cpu知识介绍

cpu知识介绍
cpu知识介绍

1,Intel篇

从奔腾3代开始,intel开始以频率的高低来区分CPU的性能高低。就当时的技术来说,的确高频的cpu的性能更优秀。

但是,从奔腾4 2.8G的cpu出现以后,对于频率的提升出现了困难。无法将频率进一步提升。因此新一代的cpu改变了cpu的工作架构,将cpu的流水线简短,即抛弃了以往cpu的超长流水线的架构,变成了类似于amd的短流水线架构,由此,获得了较小的功率和性能的提高。但是,cpu的频率便因此降了下来,所以,新的cpu命名变成了类似于奔腾d 915,820等。第一位数字代表系列,比如3系列是赛扬,经济型(所谓的赛扬M);5系列,移动型;

8、9系列,烧钱的高性能(或许还有高功耗)。

自从双核开始普及,intel采用了新的名称,酷睿,命名如e4300,e2050,qx6700,分别应用于台式机,笔记本,和高性能个人计算机(烧钱用机器)。

以上只是台式机和笔记本,不包括服务器用的xeon啊。

2,amd篇

从97年开始,amd便作为低端杀手占领的低端市场,虽然当时amd的cpu的发热量十分惊人,但是由于超频性能好,便宜(主要的),占领了相当部分市场。

从p3时候开始,amd使用slot a架构,采用了新的命名,分为duron毒龙,

althon速龙,分别对应低端和高端。此时,intel仍采用频率命名,而此时虽然amd的cpu性能上开始有了优势,但是频率不及intel(核心不一样,所以自然没办法比),所以采用新的命名,如1600,1800等,表示这些cpu具有与intel的1.6GHZ,1.8GHZ的cpu具有相同的性能。实际上的运行频率只有1.2~1.3GHz。

----------------------------------------

这里有个官方的换算,1800是PR值,

-- Athlon 系列PR值的换算法

PR标值= (3 X CPU运行频率)/ 2 - 500

EX:XP 1800+ = (3 X 1.53GHz) / 2 - 500

频率与PR标值的转换如下

频率= (2 X PR标值)/ 3 + 333

EX:1.53GHz = (2 X 1800) / 3 +333

闪龙有区别,PR值均高出以前的20%

-----------------------------------

在后来的双强争斗中,duron作为过气选手被t,而sempron闪龙则取代了它的地位继续与赛扬争斗。

现在amd的产品线有sempron闪龙/经济,althon速龙/性能,althon x2/双核,opetron皓龙/服务器。

================================

现在你的问题应该就可以解决了,1G CPU就是指cpu的频率是1GHz,2600+则是amd的cpu,指该cpu能达到intel 2.6GHz的水平。

但是,现在由于两个牌子都改了标注方式,所以单纯来以名字来看性能不可取(同一个系列

当然例外,比如sempron 2600+肯定没有sempron 2800+好)

================================

再说说频率,对于cpu来说,一个是外频,一个是倍频,比如我用的sempron2800+,外频200mhz,倍频8,那么频率就是200x8=1.6GHz,以前的老式cpu可以破解倍频的,用只铅笔就可以了。但是自从采用了新的封装形式以后,芯片都被封装起来了。只能看到一个银色的壳,自然就无法破解了。

为什么厂家会把倍频所起来呢?

由于在生产cpu时,从一块大的晶圆上面切割下来,然后再上面刻上电路,封装就可以完成。但是,由于晶圆的不同地方品质不一样,能达到的频率自然就不一样,为了不浪费,就会将他们的性能限制在相应的极限之下,以保证正常工作,否则,就可能会损坏。

总的来说,就是防止cpu因为超负荷运行而出现问题。

这就是为什么即使是懂电脑的人也不会超频炒得太过分(把超频当作一种乐趣的例外),否则容易损坏这白花花的银子换来的cpu.

呵呵,因为是经验,难免有错漏,你自己挑拣些看吧

CPU—(Central Processing Unit)中央处理器

1.内部结构:

分为控制单元、逻辑单元、存储单元,相互协调,可以进行分析、判断、运算并控制计算机各种部分协调工作

●运算器:

算术运算:加、减、乘、除

逻辑运算:逻辑加、逻辑乘、非运算

●控制器:

读取各种指令,并对指令进行分析,作出相应的控制

●寄存器:

直接参与运算并存放运算的中间结果

2、CPU发展简史

1978年:美国Intel公司生产了第一块16位CPU(i8086),它使用的指令代码就叫:X86指令集。

1981年8月:美国IBM推出第一台IBM-PC机(i8088),增加了X87芯片系列指令协处理器(X87指令集),以后就将X86指令集和X87指令集统称为X86指令集。

1981年至今:Intel陆续研制i80286,i80386,i80486,及今天的PentiumⅢ系列,乃然使用X86指令集。

CPU主要技术参数

1、位、字节和字长

位—在数字电路和电路技术中采用二进制,代码只有“0”和“1”,其中无论是“0”和是“1”在CPU中都是一“位”。

字长—CPU在单位时间内(同一是时间)能一次处理的二进制数的位数,叫字长。

字节—由于常用的英文字符用8位二进制就可以表示,所以通常就8位称为一个字节。

2、CPU外频

——是由主板为CPU提供的基准时钟频率。

例:Pentium CPU 外频60/66MHz

PentiumⅡ350 CPU外频100MHz

3、CPU主频

----是CPU内核(整数和浮点运算器)电路的实际运行频率。

例:Pentium 200的CPU 主频200MHz

PentiumⅡ350的CPU主频350MHz

4、CPU倍频

----CPU外频与主频相差的倍数。

计算公式:主频=外频×倍频

例:MⅢ-300的实际运行频率为233MHz(66×3.5)

(300是PR参数值、66是外频、3.5是倍频)

5、前端总线(FSB)频率

数据传输最大带宽取决与同时传输的数据位宽度和传输频率,即:

数据带宽=(总线频率×数据宽度)/8

例如:PentiumⅡ333使用66MHz的前端总线,交换带宽为:

528MB/s=(66×64)/8

PentiumⅡ350使用100MHz的前端总线,交换带宽为:

800MB/s=(100×64)/8

数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到 4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。

6、L1 Cache和L2 Cache的速率

L1 Cache内置在CPU,可提高CPU的运行效率。由静态RAM组成;

L2 Cache分为:内部:设在CPU芯片内,运行速度与主频相同。

外部:设在CPU芯片外部,运行频率分为二分之一。

CPU主要生产技术术语

1、流水线技术

核心思想:把复杂的工作分解成一个一个的简单程序,每个单元专门

从事其中的一项工作这样提高每个单元办事效率。

2006-12-8 20:55 回复

花心非我错

2位粉丝

2楼

——在CPU中由5~6个不同的功能的电路单元组成一条处理流水线,

然后将一条X86指令分成5~6步后再由这些电路单元分别执行。

(取指令→译码→产生地址→执行指令→数据回写)

2、超流水线

——指某些CPU内部的流水线超过通常的5~6步以上。

将流水线设计的步(级)数越多,其完成一条指令的速度越快。

3、超标量技术

——是指在CPU中一条以上的流水线,并且每个时钟周期内

可以完成一条以上的指令。

4、乱序执行技术

——是指CPU采用了允许将多条的指令不按程序规定的顺序分

开发送给各相应的电路单元处理的技术。

5、分枝预测和推测执行技术

——是动态执行技术中的主要内容,目的提高CPU运算速度。

推测执行是依托于分枝预测基础上的,在分枝预测程序是否分

枝后处理也就是推测执行。

6、指令特殊扩展技术

特殊扩展(扩展指令)——指该CPU是否具有对X86指令集进行指令扩展。

例如:早期Intel公司的MMX;AMD公司的3D NOW!;

最近的Pentium Ⅲ的SSE

①MMX指令集(多媒体指令集)

——由Intel公司开发,包括57条新指令,允许CPU同时2-8个数据时行并理,而不影响到系统速度。主要应用于增强CPU对多媒体信息的处理,

提高CPU的处理3D图形、视频和音频信息能力。

②SSE指令集(因特网数据流单指令序列扩展)

——由Intel公司开发,曾称“KNI”,最终名字定为“流式SIMD扩” (Streaming SIMD Extenstion)。共包括70条指令,其中50条SIMD

(单指令数据)浮点指令,12条全新MMX指令和8条系统内存数据

流传送优代指令。主要加强了CPU处理3D网页和其他音像信息技术

处理能力。

③3D NOW!指令集

——由AMD公司开发,包括27条指令,用来缓解CPU与三维图形

加速卡之间在三位图像建模和纹理数据取用中的传输瓶颈。

CPU的生产工艺及产品构架

1、生产工艺

制造工艺的提高,意味着体积更小,集成度更高,耗电更小。

⑴铜技术的优势

①导电性能优,电阻小,发热量小。

②提高芯片的工作频率

③减少管芯的体积

⑵CPU的名称

早期的Intel以i8x86(286、386、486→到586时,因注册商标问题,

改名为→英文名:Pentium 中文名:奔腾→Pentium Pro(高能奔腾→ Pentium Ⅱ奔腾2代→Pentium Ⅲ(奔腾3代→Pentium 4(奔腾4代→ Celeron(赛扬)→CeleronⅡ(赛扬2代)→CeleronⅢ(赛扬3代)

2、CPU的内部结构

——由主处理器、数学协处理器、控制器、各种寄存器和L1 Cache组成。内部结构分:单总线:例如:Intel Pentium、AMD K6-2、

Cyrix MⅡ、IDT-C6等

双总线:例如:Intel Pentium、新Celeron、PentiumⅢ、Pentium 4、

AMD K6、K7

3、CPU的接口

可分为:Socket x :Socket 7、Socket 370、Socket A、

Socket 423/478

Slot x :Slot 1、Slot A、Slot 2

4、CPU的的封装技术

——指安装半导体集成电路芯片用的外壳。

如:Soket插座的CPU使用PGA(栅格陈列)的方式封装。

Slot X插座的CPU使用SEC(单边接插盒)的方式封装。

如何选何CPU?

1、CPU速度

①兆赫兹(MHz)——用于表示处理器每秒多少个时钟周期。

②FPU(浮点运算)性能——应用于3D游戏,3D演示、图形制作。

③整数运算性能——应用于商业(如:文字处理、Internet冲浪、

电子表格及

其他复杂任务)

2、L2 Cache(二级缓存)

——提高CPU的运行效率。

①新一代处理器都内置有L2 Cache

②L2缓存比系统内存快许多倍

③缓存大小范围:128KB(Celeron)~1MB(PⅢ Xeon)

3、多媒体指令集

MMX——增强对多媒体信息(3D图形、视频、音频)的处理能力。

3D Now!——加强浮点运算(3D游戏)处理能力。

SSE——包括原MMX和3D Now!所有功能,加强SIMD浮点处理能力。

cpu主要包括

CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 一、运算逻辑部件: 运算逻辑部件可以执行定点或浮点算术运算,移位运算和逻辑运算,以及地址运算和转换。 二、寄存器部件: 寄存器部件,包括通用寄存器,专用寄存器和控制寄存器。 通用寄存器可以分为定点数和浮点数。它们用于在指令中存储寄存器操作数和运算结果。 通用寄存器是中央处理器的重要组成部分,大多数指令必须访问通用寄存器。通用寄存器的宽度决定了计算机内部数据路径的宽度,其端口数通常会影响内部操作的并行性。 专用寄存器是执行某些特殊操作所需的寄存器。 控制寄存器通常用于指示机器执行状态或保留一些指针。有处理状态寄存器,地址转换目录的基地址寄存器,特权状态寄存器,条件代码寄存器,异常处理寄存器和错误检测寄存器。 有时,中央处理单元中有一些缓存,用于临时存储一些数据指令。缓存越大,CPU的计算速度越快。目前,市场上的中高端中央处理单元具有大约2M的二级缓存。高端中央处理单元具有大约4M的辅助缓存。 三、控制部件: 控制部件主要负责解码指令并发出控制信号以完成要为每个指令执行的每个操作。

有两种结构:一种是以微存储为核心的微程序控制模式;另一种是微程序控制模式。另一种是基于逻辑硬连线结构的控制模式。 微代码存储在微存储器中,每个微代码对应一个基本的微操作,也称为微指令。每个指令由不同的微代码序列组成,这些序列构成一个微程序。中央处理单元对指令进行解码后,发出一定的时序控制信号,并以给定的顺序以微周期为节拍执行由这些微代码确定的许多微操作,以完成拍子的执行。一定的指示。 简单的指令由(3到5个)微操作组成,而复杂的指令由数十个微操作甚至数百个微操作组成。

cpu主要包括

CPU是计算机的核心,是电脑的心脏,叫做中央处理器。负责处理、运算计算机内部的所有数据,主要由运算器、控制器、寄存器组和内部总线等构成。CPU是整个微机系统的核心,它往往是各种档次微机的代名词,CPU的性能大致上反映出微机的性能,因此它的性能指标十分重要。 CPU包括运算逻辑部件、寄存器部件、控制部件。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字和特征码。有的指令中也直接包含操作数本身。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点的算术运算操作、移位操作以及逻辑操作,也可执行地址的运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 32位CPU的寄存器 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通

用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器

笔记本电脑CPU基础知识

笔记本电脑CPU基础知识 一、英特尔CPU型号尾部字母 (1)M代表标准电压CPU,是可以拆卸的; (2)U代表低电压节能的,可以拆卸的; (3)H是高电压的,是焊接的,不能拆卸; (4)X代表高性能,可拆卸的; (5)Q代表至高性能级别; (6)Y代表超低电压的,除了省电,没别的优点的了,是不能拆卸的; 也有两个字母的,属于上面这些字母的组合。 (7)HQ高电压至高性能处理器。 从性能上看,HQ,XM,应该都不错 二、CPU调频(Governor) ondemand(按需响应模式):系统默认的超频模式,会在你设置的最大最小频率之间自动调整。 interactive(交流循环模式):只要负荷加大,频率直接调到最高值,如果发现CPU够用,将CPU负荷慢慢降低(系统响应速度快,相对耗电多一些)。 conservative(保守模式):CPU负荷加大,逐步提升频率到最高,然后降至最

低(系统响应较快,升频较慢,耗电比I模式省)。 smartass:是I和C模式的组合体,cpu不会降到最低,响应快,待机略微多耗电。 performance(高性能模式):高性能模式,CPU直接锁定在最高频率(因为CPU 保持固定频率,不需调整,响应最速度,耗电也最大)。 userspace(用户隔离模式):当控制器处于非工作状态时控制cpu速度的一种方法,建议无视这个选项。 powersave(省电模式):按设定最小频率运行(省电但系统响应速度慢)。 lagthree(不受延迟模式):倾向于节省电量,据说看电影时效果不错。 三、I/O调度(I/O Scheduler) CFQ(完全公平排队I/O调度程序): CFQ试图均匀地分布对I/O带宽的访问,避免进程停止响应并实现较低的延迟(在最新的内核中,都选择CFQ做为默认的I/O调度器,多媒体应用表现良好)。 NOOP(电梯式调度程序):早器系统版本的唯一调度算法,倾向饿死读而利于写.(NOOP对于需频繁访问SD卡的应用是最好的模式,因为SD卡写入速度远小于读出速度)。 Deadline(截止时间调度程序):NOOP的改良版本,Deadline确保默认读期限短于写期限.这样就防止了造成写入操作被饿死。(对数据库环境是最好的选择)AS(预料I/O调度程序):本质上与Deadline一样,但在最后一次读操作后,要等待6ms,才能继续进行对其它I/O请求进行调度(AS适合于写入较多的环境)。 (资料来自互联网和百度贴吧,题目是编者加的。)

cpu包括

Cpu 的组成: CPU的内部由寄存器、控制器、运算器和时钟四个部分组成,各个部分之间由电流信号相互连通。 寄存器中的种类和作用包括: 1.数据寄存器 数据寄存器(Data Register,DR)又称数据缓冲寄存器,其主要功能是作为CPU和主存、外设之间信息传输的中转站,用以弥补CPU 和主存、外设之间操作速度上的差异。 数据寄存器用来暂时存放由主存储器读出的一条指令或一个数据字;反之,当向主存存入一条指令或一个数据字时,也将它们暂时存放在数据寄存器中。 数据寄存器的作用是: (1)作为CPU和主存、外围设备之间信息传送的中转站;

(2)弥补CPU和主存、外围设备之间在操作速度上的差异; (3)在单累加器结构的运算器中,数据寄存器还可兼作操作数寄存器。 2.指令寄存器 指令寄存器(Instruction Register,IR)用来保存当前正在执行的一条指令。 当执行一条指令时,首先把该指令从主存读取到数据寄存器中,然后再传送至指令寄存器。 指令包括操作码和地址码两个字段,为了执行指令,必须对操作码进行测试,识别出所要求的操作,指令译码器(Instruction Decoder,ID)就是完成这项工作的。指令译码器对指令寄存器的操作码部分进行译码,以产生指令所要求操作的控制电位,并将其送到微操作控制线路上,在时序部件定时信号的作用下,产生具体的操作控制信号。 指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码,即可向操作控制器发出具体操作的特定信号。 3.程序计数器 程序计数器(Program Counter,PC)用来指出下一条指令在主存储器中的地址。 在程序执行之前,首先必须将程序的首地址,即程序第一条指令

cpu主要包括

CPU主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。 中央处理器(CPU),是电子计算机的主要设备之一,电脑中的核心配件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。 主要功能 一、处理指令 英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 二、执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 三、控制时间 英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。

四、处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU 具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。

CPU知识全面讲解

CPU知识全面讲解 CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。 作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU 既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU 有新的认识。 1、CPU的最重要基础:CPU架构 CPU架构: 采用Nehalem架构的Core i7/i5处理器 CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。

更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU厂商一般每2-3年才更新一次架构。近几年比较著名的X86微架构有Intel的Netburst(Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem (Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II系列)。 Intel以Tick-Tock钟摆模式更新CPU 自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。 制造工艺:

CPU卡与SAM卡原理

CPU卡与SAM卡原理 第一部分CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的; 在以上认证过程中,密钥是不在线路上以明文出现的,它每次的送出都是经过随机数加密的,而且因为有随机数的参加,确保每次传输的内容不同。如果截获了没有任何意义。这不单单是密码对密码的认证,是方法认证方法,就象早期在军队中使用的密码电报,发送方将报文按一定的方法加密成密文发送出去,然后接收方收到后又按一定的方法将密文解密。

cpu知识介绍

1,Intel篇 从奔腾3代开始,intel开始以频率的高低来区分CPU的性能高低。就当时的技术来说,的确高频的cpu的性能更优秀。 但是,从奔腾4 2.8G的cpu出现以后,对于频率的提升出现了困难。无法将频率进一步提升。因此新一代的cpu改变了cpu的工作架构,将cpu的流水线简短,即抛弃了以往cpu的超长流水线的架构,变成了类似于amd的短流水线架构,由此,获得了较小的功率和性能的提高。但是,cpu的频率便因此降了下来,所以,新的cpu命名变成了类似于奔腾d 915,820等。第一位数字代表系列,比如3系列是赛扬,经济型(所谓的赛扬M);5系列,移动型; 8、9系列,烧钱的高性能(或许还有高功耗)。 自从双核开始普及,intel采用了新的名称,酷睿,命名如e4300,e2050,qx6700,分别应用于台式机,笔记本,和高性能个人计算机(烧钱用机器)。 以上只是台式机和笔记本,不包括服务器用的xeon啊。 2,amd篇 从97年开始,amd便作为低端杀手占领的低端市场,虽然当时amd的cpu的发热量十分惊人,但是由于超频性能好,便宜(主要的),占领了相当部分市场。 从p3时候开始,amd使用slot a架构,采用了新的命名,分为duron毒龙, althon速龙,分别对应低端和高端。此时,intel仍采用频率命名,而此时虽然amd的cpu性能上开始有了优势,但是频率不及intel(核心不一样,所以自然没办法比),所以采用新的命名,如1600,1800等,表示这些cpu具有与intel的1.6GHZ,1.8GHZ的cpu具有相同的性能。实际上的运行频率只有1.2~1.3GHz。 ---------------------------------------- 这里有个官方的换算,1800是PR值, -- Athlon 系列PR值的换算法 PR标值= (3 X CPU运行频率)/ 2 - 500 EX:XP 1800+ = (3 X 1.53GHz) / 2 - 500 频率与PR标值的转换如下 频率= (2 X PR标值)/ 3 + 333 EX:1.53GHz = (2 X 1800) / 3 +333 闪龙有区别,PR值均高出以前的20% ----------------------------------- 在后来的双强争斗中,duron作为过气选手被t,而sempron闪龙则取代了它的地位继续与赛扬争斗。 现在amd的产品线有sempron闪龙/经济,althon速龙/性能,althon x2/双核,opetron皓龙/服务器。 ================================ 现在你的问题应该就可以解决了,1G CPU就是指cpu的频率是1GHz,2600+则是amd的cpu,指该cpu能达到intel 2.6GHz的水平。 但是,现在由于两个牌子都改了标注方式,所以单纯来以名字来看性能不可取(同一个系列

cpu包括以下部件

CPU组成结构 CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。 通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中

央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。

CPU知识科普

CPU知识科普:主频、核心、线程、缓存、架构 我们都说CPU相当于人类的大脑,在日常生活中,人脑是术业有专攻,有人天生适合搞艺术,有人天生适合搞科学。CPU作为计算机的大脑,其实也是这样的。下面就带大家了解一下CPU知识以及怎么选择合适的CPU。 CPU有几个重要的参数:主频、核心、线程、缓存、架构。那么他们到底是什么意思,又有啥联系呢。 一、主频 我们常在CPU的参数里看到3.0GHz、3.7GHz等就是CPU的主频,严谨的说他是CPU内核的时钟频率,但是我们也可以直接理解为运算速度。 举个有趣的例子:CPU的主频相当于我们胳膊的肌肉(力量),主频越高,力量越大。 二、核心 我们更多听到的是,这个CPU是几核几核的,如2核、4核、6核、8核、16核等等。 这个核心可以理解为我们人类的胳膊,2核就是两条胳膊,4核就是4条胳膊,6核就是6条胳膊。 三、线程 光有胳膊(核心)和肌肉(频率)是干不了活的,还必须要有手(线程)才行。 一般来说,单核配单线程、双核配双线程或者双核四线程、四核八线程等等,就相当于一条胳膊长一只手。后来由于技术越来越厉害,造出了一条胳膊长两只手的情况,这样干活的效率就大大的提高了。 |四、架构 现在胳膊有了,肌肉有了,手也有了,就差一个工具就可以干活了,这个工具就是CPU的架构,架构对性能的影响巨大。 新老架构区别很大 所以说有句话叫“抛开架构看核心、频率都是耍流氓!”这就是为啥以前AMD的CPU虽然核心数量和频率都比同时期的英特尔高,但是依然流传着“i3战A8,i5秒全家、i7轰成渣”这样的说法了。 这个时候可能有的人不理解了,怎么看架构呢?这个其实不用担心,因为一般来说,每一代CPU的架构都是一样的,比如i3-8100、i5-8500、i7-8700都是8 代的CPU,使用的架构也是一样的,现在官方店在售的也都是最新款,因此架构主要看最一代处理器就够了。 五、缓存 缓存也是CPU里一项很重要的参数。由于CPU的运算速度特别快,在内存条的读写忙不过来的时候,CPU就可以把这部分数据存入缓存中,以此来缓解CPU的运算速度与内存条读写速度不匹配的矛盾,所以缓存是越大越好。 参数就算是说完了。 既然开头就说了“CPU也跟人脑一样,术业有专攻。” 就像AMD的架构名字那样,挖掘机适合挖东西,推土机适合推土,那接下来就分析一波,什么样的U适合干什么样的工作。你拿挖掘机去运输泥土,肯定效率是很低的。 需求:游戏 由于游戏运行需要的是粗暴直接的计算工作,所以主频高的CPU会更有优势。这就好比我的工作是要搬个砖,肌肉强点,力气大才是硬性需求。就算我有8 条胳膊16只手,看起来张牙舞爪的很厉害,但是我搬砖的时候根本用不到,而

CPU卡消费系统功能要求,技术参数详细说明

多奥CPU卡消费系统功能要求,技术参数详细说明 消费系统功能要求 在食堂,会所等地方采用多奥CPU卡消费系统,代替现金交易,杜绝员工徇私舞弊,提升物业的形象与服务效率。 系统需具备以下功能要求: 系统设备组成 系统由管理软件、标准消费机、后台管理工作站等组成 系统功能要求 系统操作员通过权限分级控制,防止系统非法授权使用。 能自动记录操作员操作日志,包括:操作员、操作时间、操作对象、操作内容、操作结果。 系统提供多种消费方式 充值消费:先交押金并充值,后消费 记账消费:不需要充值,先消费,月底结算 菜单方式:消费项目以菜单形式提供选择,并纪录消费明细

定额方式:消费项目为固定的金额 支持卡片分类、消费折扣、最大消费次数、每次最大消费额、挂失等功能。 当持卡人在POS上读卡消费后,系统实时记录读卡信息、时间、消费金额、累积使用情况等流水帐信息。 归类、汇总后系统将数据进行各种稽核,生成各类统计报表,便于财务对各消费点收入情况核算或监督。 统计报表包括个人日报、个人月报、部门日报、部门月报、单位日报、消费机报表以及充值报表、补助报表、退款报表、综合报表等信息进行统计。 可多奥梯控,门禁,停车场,通道,巡更等智能一卡通 多奥消费机技术参数要求 型号:DAIC-XF-MB 通讯方式:TCP/IP通讯 工作电压:12VDC±5% 功耗:≤120mA 显示:双面8位LED显示屏 键盘:30个按键

读写时间小于0.2秒。 读卡距离20-50 mm 发卡量:不限 脱机信息存贮量:≥20000 黑名单:≥20000 数据保存:FLASH 保存数据,掉电不丢失工作温度:-10℃-- +70℃

CPU主要的性能指标有以下几点

CPU主要的性能指标有以下几点: (1)主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。 一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU 外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 (2)内存总线速度或者叫系统总路线速度,一般等同于CPU的外频。 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 (3)工作电压。工作电压指的也就是CPU正常工作所需的电压。 早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU 的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 (4)协处理器或者叫数学协处理器。在486以前的CPU里面,是没有内置协处理器的。 由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 (5)流水线技术、超标量。流水线(pipeline)是 Intel首次在486芯片中开始使用的。 流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高了CPU的运算速度。超流水线是指某型 CPU内部的流水线超过通常的5~6 步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)数越多,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。超标量是指在一个时钟周期内CPU可以执行一条以上的指令。这在486或者以前的CPU

cpu卡基本知识

第一部分CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM 的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X 用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的; 在以上认证过程中,密钥是不在线路上以明文出现的,它每次的送出都是经过随机数加密的,而且因为有随机数的参加,确保每次传输的内容不同。如果截获了没有任何意义。这不单单是密码对密码的认证,是方法认证方法,就象早期在军队中使用的密码电报,发送方将报文按一定的方法加密成密文发送出去,然后接收方收到后又按一定的方法将密文解密。 通过这种认证方式,线路上就没有了攻击点,同时卡也可以验证应用的合法性; 但是因为系统方用于认证的密钥及算法是在应用程序中,还是不能去除系统商的攻击性。

cpu主要包括

一、cpu基本组成 CPU由运算器、控制器和寄存器组,是计算机的核心,对计算机的整体性能有着决定性的影响。CPU是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。运算器主要对计算机传输过来的信息进行算术或者逻辑运算。控制器则负责计算机CPU中指令的执行。 二、物理结构 运算逻辑部件:运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件:通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制部件:控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 三、CPU主要技术性能指标有 1、主频,这是CPU的内部时钟的频率。计算机要运行的话,主频是需要进行运算时的。是一种工作频率。主频的越高就表明,在一

个时钟的周期里,所需要完成的指令数是非常多的。是正比例的。主频越高,运算的速度就越快; 2、外频指的是系统总线,外频和主频不一样,主频是负责运算时的,而外频是负责CPU周边的设备的数据传输频率的。外频的主要任务就是负责CPU到芯片组之间的总线速度; 3、倍频,原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频=外频×倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高; 4、缓存,在CPU、GPU内部由于需要在高速运算时读写数据,因此一般会设计有多级的缓存,空间小但速度快,在日常运算中很多数据都是从缓存里面调动出来的。缓存可以说是CPU运算的一个重要环节,在整个运行的过程中,起到一个存储的作用,缓存可以有效的提高整个数据的传输速度; 四、CPU 主要功能 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。

笔记本CPU基础知识

笔记本CPU基础知识 笔记本CPU基础知识 中央处理器即CPU是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。下面是关于笔记本CPU的相关知识,希望对 大家认识CPU有帮助,更多内容请关注应届毕业生网! 随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大 军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Corei、酷睿2、奔腾双核、赛扬双核、凌动处理器几大家族的成员 已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住 每一款处理器的技术规格。 首先简述以上几类处理器的特点,凌动处理器即ATOM处理器主 要应用于目前的上网本中,按性能由低到高基本为:N270、N280、 N450,注意它们都是单核处理器,可想而知它们的性能非常弱,除 了简单的Office软件、上网也就是看看普通电影了。相对的赛扬双 核及奔腾双核均为入门级的处理器,目前市售主要以奔腾双核为主,基本型号T4200、T4300及新的T4400,我们从型号也可以看出,递 增的序号性能也有一定提升。 酷睿2处理器可以说是目前比较主流的,处理器型号以T5以上 及P开头,主流的T系列有T6500、T6600及T6670,这类处理器对 于用户的基本应用足以满足;以P开头的酷睿2处理器性能相对T开 头性能要强,相应价格也会高。用户购本是要看清自己的需求,预 算有限的话T6600处理器足够使用。 对于酷睿i系列处理器,想必一部分用户并不熟悉,i3及i5处 理器今年年初才发布,不过市面搭载i3、i5处理器的本陆续“登场”了。i7处理器虽然在09年年末已推出,不过由于其定位于高端, 很多用户并未直观体验过其性能表现。i7不再多言,通俗来讲就是 运行速度快。i3、i5处理器是面向大众化的“双核”处理器,i3、

CPU主要性能指标

CPU的性能指标: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。 当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。 4.倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU 与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 5.缓存 缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB. L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。 6.CPU扩展指令集 CPU扩展指令集指的是CPU增加的多媒体或者是3D处理指令,这些扩展指令可以提高CPU 处理多媒体和3D图形的能力。著名的有MMX(多媒体扩展指令)、SSE(因特网数据流单指令扩展)和3DNow!指令集。 7.CPU内核和I/O工作电压 从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~3V。

电脑配置基础知识

电脑硬件知识扫盲菜鸟提升必看电脑配置知识 原文标题:硬件知识扫盲,防止被JS忽悠,菜鸟提升请看(附作者照片) 先给大家亮亮原文作者照片,这里先亮一张,下面文章内容中还会附加上一些,应原作者要求,望大家照片尽量不要到处发,谢谢。 笔名:微微 下面正式进入正文了,这里先简单写下文章主要大纲,主要对电脑硬件包括cpu,显卡,主板,内存等DIY硬件进行一些简单通俗易懂的介绍,新手必看,高手飘过。 一、处理器CPU知识 ①CPU的分类 CPU品牌有两大阵营,分别是Intel(英特尔)和AMD,这两个行业老大几乎垄断了CPU市场,大家拆开电脑看看,无非也是Intel和AMD的品牌(当然不排除极极少山寨的CPU)。

而Intel的CPU又分为Pentium(奔腾)、Celeron(赛扬)和Core(酷睿)。其性能由高到低也就是Core>Pentium>Celeron。AMD 的CPU分为Semporn(闪龙)和Athlon(速龙),性能当然是Athlon优于Semporn的了。 Intel与AMD标志认识 ②CPU的主频认识 提CPU时,经常听到、等的CPU,这些到底代表什么这些类似于的东东其实就是CPU 的主频,也就是主时钟频率,单位就是MHZ。这时用来衡量一款CPU性能非常关键的指标之一。主频计算还有条公式。主频=外频×倍频系数。 单击“我的电脑”→“属性”就可以查看CPU类型和主频大小如下图:

我的电脑-属性查看cpu信息 ③CPU提到的FSB是啥玩意? FSB就是前端总线,简单来说,这个东西是CPU与外界交换数据的最主要通道。FSB的处理速度快慢也会影响到CPU的性能。提及的高速缓存指的又是什么呢高速缓存指内置在CPU中进行高速数据交换的储存器。分一级缓存(L1Cache)、二级缓存(L2Cache)以及三级缓存(L3Cache)。 一般情况下缓存的大小为:三级缓存>二级缓存>一级缓存。缓存大小也是衡量CPU性能的重要指标。 ④常提及的45nm规格的CPU又是什么东西 类似于45nm这些出现在CPU的字样其实就是CPU的制造工艺,其单位是微米,为秘制越小,制造工艺当然就越先进了,频率也越高、集成的晶体管就越多!现在的CPU制造工艺从微米到纳米,从90纳米---65

CPU卡详解

CPU卡详解 (2011-08-02 13:13:42) 转载▼ 第一部分 CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X 用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的;

CPU主要的性能指标有

CPU主要的性能指标有: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。 所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium 芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。 当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。 目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据 交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。 外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU 与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是 100MHz×64bit÷8Byte/bit=800MB/s。 其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组Intel 7501、Intel7505芯片组,为双至强处理器

相关文档
最新文档