计算机图形学图形的几何变换的实现算法

计算机图形学图形的几何变换的实现算法
计算机图形学图形的几何变换的实现算法

实验二 图形的几何变换的实现算法

班级 08信计 学号 59 姓名 分数

一、实验目的和要求:

1、掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;。

2、掌握OpenGL 中模型变换函数,实现简单的动画技术。

3、学习使用OpenGL 生成基本图形。

4、巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可由简单图形得到复杂图形。加深对变换矩阵算法的理解。

编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实验报告。

二、实验原理和内容:

. 原理:

图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。

图像几何变换的一般表达式:[,][(,),(,)]u v X x y Y x y = ,其中,[,]u v 为变换后图像像素的笛卡尔坐标, [,]x y 为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变换后图像的像素的对应关系。

平移变换:若图像像素点 (,)x y 平移到 00(,)x x y y ++,则变换函数为

0(,)u X x y x x ==+,

0(,)v Y x y y y ==+,写成矩阵表达式为:

00x u x y v y ??????=+????????????

其中,x 0和y 0分别为x 和y 的坐标平移量。

比例缩放:若图像坐标 (,)x y 缩放到( ,x y s s )倍,则变换函数为:

00x y s u x s v y ??????=??????????

?? 其中, ,x y s s 分别为x 和y 坐标的缩放因子,其大于1表示放大,小于1表示缩小。

旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转θ角度,则变换后图像坐标为: cos sin sin cos u x v y θ-θ??????=??????θθ??????

内容:

1、对一个三角形分别实现平移,缩放旋转等变化。

2. 在方向、尺寸和形状方面的变换是用改变对象坐标描述的几何变换来完成的。基本几何变换都是相对于坐标原点和坐标轴进行的几何变换,有平移、旋转、缩放、反射、错切等。

用直线命令画出一个齿(或六边形的一半)→利用旋转变换或对称变换矩阵实现对其余部分的绘制→调试运行程序→输出图形→分析结果→结束。

编写三维变换算法程序→检查程序的正确性→分段调试程序→输入给出的三维形体各顶点的坐标→执行变换→对算法程序进行必要的调整→更换不同的形体数据继续变换→结束。

3.用实验一的方法解决这个问题,某三角形的三个点点坐标为{5.0.0.25.0},{150.0.25.0},{100.0.100.0},创建一个长度分别为600,600的窗口,窗口的左上角位于屏幕坐标(100,100)处。然后绘制一个由上述顶点所绘制的三角形,实现该三角形进行下列几何变换:首先使三角形沿着其中心的x轴和y轴方向缩小50%,然后沿着出示中心旋转90度;最后沿着y轴平移100个单位。

三、实验代码如下

1实验一

#include

#include

Void init (void)

{

glClearVolor (0.0,0.0,0.0,0.0);

glShadeModel (GL-FLAT);

}

Void draw_triangle(void)

{

glBegin(GL_LINE_LOOP);

glVertex2f(0.0,25.0);

glVertex2f(25.0,-25.0);

glVertex2f(-25.0,-25.0);

glEnd();

}

Void display(void)

{

glClear (GL_COLOR_BUEFER_BIT);

glColor3f(1.0,1.0,1.0);

glLoadIdentity();

glColor3f(1.0,1.0,1.0);

draw_triangle();

glEnable (GL_LINE_STIPPLE);

glLineStipple (1,0xF0F0);

glLoadIdentity();

glTranslatef (-20.0,0.0,0.0);

draw_triangle();

glLineStipple (1,0xff00);

glLoadIdentity ();

glScalef (1.5,0.5,1.0);

draw_triangle ();

glLineStipple (1,0x8888);

glLoadIdentity();

glRotatef(90.0,0.0,0.0,1.0);

draw_triangle ();

glDisable (GL_LINE_STIPPLE);

glFlush();

}

Void reshape (int w,,nt h)

{

glViewport (0,0,(GLsizei) w,(GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

if (w<=h)

gluOrtho2D(-50.0,50.0,-50.0*(GLfloat)h/(GLfloat)w,50.0*(GLfloat)h/(GLfloat)w); glMatrixMode(GL_MODELVIEW);

}

int main (int argc,char**argv)

{

glutInit(&argc,argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize (500,500);

glutInitWindowPosition (100,100);

glutCreatWindow (argv[0]);

init ();

glutDisplayFunc (display);

glutReshapeFunc (reshape);

glutMainLoop();

return 0;

}

实验结果如下

2实验二代码

#include

#include

int a[14][4]={{30,0,0,1},{30,40,0,1},{0,40,0,1},{0,40,10,1},{0,30,30,1}, {0,0,30,1},{30,0,30,1},{30,10,30,1},{10,10,30,1},{10,30,30,1},{10,40,10,1}, {10,10,10,1},{30,10,10,1},{30,40,10,1}};

float t[4][4],p[14][4];

void a400()

{int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

t[i][j]=0;

}

void a500()

{ int k,i,j;

for(i=0;i<14;i++)

{for(j=0;j<4;j++)

{p[i][j]=0;

for(k=0;k<4;k++)

p[i][j]=p[i][j]+a[i][k]*t[k][j];}

p[i][0]=p[i][0]+280;

p[i][1]=-p[i][1]+180;

}

setcolor(9);

moveto(p[0][0],p[0][1]);

for(i=0;i<14;i++)

lineto(p[i][0],p[i][1]);

line(p[6][0],p[6][1],p[0][0],p[0][1]);

line(p[7][0],p[7][1],p[12][0],p[12][1]); line(p[8][0],p[8][1],p[11][0],p[11][1]); line(p[9][0],p[9][1],p[4][0],p[4][1]);

line(p[10][0],p[10][1],p[3][0],p[3][1]); line(p[13][0],p[13][1],p[10][0],p[10][1]); line(p[1][0],p[1][1],p[13][0],p[13][1]); getch();

}

main()

{int driver,mode,i,j;

driver=DETECT;

initgraph(&driver,&mode,"d:\\tc"); setbkcolor(3);

a400();

t[0][0]=0.7071*3;

t[0][1]=-0.4082*3;

t[1][0]=-0.7071*3;

t[1][1]=-0.4082*3;

t[2][1]=0.8165*3;

t[3][3]=1;

a500();

closegraph();

}

实验结果

实验三结果

三、实验结果分析

. 1、该程序实现了而为图形的简单几何变换,包括平移,缩放旋转等。

2、平移变换时最简单的变换,错切变换实际上是用比例因子乘对象的每一坐标和增加位移值。

3、上面所讨论的图形变换时相对于坐标原点或坐标轴来进行的。实际中,常常需要相对于人一点或任一轴来进行变换。

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

计算机图形学-图形的几何变换

贵州大学实验报告 学院:计算机科学与技术专业:软件工程班级:软件132 姓名常伟学号1308060226 实验地点一教704 实验时间2016.5.9 指导教师李智实验成绩 实验项目名称试验四、图形的几何变换 实验目的1.掌握矢量运算。 2.熟练使用齐次坐标。 3.掌握采用齐次坐标进行几何变换。 实验要求1.理解几何图形变换的原理,编程实现图形的几何变换。 2.编程界面友好,实现变换的所有方式,包括平移、缩放、旋转、对称、错切以及基本变换基础上的组合变换。 3.几何变换使用矩阵进行运算。

实验原理 二维齐次坐标变换的矩阵的形式是 ? ? ? ? ? ? ? ? ? ? i h g f e d c b a 这个矩阵的每一个元素都是有特殊含义的。其中,? ? ? ? ? ? e d b a 可以对图形进行缩放、旋 转、对称和错切等变换;? ? ? ? ? ? f c 是对图形进行平移变换;[]h g是对图形作投影变换;[]i 则是对图形进行缩放变换。 下面给出几个基本变换的矩阵运算。 1.平移变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 1 1 ' ' y x T y x y x t t t t t t y x y x y x y x 2.缩放变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 ' ' y x s s S y s x s y x s s y x y x y x y x 3.旋转矩阵 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?- = ? ? ? ? ? ? ? ? ? ? 1 ) ( 1 cos sin sin cos 1 1 cos sin sin cos 1 ' ' y x R y x y x y x y x θ θ θ θ θ θ θ θ θ 4.对称矩阵 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 ' ' ey dx by ax y x e d b a y x 对称变换其实只是a、b、d、e取0、1等特殊值产生的一些特殊效果。 5.错切变换 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ' ' y dx by x y x d b y x

计算机图形学教程课后习题参考答案.

第一章 1、试述计算机图形学研究的基本内容? 答:见课本P5-6页的1.1.4节。 2、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 答:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像,且所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画制作。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中的射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 3、计算机图形学与CAD、CAM技术关系如何? 答:见课本P4-5页的1.1.3节。 4、举3个例子说明计算机图形学的应用。 答:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。 5、计算机绘图有哪些特点? 答:见课本P8页的1.3.1节。 6、计算机生成图形的方法有哪些? 答:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 ②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。当像素点具有多种颜色或多种灰度等级时,就可以显示彩色图形或具有不同灰度的图形。 7、当前计算机图形学研究的课题有哪些? 答:见课本P10-11页的1.4节。

计算机图形学--图形几何变换实现

实验五 图形几何变换的实现 班级:信计二班 学号: :解川 分数: 一、实验目的 为了掌握理解二维、三维的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用VC++语言实现二维、三维图形的基本变换与复合变换。 二、实验容 (1) 理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换 得以实现。 (2) 掌握二维、三维图形基本变换的原理及数学公式。 (3) 利用VC++语言实现二维、三维图形的基本变换、复合变换,在评不上显 示变换过程或变换结果。 三、实验步骤 (1) 预习教材关于二维、三维图形变换的原理与方法。 (2) 使用VC++语言实现某一种或几种基本变换。 (3) 调试、编译、运行程序。 四、原理分析 源程序分别实现了对二维图形进行的平移变换—基本变换;对三维图形进行的绕某一个坐标轴旋转变换以及相对于立方体中心的比例变换—复合变换。 三维几何变换: (1) 比例变换: []1111z y x =[]1z y x T 3D =[]1z y x ????? ?? ?? ???s n m l r j i h q f e d p c b q 局部比例变换: s T =? ? ??? ???? ???1000000000000j e a 其中a 、b 、j 分别为在x 、y 、z 方向的比例系数。

整体比例变换: s T =? ? ??? ???? ???s 000010000100001其中s 为在xyz 方向的等比例系数。S>1时,整体缩小;s<1时,整体放大。 (2) 旋转变换: 旋转变换的角度方向为(沿坐标轴的反方向看去,各轴按逆时针方向旋转) 绕z 轴旋转: RZ T =?? ??? ???? ???-100 010000cos sin 00sin cos θθθθ 绕x 轴旋转: RX T =??????? ?? ???-10 00 0cos sin 00sin cos 000 01 θθθθ 绕y 轴旋转: RY T =????? ???? ???-10 0cos 0sin 00100sin 0cos θθθθ 程序代码: /*三维图形(立方体)旋转变换、比例变换*/ #include #include #include #include #include #include #define ZOOM_IN 0.9 #define ZOOM_OUT 1.1

计算机图形学图形的几何变换的实现算法

实验二图形的几何变换的实现算法 班级 08 信计 学号 59 姓名 _____ 分数 _____ 一、 实验目的和要求: 1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;< 2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。 3、 学习使用OpenGL 生成基本图形。 4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体 的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实 验报告。 二、 实验原理和内容: .原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像 像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变 换后图像的像素的对应关系。 平移变换:若图像像素点(x, y )平移到(x x 。,y ■ y 。),则变换函数为 u = X (x, y ) =x 沟, v 二丫(x, y ) = y ■ y 。,写成矩阵表达式为: 比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为: S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。 旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST 内容: :u l :Sx k ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。 其中,

计算机图形学第二版课后习题答案

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

(计算机图形学)关于任意直线的对称变换

实验3:关于任意直线的对称变换 实验类型:验证、设计 所需时间:3学时 主要实验内容及要求: 对于任意直线的二维图形对称变化的实验,要求输入的直线是任意直线,直线的端点只能由键盘输入或者鼠标拾取,要做对称变换的图形也是一个任意图形(至少应是一个任意多边形)。 对称变换,先分析如何使用一系列简单变换来构造题目要求的复合变换。本体要实现的变换可以用如下一组变换组合来实现: ①将直线任一点移至与坐标原点重合 ②将平移后的直线绕原点旋转至与某一坐标轴重合 ③将题目要求的对称变换转为实现已知图形关于上述坐标轴的对称变换 ④按逆序求上述①、②变换的逆变换 ⑤将上述矩阵依次相乘得到最终的复合变换矩阵 则某一多边形关于任意直线的对称变换就转变为将该多边形的各顶点与上述求得的复合变换进行矩阵乘法,求得变换后的新多边形的各个顶点坐标。 根据上述流程,编程实现,并测试程序功能。 源代码: #include #include using namespace std;

void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } class CPoint { public: int x; int y; CPoint(){} CPoint(int x1,int y1) { x=x1; y=y1; } static CPoint ZeroMoveToXY(CPoint p, CPoint XY);//原始坐标向屏幕坐标XY 的平移 static CPoint ToZero(CPoint p);//关于原点对称 static CPoint XYMoveToZero(CPoint p, CPoint XY);//XY坐标向屏幕坐标的平移

计算机图形学 直线的生成算法的实现

实验二 直线的生成算法的实现 班级 08信计2班 学号 59 姓名 分数 一、实验目的和要求 1.理解直线生成的基本原理。 2.掌握几种常用的直线生成算法。 3.利用Visual C++实现直线生成的DDA 算法。 二、实验内容 1.了解直线的生成原理,尤其是Bresenham 画线法原理。 2.掌握几种基本的直线生成算法:DDA 画线法、Bresenham 画线法、中点画线法。 3.利用Visual C++实现直线生成的DDA 算法,在屏幕上任意生成一条直线。 三、实验步骤 1.直线的生成原理: (1)DDA 画线法也称数值微分法,是一种增量算法。是一种基于直线的微分方程来生成直线的方法。 (2)中点画线法原理 以下均假定所画直线的斜率[0,1]k ∈,如果在x 方向上的增量为1,则y 方向上的增量只能在01 之间。中点画线法的基本原理是:假设在x 坐标为p x 的各像素点中,与直线最近者已经确定为(,)p p P x y ,用小实心圆表示。那么,下一个与直线最近的像素只能是正右方的1(1,)p p P x y +,或右上方的2(1,1)p p P x y ++,用小空心圆表示。以M 为1P 和2P 的中点,则M 的坐标为(1,0.5)p p x y ++。又假设Q 是理想直线与垂直线1p x x =+的交点。显然,若M 在Q 的下方,则2P 离直线近,应取2P 为下一像素点;若M 在Q 的上方,则1P 离直线近,应取1P 为下一像素点。 (3)B resenham 画线法原理 直线的中点Bresenham 算法的原理:每次在主位移方向上走一步,另一个方向上走不走步取决于中点偏差判别式的值。 给定理想直线的起点坐标为P0(x0,y0),终点坐标为P1(x1,y1),则直线的隐函数方程为: 0b kx y y)F(x,=--= (3-1) 构造中点偏差判别式d 。 b x k y y x F y x F d i i i i M M -+-+=++==)1(5.0)5.0,1(),(

计算机图形学课后习题答案

第三章习题答案 3.1 计算机图形系统的主要功能是什么? 答:一个计算机图形系统应具有计算、存储、输入、输出、交互等基本功能,它们相互协作,完成图形数据的处理过程。 1. 计算功能 计算功能包括: 1)图形的描述、分析和设计;2)图形的平移、旋转、投影、透视等几何变换; 3)曲线、曲面的生成;4)图形之间相互关系的检测等。 2. 存储功能 使用图形数据库可以存放各种图形的几何数据及图形之间的相互关系,并能快速方便地实现对图形的删除、增加、修改等操作。 3. 输入功能 通过图形输入设备可将基本的图形数据(如点、线等)和各种绘图命令输入到计算机中,从而构造更复杂的几何图形。 4. 输出功能 图形数据经过计算后可在显示器上显示当前的状态以及经过图形编辑后的结果,同时还能通过绘图仪、打印机等设备实现硬拷贝输出,以便长期保存。 5. 交互功能 设计人员可通过显示器或其他人机交互设备直接进行人机通信,对计算结果和图形利用定位、拾取等手段进行修改,同时对设计者或操作员输入的错误给以必要的提示和帮助。 3.2 阴极射线管由哪些部分组成?它们的功能分别是什么? 答:CRT主要由阴极、电平控制器(即控制极)、聚焦系统、加速系统、偏转系统和阳极荧光粉涂层组成,这六部分都在真空管内。 阴极(带负电荷)被灯丝加热后,发出电子并形成发散的电子云。这些电子被电子聚集透镜聚焦成很细的电子束,在带正高压的阳极(实际为与加速极连通的CRT屏幕内侧的石墨粉涂层,从高压入口引入阳极高电压)吸引下轰击荧光粉涂层,而形成亮点。亮点维持发光的时间一般为20~40mS。 电平控制器是用来控制电子束的强弱的,当加上正电压时,电子束就会大量通过,在屏幕上形成较亮的点,当控制电平加上负电压时,依据所加电压的大小,电子束被部分或全部阻截,通过的电子很少,屏幕上的点也就比较暗。所以改变阴极和 控制电平之间的电位差,就可调节电子 束的电流密度,改变所形成亮点的明暗 程度。 利用偏转系统(包括水平方向和 垂直方向的偏转板)可将电子束精确定 位在屏幕的任意位置上。只要根据图形 的几何坐标产生适当的水平和垂直偏转磁场(或水平和垂直偏转板静电场),图 2.2CRT原理图

计算机图形学 图形几何变换的实现

计算机图形学图形几何变换的实现

————————————————————————————————作者:————————————————————————————————日期:

实验五图形几何变换的实现 班级08信计2 学号89姓名徐阳分数 一、实验目的和要求: 1、掌握理解二维、三维变换的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用Turboc实现二维、三维图形的基本变换和复合变换。 二、实验内容: 1、理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换得以实现。 2、掌握二维、三维图形基本变换(平移、缩放、对称、旋转、错切)的原理及数学公式。 3、利用Turboc实现二维、三维图形的基本变换、复合变换,在屏幕上显示变换过程或变换结果。 三、实验结果分析: 程序代码如下: /*二维图形(直线)平移变换*/ #include #include #include main() {int x0,y0,x1,y1,i,j; int a[3][3]; char key; for(i=0;i<3;i++) for(j=0;j<3;j++) a[i][j]=0; for(i=0;i<3;i++) a[i][i]=1; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice(); x0=250;y0=120;x1=350;y1=220; line(x0,y0,x1,y1); for( ; ;) {outtextxy(100,400,"<-:left->:right^:up v:down Esc->exit"); key=getch();

平面几何图形的画法

平面几何图形的画法 按照能否通用,平面几何图形大致可以分为两类:一类是没有具体尺寸要求的相交线、平行线、角、三角形、四边形等等;另一类则是需要符合题目条件与结论,或有严格尺寸要求的图形。无论哪一类,都可以凭借Word页面的“绘图工具”画出来,再利用Windows自带的“画图”程序进行编辑。下面举两例予以说明,敬请同仁赐教。 例1、如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=3,折叠该纸片,使点A 与点B重合,折痕与AB,AC分别相交于点D,E,求折痕DE的长。 〖画法〗: 1、点击“插入”→“形状”,选择直线形,插入一条水平直线和一条竖直直线,如图(1); 2、右击直线,选“设置对象格式”,如图(2); 3、在“颜色与线条”里,将两条直线均设置为黑色、0.75磅,如图(3); 4、将水平直线复制成3条,如图(4);

5、右击其中一条水平直线,在“设置对象格式”→“大小”→“旋转”右框内,输入数字“30”,如图(5);这时所选直线顺时针旋转30°,如图(6); 6、再选择一条水平直线,将其顺时针旋转60°,如图(7),图(8); 7、插入一条水平直线,设置为黑色、0.75磅,并顺时针旋转120°,如图(9); 8、按住“Ctrl”键依次点击排列好的每条直线,在“图片工具”里选择“组合”,并且“另存图片”到某个文件夹,如图(10);

9、在Windows自带的“画图”程序中打开图片,如图(11); 10、用“橡皮”工具擦掉图形中多余的部分,如图(12); 11、用“铅笔”工具添加直角符号,并用“铅笔”工具将部分实线改成虚线,如图(13); 12、用“画图”程序中的文本工具给图形各点添加大写字母,如图(14); 13、剪切图片,另存到文件夹,如图(15);

计算机图形学(第三版)孙家广课后习题答案

第一章:P56 1、列出在你过去学习工作中用过与计算机图形学有关的程序c语言: #include main() { int graphdriver = VGA, graphmode=VGAHI; initgraph(&graphdriver,&graphmode,””); setbkcolor(BLUE); setcolor(WHITE); setfillstyle(1,LIGHTRED); bar3d(100,200,400,350,100,1); floodfill(450,300,WHITE); floodfill(250,450,WHITE); setcolor(LIGHTGREEN); rectangle(450,400,500,450); floodfill(470,420,LIGHTGREEN); getch(); closegraph(); } JA V A语言: 例1、画点 Import java.io.*; Class point { int ax; int ay; int bx; int by; public point(int ax, int ay, int bx, int by) { float k ; //计算斜率 float b; k=(by-ay)/(bx-ax); b=ay-ax*k; system.out.println(“直线的方程为:y=”+k+”x”+”+”+b); } } 例2、画矩形 class DrawPanel extends Jpanel { public void paint(Graphics g)

计算机图形学 圆周算法的实现

《计算机图形学实验报告》样例 实验名称:圆周画法的实现 1.实验内容 1.画出圆心坐标为(75,90)和半径为50的红色圆周 2.画出圆心坐标为(‐40,‐80)和半径为60的蓝色圆周 2.程序的基本思路和功能 先用MFC构建界面外观,然后在相应位置分别用Bresenham和DDA编辑画圆的程序然后编译运行。 3.关键代码及说明 void Circle::circleMinPoint(CDC* pDC) { xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r; float d = 1.25 - r; circlePoint(m_x,m_y,pDC);

while(m_x <= m_y){ if(d<=0){ d = d + 2 * m_x + 3; }else{ d = d + 2 * ( m_x - m_y ) + 5; m_y = m_y - 1; } m_x = m_x + 1; circlePoint(m_x,m_y,pDC); } } void Circle::circleBresenham(CDC* pDC) { //确认圆心坐标 xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r;

计算机图形学常用算法及代码大全

2.1.1 生成直线的DDA算法 数值微分法即DDA法(Digital Differential Analyzer),是一种基于直线的微分方程来生成直线的方法。 一、直线DDA算法描述: 设(x1,y1)和(x2,y2)分别为所求直线的起点和终点坐标,由直线的微分方程得 可通过计算由x方向的增量△x引起y的改变来生成直线: 也可通过计算由y方向的增量△y引起x的改变来生成直线: 式(2-2)至(2-5)是递推的。 二、直线DDA算法思想: 选定x2-x1和y2-y1中较大者作为步进方向(假设x2-x1较大),取该方向上的增量为一个象素单位(△x=1),然后利用式(2-1)计算另一个方向的增量(△y=△x·m=m)。通过递推公式(2-2)至(2-5),把每次计算出的(x i+1,y i+1)经取整后送到显示器输出,则得到扫描转换后的直线。 之所以取x2-x1和y2-y1中较大者作为步进方向,是考虑沿着线段分布的象素应均匀,这在下图中可看出。 另外,算法实现中还应注意直线的生成方向,以决定Δx及Δy是取正值还是负值。 三、直线DDA算法实现: 1、已知直线的两端点坐标:(x1,y1),(x2,y2) 2、已知画线的颜色:color 3、计算两个方向的变化量:dx=x2-x1 dy=y2-y1 4、求出两个方向最大变化量的绝对值: steps=max(|dx|,|dy|) 5、计算两个方向的增量(考虑了生成方向): xin=dx/steps

yin=dy/steps 6、设置初始象素坐标:x=x1,y=y1 7、用循环实现直线的绘制: for(i=1;i<=steps;i++) { putpixel(x,y,color);/*在(x,y)处,以color色画点*/ x=x+xin; y=y+yin; } 五、直线DDA算法特点: 该算法简单,实现容易,但由于在循环中涉及实型数的运算,因此生成直线的速度较慢。 //@brief 浮点数转整数的宏 实现代码 #define FloatToInteger(fNum) ((fNum>0)?static_cast(fNum+0.5):static_cast(fNum-0.5)) /*! * @brief DDA画线函数 * * @param pDC [in]窗口DC * @param BeginPt [in]直线起点 * @param EndPt [in]直线终点 * @param LineCor [in]直线颜色 * @return 无 */ void CDrawMsg::DDA_DrawLine(CDC *pDC,CPoint &BeginPt,CPoint &EndPt,COLORREF LineCor) { l ong YDis = (EndPt.y - BeginPt.y); l ong XDis = (EndPt.x-BeginPt.x); l ong MaxStep = max(abs(XDis),abs(YDis)); // 步进的步数 f loat fXUnitLen = 1.0f; // X方向的单位步进 f loat fYUnitLen = 1.0f; // Y方向的单位步进

计算机图形学第6章课后习题参考答案

第六章 1.请简述朗伯(Lambert )定律。 设物体表面在P 点法线为N ,从P 点指向光源的向量为 L ,两者夹角为θ,则点P 处漫反射光的强度为: I d =I p k d cos θ 式中 : I d ——表面漫反射光的亮度; I p ——入射光的光亮度; K d ——漫射系数(决定于表面材料及入射光的波长) 0≤K d ≤l ; θ——入射光线与法线间的夹角,0≤θ≤π/2。 并且,当物体表面垂直于入射光方向时(N 、L 方向一致)看上去最亮,而θ越来越大,接近90°时,则看上去越来越暗。 2.试写出实现哥罗德(Gouraud )明暗处理的算法伪代码。 deltaI = (i2 - i1) / (x2 - x1); for (xx = x1; xx < x2; xx++) { int offset = row * CScene.screenW + xx; if (z < CScene.zBuf[offset]) { CScene.zBuf[offset] = z; CScene.frameBuf[offset] = i1; } z += deltaZ; i1 += deltaI; } 3. 在Phong 模型n s p d p a a V R K I N L K I K I I )()(?+?+=中,三项分别表示何含义?公式 中的各个符号的含义指什么? 三项分别代表环境光、漫反射光和镜面反射光。a I 为环境光的反射光强,p I 为理想漫

反射光强,a K 为物体对环境光的反射系数,d K 为漫反射系数,s K 为镜面反射系数,n 为 高光指数,L 为光线方向,N 为法线方向,V 为视线方向,R 为光线的反射方向。 4.试写出实现Phong (冯)明暗方法的伪代码。 for (xx = x1; xx < x2; xx++) { int offset = row * CScene.screenW + xx; if (z < CScene.zBuf[offset]) { CScene.zBuf[offset] = z; pt = face.findPtInWC(u,v); float Ival = face.ptIntensity; CScene.frameBuf[offset] = Ival; } u += deltaU; z += deltaZ; p1.add(deltaPt); n1.add(deltaN); } 5.请简述自身阴影的生成方法。 自身阴影生成过程如下: (1)首先将视点置于光源位置,以光线照射方向作为观察方向,对在光照模型下的物体实施消隐算法,判别出在光照模型下的物体的“隐藏面”,并在数据文件中加以标识; (2)然后按实际的视点位置和观察方向,对物体实施消隐算法,生成真正消隐后的立体图形; (3)检索数据文件,核查消隐后生成的图形中,是否包含有在光照模型下的“隐藏面”。如有,则加以阴影符号标识这些面。 6.试写出光线跟踪算法的C 语言描述。 /*TraceRay 的三个参数分别是起点start ,跟踪方向direction 和已跟踪的深度depth ,返回的是光线direction 的颜色。*/ Color TraceRay(start,direction,depth) V ector start,direction; Int depth; { if (depth>MAX_DEPTH) color=black; else { 光线与物体求交,找出离start 最近的交点; if (无交点) color=背景色;

计算机图形学--图形几何变换的实现

实验五:图形几何变换的实现 班级08信计2 学号83 姓名王志超分数 一、实验目的和要求: 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实验报告。 二、实验内容: 在方向、尺寸和形状方面的变换是用改变对象坐标描述的几何变换来完成的。基本几何变换都是相对于坐标原点和坐标轴进行的几何变换,有平移、旋转、缩放、反射、错切等。 用直线命令画出一个齿(或六边形的一半)→利用旋转变换或对称变换矩阵实现对其余部分的绘制→调试运行程序→输出图形→分析结果→结束。 编写三维变换算法程序→检查程序的正确性→分段调试程序→输入给出的三维形体各顶点的坐标→执行变换→对算法程序进行必要的调整→更换不同的形体数据继续变换→结束。 三、实验结果分析 . 1该程序实现了图形变换的实现。 2绘制图形,加强对知识的理解。/*二维图形(直线)平移变换*/ #include #include #include main() {int x0,y0,x1,y1,i,j; int a[3][3]; char key; for(i=0;i<3;i++) for(j=0;j<3;j++) a[i][j]=0; for(i=0;i<3;i++) a[i][i]=1; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice(); x0=250;y0=120;x1=350;y1=220; line(x0,y0,x1,y1);

计算机图形学课后题

1.1名词解释:图形、图像、点阵法、参数法。 1.2图形包括哪两方面的因素,在计算机中如何表示它们? 1.3什么叫计算机图形学?分析计算机图形学、数字图像处理和计算机视觉学科间的关系。 1.4有关计算机图形学的软件标准有哪些? 第二章 2.1名词解释:图形显示子系统、显示控制器、像素点、光点、屏幕分辨率、显示分辨率、存储分辨率、组合像素法、颜色位面法、颜色查找表、显示长宽比、屏幕坐标系 2.2一个交互式计算机图形系统必须具有哪几种功能?其结构如何? 2.5阴极射线管有哪几部门组成?它们的功能分别是什么? 2.9简述光栅扫描图形显示器的工作逻辑。 2.11基于光栅扫描的图形显示子系统有哪几个逻辑部件组成?它们的功能分别是什么?

5.1名词解释:区域填充、边界表示、4-邻接点、8-邻接点、4-连通区域、8-连通区域、走样、反走样、过取样、区域取样 5.2 分别利用DDA算法、中点Bresenham算法和Bresenham算法扫描转换直线段P1P2,其中P1为(0,0),P2为(8,6)。 5.6 利用中点Bresenham算法扫描转换圆心在原点、半径为8的圆。 5.11如图5-67所示多边形,若采用扫描转换转换算法(改进的有效边表算法)进行填充,试写出该多边形的ET表和当扫描线y=4时的有效边表(AET表,活性边表)。 5.12简述边缘填充算法,图示其填充过程。 5.13简述栅栏填充算法,图示其填充过程。 5.14简述边标志算法,图示其填充过程。 5.15比较边界填充算法和泛填充算法的异同。 5.16 简述4-连通和8-连通边界填充算法,图示其填充过程。 5.17 试给出沿扫描线填充水平像素段的8-连通边界填充算法,图示其填充过程。 5.18试给出沿扫描线填充水平像素段的4-连通泛充算法,图示其填充过程。 5.19分别构造边界表示的4-连通区域和8-连通区域,并说明两者的区别。 5.20多边形填充算法中如何进行内-外测试?图示奇-偶规则和非零环绕数规则进行内-外测试有何不同? 5.24常用反走样方法有哪些?各有什么特点? 第六章

计算机图形学课程总结

计算机图形学报告 前言 计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。 其从狭义上是来说是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可视数据表现的科学。广义上来看,计算机图形学不仅包含了从三维图形建模、绘制到动画的过程,同时也包括了对二维矢量图形以及图像视频融合处理的研究。由于计算机图形学在许多领域的成功运用,特别是在迅猛发展的动漫产业中,带来了可观的经济效益。另一方面,由于这些领域应用的推动,也给计算机图形学的发展提供了新的发展机遇与挑战。 计算机图形学的发展趋势包括以下几个方面: 1、与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点; 2、研究和谐自然的三维模型建模方法; 3、利用日益增长的计算性能,实现具有高度物理真实的动态仿真; 4、研究多种高精度数据获取与处理技术,增强图形技术的表现; 5、计算机图形学与图像视频处理技术的结合; 6、从追求绝对的真实感向追求与强调图形的表意性转变。 1、三维物体的表示 计算机图形学的核心技术之一就是三维造型三维物体种类繁多、千变万化,如树、花、云、石、水、砖、木板、橡胶、纸、大理石、钢、玻璃、塑料和布等等。因此,不存在描述具有上述各种不同物质所有特征的统一方法。为了用计算机生成景物的真实感图形,就需要研究能精确描述物体特征的表示方法。根据三维物体的特征,可将三维物体分为规则物体和非规则物体两类。 三维实体表示方法通常分为两大类:边界表示和空间分割表示,尽管并非所有的表示都能完全属于这两类范畴中的某一类。边界表示(B-reps)用一组曲面来描述三维物体,这些曲面将物体分为内部和外部。边界表示的典型例子是多边形平面片和样条曲面。空间分割表示(Space-Partitioning)用来描述物体内部性质,将包含一物体的空间区域分割为一组小的、非重叠的、连续实体(通常是立方体)。三维物体的一般空间分割描述是八叉树表示。本章主要介绍三维物体的各种表示方法及其特点。

计算机图形学裁剪算法

一、实验目标 1.了解Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法的基本思想; 2.掌握Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法的算法实现; 二、实验内容 本次实验主要是实现Cohen-SutherLand线段裁剪算法、Liang-Barsky线段裁剪算法、SutherLand-Hodgeman多边形裁剪算法。 Cohen-sutherland线段裁剪算法思想: 该算法也称为编码算法,首先对线段的两个端点按所在的区域进行分区编码,根据编码可以迅速地判明全部在窗口内的线段和全部在某边界外侧的线段。只有不属于这两种情况的线段,才需要求出线段与窗口边界的交点,求出交点后,舍去窗外部分。 对剩余部分,把它作为新的线段看待,又从头开始考虑。两遍循环之后,就能确定该线段是部分截留下来,还是全部舍弃。 Cohen-sutherland线段裁剪算法步骤: 1、分区编码 延长裁剪边框将二维平面分成九个区域,每个区域各用一个四位二进制代码标识。各区代码值如图中所示。 四位二进制代码的编码规则是: (1)第一位置1:区域在左边界外侧

(2)第二位置1:区域在右边界外侧 (3)第三位置1:区域在下边界外侧 (4)第四位置1:区域在上边界外侧 裁剪窗口内(包括边界上)的区域,四位二进制代码均为0。 设线段的两个端点为P1(x1,y1)和P2(x2,y2),根据上述规则,可以求出P1和P2所在区域的分区代码C1和C2。 2、判别 根据C1和C2的具体值,可以有三种情况: (1)C1=C2=0,表明两端点全在窗口内,因而整个线段也在窗内,应予保留。 (2)C1&C2≠0(两端点代码按位作逻辑乘不为0),即C1和C2至少有某一位同时为1,表明两端点必定处于某一边界的同一外侧,因而整个线段全在窗外,应予舍弃。 (3)不属于上面两种情况,均需要求交点。 3、求交点 假设算法按照:左、右、下、上边界的顺序进行求交处理,对每一个边界求完交点,并相关处理后,算法转向第2步,重新判断,如果需要接着进入下一边界的处理。 为了规范算法,令线段的端点P 1为外端点,如果不是这样,就需要P 1 和P 2 交换端点。 当条件(C1&0001≠0)成立时,表示端点P1位于窗口左边界外侧,按照求交公式,进行对左边界的求交运算。 依次类推,对位于右、下、上边界外侧的判别,应将条件式中的0001分别改为0010、0100、1000即可。 求出交点P后,用P1=P来舍去线段的窗外部分,并对P1重新编码得到C1,接下来算法转回第2步继续对其它边界进行判别。 Liang-Barsky线段裁剪算法思想: 我们知道,一条两端点为P1(x1,y1)、P2(x2,y2)的线段可以用参数方程形式表示: x= x1+ u·(x2-x1)= x1+ u·Δx y= y1+ u·(y2-y1)= y1+ u·Δy0≤u≤1式中,Δx=x2-x1,Δy=y2-y1,参数u在0~1之间取值,P(x,y)代表了该线段上的一个点,其值由参数u确定,由公式可知,当u=0时,该点为P1(x1,y1),当u=1时,该点为P2(x2,y2)。如果点P(x,y)位于由坐标(xw min,

相关文档
最新文档