则条件,洛必达法则失效的基本原因有以下几种。 (一)使用洛必达法则后,极限不存在(非∞),也就是不符合洛必达法则的条件(3) 例8 计算 解:,而不存在,

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

洛必达法则在高考中的应用

高考数学专题突破:用洛必达法则求参数取值范围 洛必达法则简介: 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'=' 。 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() ()lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ⑤若无法判定 () () f x g x ''的极限状态,或能判定它的极限振荡而不存在,则洛必达法则失效,此时,需要用其

洛必达法则完全证明教学文案

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞ ==,0'()lim '()x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:1 01lim ()lim ()0t x x t f x f t =→∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明: 001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 00002221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim ()()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'() x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠ ,则 0()lim()0()x x f x k g x →+≠

洛必达法则

利用导数求解函数问题是近年高考的一个热点,也是学生学习的一个难点,在高三数学复习备考中应引起关注。实施变式教学是探讨该类问题的一种有效方法。教学过程以数学问题为导引创设问题情境激发学生进行学习、探讨,领会不同背境下问题的本质;通过对函数典型问题的探讨求解,使学生形成基本的数学技能,在此基础上实施变式教学,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律;对新背景的综合问题更应引导学生敢于面对,能够运用已经掌握的数学思想和方法进行分析问题、解决问题,获得“未曾有过”的新认识、新境界,进一步增强求解数学综合题的信心,体会学习数学的乐趣。 在新课程标准的指引下,数学教学方法也在不断改进、创新,而“变式教学”是被广泛运用且公认有效的教学手段。以往人们通常把变式教学划分为概念性变式和过程性变式两类;现在,人们已经把变式教学划分为概念和原理的变式教学、数学技能的变式教学、数学思想方法的变式教学三种类型。对中学教学来说,变式教学最重要的是可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变” 的本质中探究“变”的规律,帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。从高考试题的研究中发现,利用导数求解函数问题是一个热点,值得我们在教学中关注到这一动向,并积极研究、探讨,尤其是函数解决不等式问题的求解学生比较陌生。本文以问题为导引,从回归教材学习中领会概念本质,在求解函数问题的探讨过程中实施教学,促使学生适时地归纳、总结,提炼方法规律,真正感悟解题实质,不断完善数学认知结构。 洛必达法则就是在型和型时,有。

运用洛必达法则解高考数学问题

运用洛必达法则解高考 数学问题 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

运用洛必达法则解高考数学问题 【摘要】高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点,洛必达法则是利用导数来计算具有不定型的极限的方法. 【关键词】中学数学;高等数学;法则 近年来的高考数学试题逐步做到科学化,规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点。 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型。这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路――分类讨论和假设反证的方法。虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难。研究发现利用分离参数的方法不能解决这部分问题的原因是出现了型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则 洛必达法则是利用导数来计算具有不定型的极限的方法。这法则是由瑞士数学家约翰?伯努利所发现的,因此也被叫作伯努利法则。是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 洛必达法则(定理):设函数f(x)和g(x)满足: (1) = =0; (2)在点a的某去心邻域内f(x)与都可导,且的导数不等于0; (3)若 =A,则 =A

用洛必达法则求下列极限

习题 3 2
1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x x tan 3x
2
1
ln(1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x

1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时

洛必达法则在高考解答题中的应用

一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○ 2洛必达法则可处理00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π ∈x 恒成立,求实数a 的取值范围.

洛必达法则巧解高考压轴题

洛必达法则巧解高考压 轴题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型)

(2)lim x ?p 2 sin x -1cos x (00型) (3) 20cos ln lim x x x → (00型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2 (1)当1-=m 时,求)(x f 在[]1,2-上的最小值 (2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++ =a c x b ax x f 的图像在点())1(,1f 处的切线方程为1-=x y , (1)用a 表示 c b , (2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围 例题4.若不等式3sin ax x x ->在??? ??∈2,0πx 是恒成立,求a 的取值范围 例题5.已知2)1()(ax e x x f x --= (1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式 (2)当0≥x 时,0)(≥x f ,求a 的取值范围 强化训练 1. 设函数x e x f -1)(-= (1)证明:当1->x 时,1)(+≥ x x x f 。 (2)当0≥x 时1 )(+≤ax x x f 求a 的取值范围 2.设函数2()1x f x e x ax =---。

洛必达法则的应用

洛必达法则在高考中的应用 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件: (1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x)≠0; (3)()()lim x f x l g x →∞ '=',那么 ()()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)()()lim x a f x l g x →'=',那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a + →,x a - →洛必达法则也成立。 2.洛必达法则可处理 00x a -→,∞ ∞ ,0?∞,1∞,0∞,00,∞-∞型。 3.在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛 必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

高考导数洛必达法则

高考导数洛必达法则 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

第二部分:泰勒展开式 1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++ 其中(01)θ<<; 2. 231ln(1)(1),2!3! !n n n x x x x x R n -+=-+-+-+ 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35 211sin (1)3!5! (21)!k k n x x x x x R k --=-+-+-+- ,其中21(1)cos (21)!k k n x R x k θ+=-+; 4. 24 221 cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+- 其中2(1)cos (2)!k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌 握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了00 ”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22 (1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由22 2(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =, 所以当(0,1)x ∈时,()0h x >,可得 21()01h x x ?>-;当(1,)x ∈+∞时,()0h x <,可得

相关文档
最新文档