怎样正确选用电力电容器

怎样正确选用电力电容器
怎样正确选用电力电容器

怎样正确选用电力电容器,如下几点供用户参考:

无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。无功补偿的合理配置原则,从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。

(1 )

总体平衡与局部平衡相结合,以局部为主。

(2)

电力部门补偿与用户补偿相结合。

在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,

为了减少无功功率在网络中的输送,

要尽可能地实现就地补偿,

就地平衡,所以必须由电力部门和用户共同进行补偿。

(3)

分散补偿与集中补偿相结合,以分散为主。

集中补偿,

是在变电所集中装设较大容量的补偿电容器。

分散补偿,

指在配电网

络中分散的负荷区,

如配电线路,

配电变压器和用户的用电设备等进行的无功补

偿。

集中补偿,

主要是补偿主变压器本身的无功损耗,

以及减少变电所以上输电

线路的无功电力,

从而降低供电网络的无功损耗。

但不能降低配电网络的无功损

耗。

因为用户需要的无功通过变电所以下的配电线路向负荷端输送。

所以为了有

效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。

(4)

降损与调压相结合,以降损为主。

2、影响功率因数的主要因素

功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,

还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

2. 1

、异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

2. 2

供电电压超出规定范围也会对功率因数造成很大的影响当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的

110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。

所以,应当采取措施使

电力系统的供电电压尽可能保持稳定。

2 .3

、电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

2 .4

、以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、

能够使低压电力网功率因数提高的一些实用方法,

使低压网能够实

现无功的就地平衡,达到降损节能的效果。

3

低压配电网无功补偿的方法

提高功率因数的主要方法是采用低压无功补偿技术,

我们通常采用的方法主要有

三种:随机补偿、随器补偿、跟踪补偿。

3. 1

、随机补偿

随机补偿就是将低压电容器组与电动机并接,

通过控制、

保护装置与电机,

同时

投切。

随机补偿适用于补偿电动机的无功消耗,

以补励磁无功为主,

此种方式可

较好地限制用电单位无功负荷。

随机补偿的优点是:

用电设备运行时,

无功补偿投入,

用电设备停运时,

补偿设

备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。

3. 2

、随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,

以补偿配电变

压器空载无功的补偿方式。

配变在轻载或空载时的无功负荷主要是变压器的空载

励磁无功,

配变空载无功是用电单位无功负荷的主要部分,

对于轻负载的配变而

言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。

随器补偿的优点:

接线简单、

维护管理方便、

能有效地补偿配变空载无功,

限制

农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

3. 3

跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,

将低压电容器组补偿在大

用户

0.4kv

母线上的补偿方式。

适用于

100kV A

以上的专用配变用户,

可以替代

随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是运行方式灵活,

运行维护工作量小,

比前两种补偿方式寿命相

对延长、

运行更可靠。

但缺点是控制保护装置复杂、

首期投资相对较大。

但当这

三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

4

、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,

补偿容量的选择分两大类讨论,

单负荷就地补偿容量的选择

(主要指电动机)

和多负荷补偿容量的选择

(指集中

和局部分组补偿)

4. 1

、单负荷就地补偿容量的选择的几种方法

1

、美国资料推荐:

Qc=(1/3)Pe [

额定容量的

1/3]

2

、日本方法:从电气计算日文杂志中查到:

1/4~1/2

容量计算

考虑负载率及极对数等因素,按式(

5

)选取的补偿容量,在任何负载情况下都

不会出现过补偿,而且功率因数可以补偿到

0.90

以上。此法在节能技术上广泛

应用,对一般情况都可行,特别适用于

Io/Ie

比值较高的电动机和负载率较低的

电动机。但是对于

Io/Ie

较低的电动机额定负载运行状态下,其补偿效果较差。

3

、经验系数法:由于电机极数不同,按极数大小确定经验系数选择容量

较接近实际需要的电容器,采用这种方法一般在

70%

负荷时,补后功率因数可

0.95~0.97

之间

经验系数表

电机类型

一般电机

起重电机

冶金电机

极数

2 4 6 8 10 8 10

补偿容量(

kvar/kw

0.2 0.2~0.25 0.25~0.3 0.35~0.4 0.5 0.6 0.75

容量

时选

下限

,小

选上

电压

高时

选下

,小

时选

4

Qc=P[√1/COS2φ1

-1-

√1/COS2φ2

-1]

实际测试比较准确方法此法适用于任何一般感性负荷需要精确补偿的就地补偿容量的计算。

4

、如果测试比较麻烦,可以按下式

Qc≤√3UeIo×10

-3 (kvar)

Io-

空载电流

=2Ie(1-

COSφe )

瑞典电气公司推荐公式

Qo

若电动机带额定负载运行,即负载率

β=1,

则:

Qo

根据电机学知识可知,对于

Io/Ie

较低的电动机(少极、大功率电动机)

,在较高

的负载率

β

时吸收的无功功率

与激励容量

Qo

的比值较高,

即两者相差较大,

在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。

5

、按电动机额定数据计算:

Q= k(1-

cos2φe )3UeIe×10

-3 (kvar)

K

为与电动机极数有关的一个系数

极数:

2 4 6 8 10

K

值:

0.7 0.8 0.85 0.9

4.2

、多负荷补偿容量的选择

多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

1

)对已生产企业欲提高功率因数,其补偿容量

Qc

按下式选择:

Qe=KmKj(tgφ1

-

tgφ2)/Tm

式中:

为最大负荷月时有功功率消耗量,由有功电能表读得;Kj

为补偿容量

计算系数,

可取

0.8

0.9;Tm

为企业的月工作小时数;

tgφ1

tgφ2

意义同前,

tgφ1

由有功和无功电能表读数求得。

2

)对处于设计阶段的企业,无功补偿容量

Qc

按下式选择:

Qc=KnPn(tgφ1

-

tgφ2)

式中

为年平均有功负荷系数,

一般取

0.7

0.75n

为企业有功功率之和;

tgφ1

tgφ2

意义同前。

tgφ1

可根据企业负荷性质查手册近似取值,也可用加权平均功

率因数求得

cosφ1

多负荷的集中补偿电容器安装简单,

运行可靠、

利用率较高。

但电气设备不连续

运转或轻负荷运行时,

会造成过补偿,

使运行电压抬高,电压质量变坏。

因此这

种方法选择的容量,

对于低压来说最好采用电容器组自动控制补偿,

即根据负荷

大小自动投入无功补偿容量的多少,对高压来说应考虑采取防过补偿措施。

5

、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,

还需无功功率。

如自然平均功率因数在

0.70

0.85

之间。

企业消耗电网的无功功率约占消耗有功功率的

60%

90%,

如果把功

率因数提高到

0.95

左右,则无功消耗只占有功消耗的

30%

左右。由于减少了电

网无功功率的输入,会给用电企业带来效益。

5.1

、节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为

国家电价制度中,

从合理利用有限电能出发,

对不同企业的功率因数规定了要求

达到的不同数值,

低于规定的数值,

需要多收电费,

高于规定数值,

可相应地减

少电费。可见,提高功率因数对企业有着重要的经济意义。

5.2

、提高设备的利用率。对于原有供电设备来讲,在同样有功功率下,因功率

因数的提高,

负荷电流减少,

因此向负荷传送功率所经过的变压器、

开关和导线

等供配电设备都增加了功率储备,

从而满足了负荷增长的需要;

如果原网络已趋

于过载,由于功率因数的提高,输送无功电流的减少,使系统不致于过载运行,从而发挥原有设备的潜力;对尚处于设计阶段的新建企业来说则能降低设备容量,

减少投资费用,

在一定条件下,

改善后的功率因数可以使所选变压器容量降

低。

因此,

使用无功补偿不但减少初次投资费用,

而且减少了运行后的基本电费。

5.3

、降低系统的能耗

补偿前后线路传送的有功功率不变,P= IUCOSφ

,由于

COSφ

提高,补偿后的

电压

U2

稍大于补偿前电压

U1,

为分析问题方便,可认为

U2≈U1

从而导出

I1COSφ1=I2COSφ2

。即

I1/I2= COSφ2/ COSφ1,

这样线损

P

减少的百分数为:

ΔP%= (1

-I22/I12)×

100%=

COS2φ1/ COS2φ2

×

100%

当功率因数从

0.70

0.85

提高到

0.95

时,

(2)

式可求得有功损耗将降低

20%

45%

5.4

、改善电压质量。以线路末端只有一个集中负荷为例,假设线路电阻和电抗为

R

X,

有功和无功为

Q,

则电压损失ΔU

为:

U=

PR+QX

/Ue×

10-3(KV)

两部分损失:PR/ Ue→

输送有功负荷P

产生的;QX/Ue→

输送无功负荷Q

产生的;

配电线路:X=

2~4

R

,△

U

大部分为输送无功负荷

Q

产生的

变压器:

X=

5~10

R QX/Ue=(5~10) PR/ Ue

变压器△

U

几乎全为输送无功负

Q

产生的

可以看出,若减少无功功率

Q,

则有利于线路末端电压的稳定,有利于大电动机

的起动。因此,无功补偿能改善电压质量(一般电压稳定不宜超过3%

。但是

电容器运行异常与事故的处理-2019年文档资料

电容器运行异常与事故的处理 1.引i=r 电力电容器是电力系统中重要的设备之一,在电力系统运行中,通过对电容器的投入切换来补偿电力系统的无功功率,提高系统电压从而减少运行中损耗的电能,达到提高功率因数的目的。长期运行的经验告诉我们,并联电容器作用,能补偿电力系统无功功率,提高负载功率因素,减少线路的无功输送提高电网的输送能力,减少功率损耗改善电力质量,以及提高设备率用率。 串联电容器补偿线路电抗、改善电压质量,减少线路阻抗,提高系统稳定性和增加输电能力。电容器在运行过程中会因自身或者系统工况运行天气等原因,导致电容器出现渗漏油、外壳膨胀变形、电容器“群爆”等故障,若查不出电容器故障原因,系统中有带病运行的电容器将对系统的安全运行将造成严重威胁。因此,对电容器运行故障进行分析处理显得至关重要。 2.电力电容器的种类 电力电容器的种类很多,按电压等级分,可分为高、低压两种;按相数分,可分为单相和三相;按安装方式分为户内式与户外式;按所用介质又可分为固体介质与液体介质两种。固体介质包括电容器纸、电缆纸和聚丙烯薄膜等,液体介质包括电容器油、氯化联苯、蓖麻油、硅油、十二烷基苯和矿物油。无论哪种电容器都是全密封装置,密封不严,则空气、水分和杂质都可能侵入 油箱内部,电容器进水后就会造成绝缘击穿,缺油进入空气会使绝缘受潮、老化,其危害极大,因此电容器是不允许渗漏油的。 3.影响电力电容器运行的因素 3.1电容器运行的电压 电容器的无功功率、发热和损耗正比于其运行电压的平方。 长期过电压运行会使电容器温度过高,加速绝缘介质的老化而缩短电容器的使用寿命甚至损坏。

在运行过程中,由于电压调整、负荷变化或者分合闸操作等一系列因素引起系统的波动会产生过电压,电容器的连续工作电压不得大于1.05 倍的额定电压。最高运行电压不得超过10%的 额定电压。但是不能超过允许过电压的时间限度。 3.2电容器运行的温度 电容器的运行温度过高,会加速介质的老化影响其使用寿命,甚至会引起电容介质的击穿,造成电容器的损坏。 可见,温度是保证电容器安全稳定运行和正常使用寿命的重要条件之一。 因此,运行中必须始终确保电容器工作在允许温度内,按厂家规定一般电容器运行的环境温度不应高于零上40 度,或低于零下40 度。 3.3电容器运行的电流 电容器运行中的过电流,除了由过电压引起的工频过电流外,还有由电网高次谐波电压引起的过电流。 所以,通常在电容器的设计中,最高不应超过额定电流的 1.3倍,运行中的电容器三相电流应基本平衡,不平衡电流不宜超过5%,可超出额定电流的30%,长期运行10%是允许工频过电 流,另外的20%则是给高次谐波电压引起的过电流所留的。 4.常见的电容器故障 4.1电容器发出异响 电容器是一种无励磁结构的静止电器。正常情况下,电容器运行是无任何声响的。当电容器发生内部故障时,会产生发电的声音及其它异常声响,此时应立刻停运检查。 4.2电容器外壳膨胀变形 当电容器长期处于过电压或者过电流运行时,由于内部绝缘击穿

变压器运行的安全与继电保护实用版

YF-ED-J9946 可按资料类型定义编号 变压器运行的安全与继电 保护实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

变压器运行的安全与继电保护实 用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 引言 电力变压器的故障分为内部和外部两种故 障。内部故障指变压器油箱里面发生的各种故 障,主要靠瓦斯和差动保护动作切除变压器;外 部故障指油箱外部绝缘套管及其引出线上发生 的各种故障,一般情况下由差动保护动作切除 变压器。速动保护(瓦斯和差动)无延时动作切 除故障变压器,设备是否损坏主要取决于变压 器的动稳定性。而在变压器各侧母线及其相连 间隔的引出设备故障时,若故障设备未配保护

(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段内的区外故障造成的过电流,在此时间段内变压器是否损坏主要取决于变压器的热稳定性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间存在着必然的联系。 2 变压器设计热稳定指标 文献[1]中要求“对称短路电流I的持续时间:当使用部门未提出其它要求时,用于计算承受短路耐热能力的电流I的持续时间为2s。注:对于自耦变压器和短路电流超过25倍额定电流的变压器,经制造厂与使用部门协商后,采用的短路电流持续时间可以小于2s。”

电力电容器的维护与运行管理

电力电容器的维护与运行管理 摘要:电力电容器是一种静止的无功补偿设备。它的主要作用是向电力系统提供无功功率,提高功率因数。采用就地无功补偿,可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。现将电力电容器的维护和运行管理中一些问题,作一简介,供参考。 关键词:电力电容器;维护;运行;管理 1、电力电容器的保护 (1)电容器组应采用适当保护措施,如采用平衡或差动继电保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: 如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。

在高压网络中,短路电流超过20A时,并且短路电流的保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求:保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,保护装置都能可靠地动作。 能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。 在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。 保护装置应便于进行安装、调整、试验和运行维护。 消耗电量要少,运行费用要低。 (4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。 2、电力电容器的接通和断开 (1)电力电容器组在接通前应用兆欧表检查放电网络。 (2)接通和断开电容器组时,必须考虑以下几点: 当汇流排(母线)上的电压超过1.1倍额定电压最大允许值时,禁止将电容器组接入电网。

基于智能电容器的无功补偿系统设计

基于智能电容器的无功补偿系统设计 发表时间:2019-11-29T15:45:45.420Z 来源:《中国电业》2019年16期作者:穆海萍 [导读] 适用场合广泛且维护方便,可靠性高等优点,因此具有良好的推广应用前景。 摘要:当前的智能式电容器比较先进,集现代测控、电力电子技术、网络通信协议、自动控制原理以及新型绝缘材料技术等为一体,具有补偿效果好,小型化,功率消耗低,接线方便,适用场合广泛且维护方便,可靠性高等优点,因此具有良好的推广应用前景。 关键词:智能电容器;无功补偿;系统 1智能电容器模块的电气结构与原理 如图1、图2所示,智能电容器模块由智能测控单元、晶闸管复合开关电路、线路保护单元、2台△型(三相补偿)或I台Y型(分相补偿)低压电力电容器构成,它们各自独立工作又互相联系。 (1)智能测控单元。智能测控单元以工业级DSP为核心,同AD转换、CAN-籅US通信、LCD显示、数据存储等构成一个系统,集采样、运算、分析、控制、通信、人机交互、数据存储于一体,与其它部件进行数据交换,从而有效地协调整个智能电容的工作。同时,智能测控单元坯集成了外部通信功能,可以把本机的运行工况和测量数据通过RS-485接口与外部设备通信以及与其它智能电容器、控制器或后台监控系统进行数据交换,真正做到了透明化、智能化和模块化。 (2)煽控硅复合开关电路。晶闸管复合开关电路包含了可控硅.过零检测与触发模块、可控硅保护模块、磁保持继电器驱动模块及开关故障检测模块。电路采用电力电子可控硅与大功率磁保持继电器复合技术,利用可控硅的快速导通和磁保持继电器触点的零压降实现互补,真正做到过零投切和低功耗运行。合闸时,该电路可实时检测可控硅开关两端(即电力电容器与电网)的电压差,当电压差基本为0(相差小于3V)时,触发可控硅导通,无冲击涌流,做到柔性投入;之后,磁保持继电器吸合,短路可控硅的两端电极,通过继电器触点接通主回路 (3)线路保护单元 线路保护单元由空气开关、快速熔断器及电流检测回路组成。此单元旨在保护智能电容器整机,当智能电容器发生过负荷、三相不平衡或内部短路等故障时,线路保护单元实时跳闸,以保护电网不受影响。 (4)电力电容器。电力电容器采用干式自愈式金属化薄膜电容器,使用高温薄膜卷绕、环氧树脂材料灌封,罐内填充氮气或蛙石,设置防爆装置,安全无泄漏;内置温度传感器,把电容器的实时温度信号传送至智能测控单元,用作过温保护判据。 2 无功补偿控制策略与电容器投切方式 2.1 无功补偿控制策略 传统的无功补偿控制策略有无功功率控制、功率因数控制、电压控制、电压无功控制、电压功率控制、电压时间控制等,本文采用的是电压无功控制策略。电压无功控制方法又称之为九区图法,即在含有变压器的情况下,将平面按电压和无功功率的上下限划分为九个区域,不同的区域代表不同的含义,通过投切电容器进行无功补偿的控制。在配有载调压变压器的条件下,通过调节变压器分接头和投切电容器可以改变电网电压和无功补偿容量QC, 进而改变母线电压U和从电力系统吸收的无功功率Q。 2.2 电容器过零投切 电容器的投切控制是配电网运行中的一项重要研究内容,根据选择的控制目标及控制参数的不同,可将控制方式分为单一变量控制和综合控制,单一变量控制方式主要包括无功功率控制方式、功率因数控制方式、电压控制方式等。近些年随着人工智能技术的发展,也出现了基于模糊控制理论的控制方式。无论是何种控制方式都应该尽量做到在不发生过补偿、投切振荡、冲击电流等情况下,最大限度地利用补偿设备快速地提高电网的功率因数。 本文设计的智能电容器所需的投切开关为复合开关。复合开关将磁保持继电器和晶闸管复合并联在一起,兼两者之长。复合开关的工作原理:线路导通时,驱动电路先发出信号使晶闸管导通,再控制继电器导通,当磁保持继电器导通后,电网电流转移到继电器上,此时驱动电路发出信号使得晶闸管断开,系统正常工作;线路断开时,驱动电路先发出信号使晶闸管导通,此时继电器仍处于导通状态,再控制继电器断开,最后驱动电路发出信号,使得晶闸管在电流过零处断开。复合开关的优点有:无涌流,无电弧;能够实现电压过零处投入,电流过零处切除;功率损耗低。现在很多电力电子仪器都对电压要求很高,无功补偿的趋势就是过零投切。过零投切实际上就是电压过零时投入,电流过零时切除。过零投切的原理:电容器的电压不能突变,如果不是在电压过零点处投入,那么电容器的电压和系统中本身的电压叠加,会产生幅值大、频率高的涌流,增加了功率损耗,增加了对电容器及其他设备的冲击次数。 3智能电容无功补偿器的硬件模块设计 3.1 硬件模块 智能电容器的模块及其功能为:电源模块,为DSP控制器、磁保持驱动电路、运放芯片、液晶显示模块等提供所需的电源支持;DSP控制器,采用TMS320F2812芯片,控制整个系统的运行;电网参数采集模块,采集需要的电压电流参数,输送到DSP控制器内进行计算;温度采集模块,通过检测周围的环境温度,实时监控是否满足智能电容器的工作温度;复合开关驱动模块,DSP控制器检测到电网需要进行无功补偿时,复合开关驱动模块发送驱动信号,控制电容器的投切;按键与液晶显示模块,即人机操作界面,可以通过按键与液晶显示屏操作与观察当期智能电容器的运行状态;通信模块,采用RS-485通信协议,负责智能电容器各模块之间的通信。 3.2 电网参数采集模块 本文采用的TMS320F2812芯片自带16路12位的A/D转换器,可以对电压电流信号进行数据采集。ADC模块的模拟电压输入范围是0~3V,而低压配电网络的电压一般为380V,不在ADC模块所采集的信号输入范围之内,并且ADC模块比较敏感,当0V或3V的信号输入到模块端口时,可能会损坏ADC端口而不能正常工作。因此选择电压互感器对电压信号进行降压处理,

电力电容器安装施工工艺【最新版】

电力电容器安装施工工艺 1 范围本工艺标准适用于10kV以下、并联补偿电力电容器安装工程。 2 施工准备 2.1 设备及材料要求: 2.1.1 电容器应装有铭牌,注明制造厂名、额定容量、接线方式、电压等级等技术数据。备件应齐全,并有产品合格证及技术文件。 2.1.2 容量规格及型号必须符合设计要求。 2.1.3 电容器及其它电气元件外表无锈蚀及坏损现象。 2.1.4 套管芯线棒应无弯曲及滑扣现象,引出线端附件齐全,压接紧密。外壳无缺陷及渗油现象。 2.1.5 安装用的型钢应符合设计要求,并无明显锈蚀,螺栓均应采用镀锌螺栓。 2.1.6 材料均应符合设计要求,并有产品合格证。 2.2 主要机具: 2.2.1 安装机具:手推车、电钻、砂轮、电焊机、汽焊工具、压线钳子、扳手等。 2.2.2 测试工具:钢卷尺、钢板尺、塞尺、摇表、万用表、卡钳电流表。 2.3 作业条件 2.3.1 施工图纸及技术资料齐全。

2.3.2 土建工程基本施工完毕,地面、墙面全部完工,标高、尺寸、结构及预埋件均符合设计要求。 2.3.3 屋顶无漏水现象,门窗及玻璃安装完,门加锁,场地清扫干净,道路畅通。 3 操作工艺 3.1 工艺流程:设备开箱点件→基础制作安装或框架制作安装→电容器二次搬运→电容器安装→ 联线送电前的检查→送电运行验收 3.2 设备点件检查: 3.2.1 设备点件检查应由安装单位、建设单位和供货单位代表共同进行,并作好记录。 3.2.2 按照设备清单对设备及零备件逐个清点检查,应符合图纸要求、完好无损。 3.2.3 对500V以下电容器,用1000V摇表逐个进行绝缘摇测,3~10kV电容器用2500V绝缘摇表摇测,并做好记录。 3.3 基础制作安装或框架制作安装。 3.3.1 成套电容器框组安装前,应按设计要求做好型钢基础。 3.3.2 组装式电容器安装前应先按图纸要求做好框架,电容器可分层安装,一般不超过三层,层间不应加设隔板,电容器的构架应采用非可燃材料制成。构架间的水平距离不小于0.5m,下层电容器的底部距地不应小于0.3m,电容器的母线对上层构架的距离不应小于

变压器安全使用规定(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 变压器安全使用规定(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

变压器安全使用规定(标准版) 为确保安全用电,对运行中的变压器,各工区电工应按规定定期进行检查,以便了解变压器的运行情况,发现异常,及时处理,切实做好变压器的安全运行、使用,把事故消灭在萌芽状态。 变压器运行时应检查下列事项: 1、检查变压器输出三相电流是否平衡,负荷电流是否正常,有无超负荷运行。 2、检查运行电压是否正常。 3、检查变压器响声是否正常,正常运行时一般有均匀的嗡嗡电磁声,如响声特别大或有放电声,则说明变压器内部有故障。 变压器使用要求: 1、变压器要定期检查,做好运转记录。 2、变压器防护栏内外要保持清洁,接完线后要打扫干净。 3、500KVA变压器只允许用3台空压机,400KVA变压器属两家

共用,负荷要分配好。如一方用空压机后就不得用输送泵,用输送泵就不得用空压机,要采取措施加以控制,严禁超负荷运行。 4、要按规程操作,严禁违规操作。 5、在特殊天气下(如大风、雷雨),电工应对变压器进行巡视,做好巡视记录,以保证变压器的安全运行,并注意检查变压器房是否渗漏。 6、变压器如损坏,谁的责任谁承担赔偿,双方责任则共同承担。 云博创意设计 MzYunBo Creative Design Co., Ltd.

电力电容器运行中应注意的问题

电力电容器运行中应注意的问题 发表时间:2018-12-03T10:19:51.567Z 来源:《河南电力》2018年12期作者:尹和罗文杰[导读] 电容器组的正常运行对保障电力系统的供电质量与效益起着重要作用,本文对电力电容器在运行中的注意事项及相应处理进行了介绍。 (国网山西省电力公司大同供电公司 037008) 摘要:电容器组的正常运行对保障电力系统的供电质量与效益起着重要作用,本文对电力电容器在运行中的注意事项及相应处理进行了介绍。 关键词:电力电容器;运行;注意事项;相应处理 电力电容器在电力系统中主要作无功补偿或移相使用,大量装设在各级变配电所里。这些电容器的正常运行对保障电力系统的供电质量与效益起重要作用。兹就电力电容器在运行中应注意的问题及相应的处理方法介绍如下。 一、环境温度 电容器周围环境的温度不可太高,也不可太低。 如果环境温度太高,电容器工作时所产生的热量就散不出去;而如果环境温度太低,电容器内的油就可能会冻结,容易电击穿。 根据电容器有关技术条件规定,电容器的工作环境温度一般以40℃为上限。我国大部分地区的气温都在这个温度以下,所以通常不必采用专门的降温设施。如果电容器附近存在着某种热源,有可能使室温上升到40℃以上,这时就应采取通风降温措施,否则应立即切除电容器。 电容器环境温度的下限应根据电容器中介质的种类和性质来决定。YY型电容器中的介质是矿物油,即使是在-45℃以下,也不会冻结,所以规定-40℃为其环境温度的下限。而YL型电容器中的介质就比较容易冻结,所以环境温度必须高于-20℃,我国北方地区不宜在冬季使用这种电容器。(除非把它安置在室内,并采取加温措施) 二、工作温度 电容器是一种介损很大的电力设备。电容器工作时,其内部介质的温度应低于65℃,最高不得超过70℃,否则会引起热击穿,或是引起鼓肚现象。电容器外壳的温度是在介质温度与环境温度之间,一般为50~60℃,不得超过60℃。 为了监视电容器的温度,可用桐油石灰温度计的探头粘贴在电容器外壳大面中间三分之二高度处,或是使用熔点为50~60℃的试温蜡片。 三、工作电压 电容器的无功功率、损耗和发热都与运行电压的平方成正比,长时间过电压运行,会导致电容器温度过高,使绝缘介质加速老化而缩短寿命甚至损坏。但温度升高需要时间积累热量。而在运行中,由于倒闸操作、电压调整、负荷变化等因素可能引起电力系统波动,产生过电压,有些过电压辐值虽然较高,但作用时间较短,对电容器的影响不大,但不能超过一定时间限度。 电网电压一般应低于电容器本身的额定电压,最高不得超过其额定电压10%,但应注意:最高工作电压和最高工作温度不可同时出现。因此,当工作电压为1.1倍额定电压时,必须采取降温措施。 四、工作电流与谐波问题 当电容器安装工作于含有磁饱和稳压器、大型整流器和电弧炉等“谐波源”的电网上时,交流电中就会出现高次谐波。对于n次谐波而言,电容器的电抗将是基波时的1/n,因此,谐波对电流的影响很大。谐波的这种电流对电容器非常有害,极容易使电容器击穿引起相间短路。考虑谐波的存在,故规定电容器的工作电流不得超过额定电流的1.3倍,即不可超出额定电流30%长期运行。其中的10%为允许工频过电流,20%为留给高次谐波电压引起的过电流。必要时,应在电容器上串联适当的感性电抗,以限制谐波电流。 五、合闸时的弧光问题 某些电容器组特别是高压电容器在合闸并网时,因合闸涌流很大,在开关上或变流器上会出现弧光。碰到这种情形时,应调整电容器组的电容值或更换变流器,对高压电容器可采用串电抗器加以消除。 六、运行中的放电声问题 电容器在运行时,一般是没有声音的,但有时会例外。造成声音的原因大致有以下几种: 1、套管放电。电容器的套管为装配式者,若露天放置时间过长,雨水进入两层套管之间,加上电压后,就有可能产生劈劈啪啪的放电声。遇到这种情形时,可将外套管松出,擦干重新装好即可。 2、缺油放电。电容器内如果严重缺油,以致于使套管的下端露出油面,这时就有可能发出放电声。为此,应添加同种规格的电容器油。 3、脱焊放电。电容器内部若有虚焊或脱焊,则会在油内闪络放电。如果放电声不止,则应拆开修理。 4、接地不良放电。电容器的芯子与外壳接触不良时,会出现浮动电压,引起放电声。这时,只要将电容器摇动一下,使芯子与外壳接触,便可使放电声消失。 七、爆炸问题 多组电容器并联运行时,只要其中有一台发生了击穿,其余各台就会同时通过这一台放电。放电能量很大,脉冲功率很高,使电容器油迅速汽化,引起爆炸,甚至起火,严重时有可能使建筑物也遭到破坏。为防止这种事故,可在每台电容器上串联适当的电抗器或熔丝,然后并联使用。另外,电力系统中并联补偿的电容器采用Δ结线虽有较多优点,但电容器采用Δ结线时,任一电容器击穿短路时,将造成三相线路的两相短路,短路电流很大,有可能引起电容器爆炸。这对高压电容器特别危险。因此高压电容器组宜接成中性点不接地星形(Y 型),容量较小时(450kvar及以下)宜接成Δ形。 八、投停操作 1、当电容器组所在母线停电时,应先退出电容器组,然后再将母线停电。母线送电时,在母线及其负荷馈线送电后,应根据系统无功功率潮流、负荷功率因数及电压情况决定电容器组的投入和退出。

配电室电容器更换方案

配电室电容器更换 方案

XXXXXXXXX配电室 电容器更换方案 编制:XX 审核:XXX 北京密云华鑫水电技术开发总公司 6月5日 目录 一、设备现状 ................................................... 错误!未定义书签。

二、关于低压电力电容器运行情况的说明...... 错误!未定义书签。 三、建议的整改方案 ........................................ 错误!未定义书签。 四、承接改造单位简介 .................................... 错误!未定义书签。 五、项目报价 (7) 六、附企业资质文件 XXXXX电容器更换方案

一、设备现状 XXXXXX配电室内低压无功补偿柜共有8台,电容器共计80个。其中KVA变压器两台,提供无功补偿用电容器单体补偿容量为30kVAR,数量40个,所配用接触器型号为B63C,数量40个。1600KVA变压器两台,提供无功补偿用电容器单体补偿容量为24kVAR,数量40个,所配用接触器型号为B50C,数量40个。设备投运时间为,酒店内电动机等感性负载设备较多,启动频繁,且投动至今已经6年有余。电容器本体出现壳体膨胀,电容液泄漏,单体电容器配用接触器及导线出现烧毁情况。 二、关于低压电力电容器运行情况的说明 北京地区低压配电室使用的无功补偿装置大多数是金属膜电容器,也叫自愈式电容器,所谓自愈式就是电容器击穿后能够自动恢复绝缘,因为有这个特性,因此,自愈式电容器允许在运行中有击穿,但每次击穿和自愈过程都会使极板有大约5毛硬币大小的自愈块,这一块区域的电容量就不存在了,每次击穿和自愈都会损失一部分电容量,自愈式电容器以容量降到一半作为寿命的终止,一般自愈式电容器3年以后电容量只剩下额定容量的一半左右,因此正常寿命也就是3年左右,当然质量特别好的电容器使用年限可能会长些。使用电压过高或谐波分量过大时,会增

电力电容器的维护与运行管理(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电力电容器的维护与运行 管理(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6484-30 电力电容器的维护与运行管理(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 电力电容器是一种静止的无功补偿设备。它的主要作用是向电力系统提供无功功率,提高功率因数。采用就地无功补偿,可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。现将电力电容器的维护和运行管理中一些问题,作一简介,供参考。 1 电力电容器的保护 (1)电容器组应采用适当保护措施,如采用平衡或差动继电保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。

(2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 ②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 ③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。 ④在高压网络中,短路电流超过20A时,并且短路电流的保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求: ①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,保护装置都能可靠地动作。 ②能够有选择地切除故障电容器,或在电容器组

变压器安全技术措施方案

整体解决方案系列 变压器安全技术措施(标准、完整、实用、可修改)

编号:FS-QG-82794变压器安全技术措施 Transformer safety technical measures 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 根据矿整体计划会工作安排,采区变电所内需安装变压器等高压设备;变压器单体重量为8366kg,长度为4、2米,为保证变压器下井期间人员和设备安全,特制定如下安全技术措施: 一、工作时间:20xx年12月14日-12月19每天4点班 二、施工负责人:周金生 三、参加人员:周金生、李金怀等6人 四、工作程序及安全技术措施: 1、工作开始前,由工作负责人汇报调度室,安全科在井上、下派出安全员现场监督下料过程,保证下料期间主斜井及井底皮带大巷无行人。 2、绞车司机认真检查绞车各部件,各种连接是否紧固,滚筒上钢丝的缠绕情况及钢丝绳完好情况,深度指示器、挡

车设施、信号电铃是否正常,不完好不开车。 3、摘挂钩工认真检查保险绳、钩头及连接环、销子是否齐全完好,不符合要求不挂钩。 4、挂钩工按照要求挂钩完毕后,再次对车辆部位、保险绳连接装置仔细检查一遍,确认完好后,配合井下挂钩工检查主斜井内无行人,确认无误后,发出开钩信号:慢下。开钩过程中,由安全员负责禁止人员出入井的违章行为。 5、车辆运行时要密切注视其运行情况,发现异常时发出紧急停车信号,立即通知工作负责人赶赴现场,详细检查确定情况及时处理。 6、变压器入井前,安全科派安全员必须对设备捆绑,挂钩情况进行全面细致检查,并共同签发工作票,方可进行下料工作。 7、因变压器属“四超”车辆,下变压器期间,机运队必须派一名正职队干现场跟班。每钩只准下一个变压器。 8、集中轨道巷内封闭管理,运输期间执行“行人不行车、行车不行人”管理规定。 9、由工作负责人负责将本措施向参加工作人员贯彻执

WBMJZ集成式智能电力电容器

WBMJZ集成式智能电力电容器 产品特点 Product Charicteristics ●一体化:本产品由高分断小型断路器、智能测控单元、过零投切系统、圆柱形铝壳自愈 式电力电容器完美结合而成。 ●智能化:功率因数测量精度高、显示范围宽、LCD液晶显示、界面美观大方、具有自 动运行和手动运行两种工作方式;实时显示电网的各个参数、实时温度显示,保护设备的正常运行;具有过电压、欠电压、欠电流、过温度、过欠补偿保护功能;具有掉电保护功能;掉电数据不丢失。具有时钟功能(匹配),能够实时显示当前时间;电流信号输入阻抗小于0.01Ω,精度高;提供485通讯接口,内置MODBUS-RTU协议;兼容DL645-2007通讯协议,可实现远程监控。可实现180个工作日以上的历史数据保存功能(匹配)。本产品具有抑制谐波功能,抗干扰能力强;可实现:共补、分补、混合补偿控制方式;可实现三相电流、三相电压、三相有功、无功、视在功率等电网参数的实时显示。 ●智能组网功能:本产品具有智能组网、自诊断故障及保护功能,可实现多台联机使用, 构成无功自动控制系统;个别从机出现故障时自动退出,不影响其他及其工作。 ●过零投切:内置微处理器和智能软件,并选用高性能可控硅模块,智能控制电容器投切: 实现过零投切、无涌流、无电弧、响应快。 ●本产品选用高性能干式圆柱形铝壳自愈式电力电容器,散热好、体积小、寿命长,从而 保证了整机的安全性和可靠性。 产品型号 Product model WBMJZ 0.45-20S+20S 选型说明 Model chosen description ●三相补偿方式产品内部含有两台“△”型电容器,最大电容量为(30+30)kVar,两台 电容器工作时不同时投、退。 ●混合补偿方式内部有一台“△”型电容器+一台“Y”型电容器,最大电容为(30共补 +30分补)kVar,分别独立工作。 ●分相补偿方式产品有一台“Y”型电容器,如(20+20)、(20+10)、(10+10)、(10+5) kVar等。 ●额定耐受电压一般三相补偿方式取0.45KV、分相补偿方式取0.25KV,可靠性较高。主要技术参数 Main technical parameters

电力电容器安装施工工艺标准

电力电容器安装施工工 艺标准 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

SGBZ-0616 电力电容器安装施工工艺标准依据标准: 《建筑工程施工质量验收统一标准》GB50300-2001 《建筑电气工程施工质量验收规范》GB50303-2002 1、范围 本工艺标准适用于16kV以下、并联补偿电力电容器安装工程。 2、施工准备 设备及材料要求: 电容器应装有铭牌,注明制造厂名、额定容量、接线方式、电压等级等技术数据。备件应齐全,并有产品合格证及技术文件。 容量规格及型号必须符合设计要求。 电容器及其它电气元件外表无锈蚀及坏损现象。 套管芯线棒应无弯曲及滑扣现象,引出线端附件齐全,压接紧密。外壳无缺陷及渗油现象。 安装用的型钢应符合设计要求,并无明显锈蚀,螺栓均应采用镀锌螺栓。 材料均应符合设计要求,并有产品合格证。 主要机具: 安装机具:手推车、电钻、砂轮、电焊机、汽焊工具、压线钳子、扳手等。 测试工具:钢卷尺、钢板尺、塞尺、摇表、万用表、卡钳电流表。 作业条件: 施工图纸及技术资料齐全。 土建工程基本施工完毕,地面、墙面全部完工,标高、尺寸、结构及预埋件均符合设计要求。 屋顶无漏水现象,门窗及玻璃安装完,门加锁,场地清扫干净,道路畅道。 3、操作工艺 工艺流程: 设备开箱点件→基础制作安装或框架制作安装→电容器二次搬运→电容器安装→联线送电前的检查→送电运行验 设备点件检查:

设备点件检查应由安装单位、建设单位和供货单位代表共同进行,并作好记录。 按照设备清单对设备及零备件逐个清点检查,应符合图纸要求、完好无损。 对500V以下电容器,用1000V摇表逐个进行绝缘摇测,3~10kV电容器用2500V绝缘摇表摇测,并做好记录。 基础制作安装或框架制作安装。 成套电容器框组安装前,应按设计要求做好型钢基础。 组装式电容器安装前应先按图纸要求做好框架,电容器可分层安装,一般不超过三层,层间不应加设隔板,电容器的构架应采用非可燃材料制成。构架间的水平距离不小于,下层电容器的底部距地不应小于,电容器的母线对上层构架的距离不应小于20cm,每台电容器之间的距离按说明书和设计要求安装,如无要求时不应小于50mm。 基础型钢及构架必须按要求刷漆和作好接地。 电容器二次搬运。电容器搬运时应轻拿轻放,要注意保护瓷瓶和壳体不受任何机械损伤。 电容器安装: 电容器通常安装在专用电容器室内,不应安装在潮湿、多尘、高温、易燃、易爆及有腐蚀气体场所。 电容器的额定电压应与电网压相符。一般应采用角形联接。 电容器组应保持三相平衡,三相不平衡电流不大于5%。 电容器必须有放电环节。以保证停电后迅速将储存的电能放掉。 电容器安装时铭牌应向通道一侧。 电容器的金属外壳必须有可靠接地。 联线: 电容器联接线应采用软导线,接线应对称一致,整齐美观,线端应加线鼻子,并压接牢固可靠。 电容器组控制导线的联接应符合盘柜配线,二次回路配线的要求。 送电前的检查:

变电站电容器的安全运行参考文本

变电站电容器的安全运行 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

变电站电容器的安全运行参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1严格控制电容器的运行电压、电流、环境温度 1.1运行电压 运行中电容器内部的有功功率损耗由其介质损耗和导 体电阻损耗组成,而介质损耗占电容器总有功功率损耗的 98%以上,其大小与电容器的温升有关,可用下式表示: P=Qtans=WCU2tans=314C2tans Q=314CU2 式中:P为电容器的有功功率损耗,kW;Q为电容器的 无功功率,kvar;tanS为介质损耗角正切值;W为电网角频 率,rad/s;C为电容器的电容量,F;U为电容器的运行电 压,kV。 由公式可知:当运行电压超过额定值将使电容器过负

荷,而电容器运行电压比额定值低,则降低了无功出力,如运行电压为额定电压的90%时,无功功率降低19%,使容量没有充分利用,也是不经济的。同时运行电压升高,使电容器发热而且温升也增加,由于电容器中介质损失引起的有功功率损耗P=WCU2tans也随着电压值的平方变化,损耗经转换为热能而被消耗的,运行电压升高,发热量也随之增加。另一方面,电容器的寿命随电压的升高而缩短,在高场强下,绝缘介质老化加速,寿命缩短。因此,电容器运行电压原则上等于额定电压,并严格控制在一定的范围以内,以保证电容器的安全运行。 《变电站运行规程》中规定“电容器长期运行中的工作电压不能超过电容器额定电压的1.1倍。”在运行中应经常监视电容器的运行电压,超过规定电压时应退出电容器组的运行。在选择安装电容器组时也要考虑防止电容器发生过电压运行,应根据系统运行电压水平选用合适额定电

施工现场变压器安全管理要求

施工现场变压器安全管理要求 (一)运行前的注意事项 第一条:首次或停用半年以上的变压器投运时,应先测量其绝缘电阻和作绝缘油的耐压试验,合格后方可投入运行。 第二条:变压器的绝缘电阻应不低于产品出厂试验数值的70%。35KV 及以下的变压器,在10~30℃的吸收比应不小于1.2。 第三条:电压为10KV,容量为800KVA及以下的变压器。一次侧可选用熔断器保护。变压器容量为100KVA及以上时,熔丝容量应为一次侧额定电流的150~200%;在100KVA以下的,熔丝容量应为一次侧额定电流的200~300%。二次侧的控制和保护应配备可移式成套低压配电柜。 第四条:电压在10KV及以下,容量不超过320KVA的变压器,可以用隔离开关作空载投入或切除;带荷变压器的投入或切除必须使用油开关或负荷开关。 第五条:注入变压器的同牌号的绝缘油应做简化试验,不同牌号必须做混油试验,合格后方可注入。 第六条:施工现场使用的变压器安装在高于地面0.5m以上的基础,周围装设高度不低于1.7m的安全护栏,四周挂上"止步!高压危险"的醒目警告牌。 (二)运行中的注意事项 第七条:变压器运行电压的变动范围内为额定电压的±5%以内,其

额定容量不变。 第八条:变压器周围温度在35℃时最大温升不得超过60℃,上层油温不得超过85℃。 第九条:变压器应在额定载荷以下运行,允许事故过载的数值和时间,应按当地供电部门规定的执行。 第十条:变压器外部检查,每天不少于一次。夜间检查每周不少于一次。主要检查项目有: 1、瓷套管应清洁,无裂纹与放电痕迹以及其它异常现象; 2、各部位无渗油、漏油现象; 3、油位在规定指示线内,油温正常,油色透明; 4、接地良好,保护装置和安全设施齐全可靠; 5、运行中无异响。 第十一条:变压器在运行中发现下列异常时,值班人员必须立即停止变压器运行,并报告有关部门。 1、强烈而不均匀的噪音和内部有火花爆炸声; 2、上层油温超过85℃,并继续升高; 3、从油枕向外漏油; 4、防爆管破裂、喷油; 5、油色骤然剧变; 6、瓷套管上发现大裂纹或有闪络现象; 7、油面降至最低限度。

CRC-CS-450-10+10-3 智能电容器-三相共补智能电容器

智能电容器CRC-CS-450/10+10-3 智能电容器CRC-CS-450/10+10-3参数表 智能电容器依据标准GB/T22582-2008<电力电容器低压功率因CRC-CS-450/10+10-3智能电容器电源条件 1名称智能电容器 2适使用设备低压电容器补偿柜 作用 3型号CRC-CS-450/10+10-3 4工作电压:共补380V AC分补220V AC 5电压偏差±20% 6电压谐波电压总畸变率不大于5%

7额定频率50HZ±5% 8功率消耗<2W 贰,CRC-CS-450/10+10-3智能电容器测量精度 1电压≤0.5% 2电流≤0.5% 3温度≤±1℃ 4功率因素≤±0.01 叁,CRC-CS-450/10+10-3智能电容器控制方式 1控制型号多参数模糊控制 2取样信号0-5A 肆,CRC-CS-450/10+10-3智能电容器环境条件 1工作温度-25°C--65°C 2相对湿度20%—95% 3海波高度≤4000M 壹、CRC-CS-450/10+10-3智能电容器主要用途与适用 范 CRC智能式低压电容器集成了现代测控,电力电子,网络通讯,自动化控制,电力电容器等先进技术。改变了传统无功补偿装置落后的控制技术和落后的机械式接触器和热继电器保护投切电容器的

投切技术,改变了传统无功补偿装置体积庞大和笨重的结构模式,从而使新一代低压无功补偿设备具有补偿效果好,体积更小,功耗更低,价格更廉,节约成本更多,使用更加灵活,维护更加方便,使用寿命更长,可靠性更高的特定,适应了现代电网对无功补偿的更高要求。 贰、CRC-CS-450/10+10-3智能电容器型号说明 CRC-CS-450/10+10-3 三相共补 第二台电容器容量10KVAR 第一台电容器容量10KVAR 电容器电压450V 三相补偿CF三相分补 昌日智能电容器 叁,智能电容器CRC-CS-450/10+10-3概述 CRC系列智能集成电容器装置是应用于低压电网的新一代无功补偿装置。它是有CPU测控单元、晶闸管、继电器。保护装置、两台或者一台低压电力电容器组成一个独立完整的智能补偿单元,替代由智能无功控制器,熔丝、晶闸管复合开关(或接触器),热继电器、指示灯。低压电力电容器多种分散器件组装而成的自动无功补偿装置,具有补偿方式灵活(共补和分补可任意组合)、补偿效果好,装置体积小,功耗低,安装维护方便,使用寿命长,保护功能强、可靠性高等

安全管理检查表电力变压器安全

企业安全管理检查表/电力变压器安全检查 电力变压器安全检查说明 (1) 电力变压器安全检查表仅适用于检查变压器本身及其附件,以及装在变压器上的保护装置、测量装置及部分控制电缆。至于变压器的其它保护装置、二次回路、油开关等不在本检查表范围之内。 (2)电力变压器外部检查的周期规定: 1)发电厂和经常有人值班的变电所内的变压器,每天至少检查一次,每星期应有一次夜间检查。 2) 无值班人员的变电所和室内变压器容量在3200kVA及以上者,每10天至少检查一次,并应在每次投放使用前和使用后进行检查。容量大于320kVA但小于3200kVA者,每月至少检查一次,并应在每次投入使用前和停用后进行检查。 3)无值班人员的变电所或安装于小变压器室内的320kVA及以下的变压器和柱上变压器,每两个月至少检查一次。 在气候激变(冷、热)时,应对变压器油面进行额外检查。瓦斯继电器发出警报信号时,亦应进行外部检查。 (3)电力变压器应有技术档案,其内容如下: 1)按照规定格式编制的变压器履历卡片; 2)制造厂试验记录的副本; 3)交接试验的记录; 4)历次干燥的记录; 5)大修验收报告书,附技术资料一览表; 6)油的试验记录; 7)滤油和加油的资料; 8)装在变压器上的测量仪表的试验记录;

9)其它试验记录; 10)检查和停用检查的情况; 11)备品保管规程(所有变压器合用一书); 12)变压器的安装图和构造图。 配电变压器的技术档案内容有1~6项即可。 1. 变压器外部检查(按周期检查) 1.1 变压器套管应清洁,无破损、裂纹放电痕迹及其他现象; 1.2 变压器声音应正常; 1.3 变压器油包应正常(淡黄色),油位高度符合油标管的刻度要求,并无漏油现象; 1.4 变压器电缆和母线应无异常现象; 1.5 变压器的油温不宜超过85℃,最高不得超过95℃; 1.6 防爆管的隔膜应完整。 2. 变压器的冷却和变压器室 2.1 强迫油循环水冷式的变压器,油冷却器的油压应比水压通常高101.325~151.988kPa; 2.2 变压器室的门、窗、门闩应完整,门应上锁,房屋不应漏雨,照明和空气温度应适宜; 2.3 变压器室的门和墙上应清楚地写明变压器的名称和厂(所)内的编号。门外应挂警告牌,写明“高压危险”字样。 3.监视测量仪表和保护装置 3.1 变压器用熔断器做保护装置时,其熔断器的性能必须满足极限熔断电流、灵敏度和选择性的要求; 3.2 发电厂和变电所的主变压器及主要的厂用变压器,应安装测量上层油温的温度表;

相关文档
最新文档