生化习题及参考答案

生化习题及参考答案
生化习题及参考答案

仅为参考答案,不是标准答案。有打问号的题目需自己找答案

第一章蛋白质的结构与功能

一、名词解释

1.肽键: 由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。

2.肽单元:参与肽键的6个原子C1、C、O、N、H、C2位于同一平面,构成肽单元。

3.蛋白质二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要的化学键:氢键

4.蛋白质三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要靠次级键维系,包括:疏水键、盐键、氢键和范德华力。

5.模体:在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,具有特殊功能,称为模体。

6.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。

7.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域

8.蛋白质一级结构:蛋白质多肽链中氨基酸的排列顺序

9.蛋白质四级结构:指含有多条肽链的寡聚蛋白质分子中各亚基间相互作用,形成的构象。蛋白质亚基间的相互关系及空间排布,亚基之间的结合力主要是疏水作用,其次是氢键和离子键。

二、思考题:

1. 举例说明蛋白质一级结构与功能的关系。

1)一级结构是空间结构的基础

例:经变性后又复性的核糖核酸酶分子中二硫键的配对方式与天然分子相同。说明蛋白质一级结构是其高级结构形成的基础和决定性的因素。

2)一级结构与功能

(1)一级结构相似的多肽或蛋白质,其空间结构、功能亦相似。如哺乳动物的胰岛素分子等。

(2)有些蛋白质分子中起关键作用的氨基酸残基缺失或被替代都会影响空间构象及生理功能。如镰刀型血红蛋白贫血病。

(3)蛋白酶原的激活

2.试述蛋白质二级结构的形成基础及几种构象特点。

二级结构的基础是肽平面,其构象包括α-螺旋、β折叠、β转角、无规则卷曲。(1)-螺旋特征是:

①以肽键平面为单位,右手螺旋;

②每螺旋圈个氨基酸残基,螺距;

③氢键保持螺旋结构的稳定,氢键的方向与螺旋长轴基本平行;

④氨基酸侧链伸向螺旋外侧,并影响α螺旋的形成和稳定。

(2)-折叠的特征:

①多肽链较伸展,呈锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方;

②两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,两条肽链走向可相

同,也可相反;

③氢键稳固β—折叠结构。

3.蛋白质的三级结构的含义及维持其构象稳定的作用力。

整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。

主要作用力为疏水键、离子键、氢键和Van der Waals力

4.蛋白质变性的机制、对理化性质的影响。

在某些物理和化学因素作用下,其特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等,本质为破坏非共价键和二硫键,不改变蛋白质的一级结构。举例:临床医学上,变性因素常被应用来消毒及灭菌。

此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。

5.举例说明蛋白质空间结构与功能关系。

分子的构象与功能的关系

1)蛋白质变性:一级结构不变,但空间构象改变,进而使蛋白质的生物学活性、理化性质也改变。

2)肌红蛋白与血红蛋白:氨基酸序列差别很大,但在血红素周围的构象高度相似,均有对氧的结合能力。

3)酶的别构调节

4)四级结构与功能:亚基构象改变可传递,进而影响其他亚基的构象改变及生物学活性。

如别构调节、协同效应、血红蛋白的氧解离曲线。

第三章酶

一、名词解释:

1.酶: 由活细胞合成的、对其特异底物起高效催化作用的蛋白质

2.酶的活性中心:指酶分子表面能与底物特异结合并将底物转化为产物的具有特定空间结构的局部区域。

3. 酶的特异性:一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物。

4. 酶的变构效应: 一些代谢物与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性。

5. 酶的共价修饰: 在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性

6. 酶原: 有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原

7. 酶原激活:一定条件下,酶原受某种因素作用后,分子结构发生变化,暴露或形成活性中心,转变为有活性的酶。

8. 同工酶:指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。

二、思考题

1、试述酶促反应的特点

酶与一般催化剂的相同点:⑴在反应前后没有质和量的变化;⑵只能催化热力学允许的化学反应;⑶加速可逆反应的进程,不改变反应的平衡点。

酶催化作用的特点:⑴酶促反应具有极高的效率;⑵酶促反应具有高度的特异性(Specificity);⑶酶促反应的可调节性;⑷活性的不稳定性。

2、试述结合酶的组成特点及其B族维生素在其中的作用

VB1参与组成的辅酶①α-酮酸氧化脱羧酶的辅酶②转酮醇酶的辅酶

VB2是体内氧化还原酶的辅基,如:琥珀酸脱氢酶、黄嘌呤氧化酶及NADH脱氢酶等,主要起氢传递体的作用。

VPP的活体形式NAD+和NADP+在体内是多种不需氧脱氢酶的辅酶。

VB6参与组成的辅酶①氨基酸代谢中的转氨酶及脱羧酶的辅酶②δ-氨基γ-酮戊酸(ALA)合成酶的辅酶③糖原磷酸化酶的重要组成部分,参与糖原分解为1-磷酸葡萄搪的过程。

泛酸参与组成的辅酶在体内CoA及ACP构成酰基转移酶的辅酶。

生物素是体内多种羧化酶的辅酶,参与C02的羧化过程

叶酸的活体形式FH4是一碳单位转移酶的辅酶,起一碳单位传递体的作用。

3、酶促反应速度受哪些因素影响

影响因素包括有:底物浓度、酶浓度、pH、温度、激活剂、抑制剂等。

当底物浓度较低时:反应速度与底物浓度成正比;反应为一级反应。随着底物

浓度的增高:反应速度不再成正比例加速;反应为混合级反应。当底物浓度高

达一定程度:反应速度不再增加,达最大速度;反应为零级反应。

当[S]>>[E],酶可被底物饱和的情况下,反应速度与酶浓度成正比。

在一定温度下,酶促反应速度达最大值,这个温度称为酶的最适温度。低温时,

酶活性受到抑制(但未失活),温度回升,酶可恢复活性;高温>60℃,酶开

始变性,80℃变性不可逆,失去活性。

PH影响:E活性中心必需基团、S中基团的解离状态。在某一PH条件下,酶的催化能力最强,酶促反应速度达最大值,此时的PH称为酶的最适PH。

抑制剂对反应速度的影响:不可逆性抑制、可逆性抑制。

4、试用竞争性抑制的原理说明磺胺药抑制细菌的作用机理。

与对氨基苯甲酸竞争二氢叶酸合成酶:

5、试述酶原激活的机制及某些酶以酶原形式存在的生理意义

酶原分子内肽键的一处或多处断裂,进而使分子构象发生一定程度的改变,从而形成或暴露酶的活性中心部位。生物学意义:

1)保证合成酶的细胞本身的蛋白质不受蛋白酶的水解破坏。

2)保证合成的酶在特定部位和环境中发挥起生理作用。

如消化系统:以蛋血酶原形式分泌,避免细胞产生的蛋白酶对细胞自身消化。凝血系统:血管内,凝血酶原没有凝血作用,保证了血流畅通。可以视为酶的储存形式。

第04章聚糖结构与功能第05章维生素与无机盐

一、名词解释:

1.维生素: 维生素(vitamin)是机体维持正常功能所必需,但在体内不能合成或合成量很少,

必须由食物供给的一组低分子量有机物质。

2.微量元素:微量元素是指人体中每人每天的需要量在100㎎以下的元素。

3.糖蛋白: 由短链寡糖与蛋白质共价结合形成的复合物。

4.蛋白聚糖:糖胺聚糖和核心蛋白共价结合形成的蛋白聚糖,是结缔组织基质的主要成分。

二、思考题

1.哪些B 族维生素参与糖代谢,试从辅酶的形式、参与的代谢及其在反应中的作用等来总结。

维生素B1在糖代谢中具有重要作用,缺乏可引起脚气病。TPP是α-酮酸氧化脱羧酶的辅酶,也是转酮酶的辅酶,且TPP在神经传导中起一定的作用,抑制胆碱酯酶的活性。

2.简述糖蛋白寡糖链的功能。

3.简述蛋白聚糖的功能。

(一)聚糖可影响糖蛋白生物活性

保护糖蛋白不受蛋白酶的水解,延长其半衰期;

蛋白质的聚糖也可起屏障作用,影响糖蛋白的作用;

聚糖还可以避免蛋白质中抗原决定簇被免疫系统识别而产生抗体。

(二)对糖蛋白新生肽链的影响

参与新生肽链的折叠并维持蛋白质的正确的空间构象;影响亚基聚合;糖蛋白在细胞内的分拣和投送。

(三)聚糖对蛋白质在细胞内的分拣、投送和分泌中的作用

有些蛋白质的投送信号存在于肽链内,但有些是与其糖链有关。

(四)糖蛋白聚糖具有分子间的识别作用

聚糖中单糖分子连接的多样性是聚糖起到分子识别作用的基础。

受体与配体识别和结合也需聚糖的参与。

细胞表面糖复合物的聚糖还能介导细胞-细胞的结合。

4.简述糖蛋白的N-连接寡糖链的结构及分型。

糖蛋白的糖链与蛋白部分的Asn-X-Ser序列的天氡酰胺氮以共价键连接称N-连接糖蛋白。①高甘露糖型②复杂性③杂合型

第6章糖代谢

一、名词解释:

1.糖无氧氧化: 在缺氧情况下,葡萄糖生成乳酸(lactate)的过程称之为糖酵解。

2.底物水平磷酸化:底物分子内部能量重新分布,释放高能键,使ADP磷酸化生成ATP的

过程,称为底物水平磷酸化。

3.糖有氧氧化: 糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成

H2O和CO2,并释放出能量的过程。

4.巴斯德效应:巴斯德效应(Pastuer effect)指有氧氧化抑制糖酵解的现象。

5.糖原合成: 糖原的合成(glycogenesis) 指由葡萄糖合成糖原的过程。

6.糖原分解:糖原分解(glycogenolysis )习惯上指肝糖原分解成为葡萄糖的过程。

7.糖异生: 是指从非糖化合物转变为葡萄糖或糖原的过程。

8.乳酸循环:由糖经无氧酵解过程所产生的乳酸,可进入肝脏经过糖异生途径重新转变为

葡萄糖,避免了乳酸的堆积,但过程中需耗能,此为乳酸循环。

9.血糖:指血液中的葡萄糖

二、思考题

1.糖酵解途径中ATP是如何产生和利用

方式:底物水平磷酸化,是机体在缺氧情况下获取能量的有效方式,是某些细

胞在氧供应正常情况下的重要供能途径。

2.试述三羧酸循环的主要过程和生理意义。

TAC指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢

脱羧,又生成草酰乙酸,再重复循环反应的过程。TAC过程的反应部位是线粒体。经过一次三羧酸循环,消耗一分子乙酰CoA,经四次脱氢,二次脱羧,一次底物水平磷酸化。生成1分子FADH2,3分子NADH+H+,2分子CO2,1分子GTP。关键酶有:柠檬酸合酶、α-酮戊二酸脱氢酶复合体、异柠檬酸脱氢酶。整个循环反应为不可逆反应

生理意义:是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的

枢纽;为其它物质代谢提供小分子前体;为呼吸链提供H+ + e。

3.简述磷酸戊糖途径的生理意义。

为核苷酸的生成提供核糖,提供NADPH作为供氢体参与多种代谢反应:1. NADPH是体内许多合成代谢的供氢体;2. NADPH参与体内的羟化反应,与生物合成或生物转化有关;3. NADPH可维持GSH的还原性

4.试述糖异生途径中哪些反应和酶与糖酵解途径不同

酵解途径中有3个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。酵解中的不可逆反应即:G在己糖激酶的作用下转变成G-6-P,F-6-P在磷酸果糖激酶1作用下转变为F-1,6-2P,PEP在丙酮酸激酶作用下转变为丙酮酸。糖异生是:①丙酮酸在丙酮酸羧化酶作用下转变成草酰乙酸,草酰乙酸在磷酸烯醇式丙酮酸羧激酶转变成PEP后再进入糖异生途径。②1,6-双磷酸果糖转变为6-磷酸果糖由果糖双磷酸酶催化③6-磷酸葡萄糖水解为葡萄糖由葡萄糖6磷酸酶催化。

5.试述血糖的来源和去路。

血糖来源于食物的消化和吸收,还可由肝糖原分解以及体内非糖物质经糖异生而来。最终可经有氧氧化彻底转变成水和CO2,还可在肝脏合成糖原,也可通过磷酸戊糖途径转变成其他糖,最后还可通过脂类、氨基酸代谢转变成脂肪和氨基酸。

第七章脂类代谢

一、名词解释

1.营养必需脂肪酸: 机体自身不能合成,必须由食物提供,是动物不可缺少的营养素,故称为营养必需脂酸

2.脂肪动员:是指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。

3.激素敏感性脂肪酶: 是脂肪分解的限速酶,受多种激素的调控

4.酮体:乙酰乙酸、β-羟丁酸、丙酮三者总称为酮体。

5.血浆脂蛋白: 血脂与血浆中的蛋白质结合,以脂蛋白(lipoprotein)形式而运输

二、问答题

1.简述脂肪动员的基本过程,及激素对其影响作用

首先是脂解激素与其受体结合,激活G蛋白,由活化的G蛋白激活腺苷酸环化酶,然后ATP在腺苷酸环化酶的作用下转变成CAMP,CAMP又可激活PKA,无活性的激素敏感性甘油三酯脂肪酶(HSL)在活化的PKA的作用下转变成有活性的HLS,之后TG在HLSb的作用下脱去一份子的FFA,变成甘油二酯,甘油二酯再在甘油二酯脂肪酶作用下水解成一份子的FFA和甘油一酯,最后甘油一酯在甘油一酯脂肪酶的作用下水解成甘油和游离脂肪酸。

2.计算1mol 12碳饱和脂肪酸彻底氧化分解时生成的ATP数。

总反应经过5轮β-氧化,生成6分子CoA,5分子NADH+H+,5分子FADH2,生成ATP 6×10 + 5×+ 5×=80,由于反应消耗2个高能磷酸键,所以最终所的能量为80-2=78.

3.酮体是如何产生和利用的

2分子的乙酰辅酶A在乙酰乙酰CoA硫解酶的作用下脱去一份子的CoASH,生成乙酰乙酰辅酶A,随后乙酰乙酰辅酶A在HMGCoA合酶作用下与一份子的乙酰辅酶A合成羟甲基戊二酸单酰辅酶A(HMGCOA),而HMGCOA再在HMGCOA裂解酶的作用下裂解生成乙酰辅酶A和乙酰乙酸,乙酰乙酸又可通过加氢生成β-羟丁酸,本过程为可逆,另外乙酰乙酸还可脱去一份子的CO2生成丙酮,此步反应不可逆。

酮体是肝脏输出能源的一种形式。

酮体分子小,溶于水,能在血液中运输,可通过血脑屏障,是肌肉尤其是脑组织的重要能源。

肝外组织有活性较高的酮体利用酶。

酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗。4.试述人体胆固醇的来源与去路。

体内的胆固醇来自食物和内源性合成,乙酰CoA和NADPH是胆固醇合成基本原料,胆固醇在在肝细胞中转化成胆汁酸(bile acid),随胆汁经胆管排入十二指肠,是体内代谢的主要去路。胆固醇可转化为类固醇激素,胆固醇可转化为维生素D3的前体。

5.血浆脂蛋白分为哪几类各类脂蛋白在组成上和功能上各有何特点

分为乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白四类,

酯,低密度脂蛋白主要转运内源性胆固醇,高密度脂蛋白主要是参与胆固醇的逆向转运(RCT),即将肝外组织细胞内的胆固醇,通过血循环转运到肝,在肝转化为肝汁酸后排出体外。HDL还是apo的储存库,尤其是apo CⅡ。

第八章生物氧化

一、名词解释

1.生物氧化:物质在生物体内进行的氧化,主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成CO2 和H2O的过程。

2.氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。

3.呼吸链:指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链

O比值:指氧化磷酸化过程中,每消耗1/2摩尔O2所生成ATP的摩尔数(或一对电子通过氧化呼吸链传递给氧所生成ATP分子数)。

5.高能磷酸键:水解时释放的能量大于25kJ/mol的磷酸酯键,常表示为~P。

6.底物水平磷酸化:与脱氢等反应偶联,底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP的过程。

二、问答题

1.何谓呼吸链其排列顺序如何

指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链。氧化呼吸链组分按氧化还原电位由低到高的顺序排列。

2.什么是P/O比值简述其测定的意义。

指氧化磷酸化过程中,每消耗1/2摩尔O2所生成ATP的摩尔数。

3.线粒体外的NADH是如何进行氧化磷酸化的

胞浆中NADH通过穿梭机制进入线粒体的氧化呼吸链,胞浆中NADH必须经一定转运机

制进入线粒体,再经呼吸链进行氧化磷酸化。即α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭,①α-磷酸甘油穿梭主要存在于脑和骨骼肌中:首先是NADH+H+磷酸二羟丙酮在线粒体胞浆侧结合,将NADH+H+的H离子传递给磷酸二羟丙酮形成α-磷酸甘油,后者穿梭线粒体外膜入膜间隙后,与线粒体内膜的FAD结合形成FADH2进入呼吸链。②苹果酸-天冬氨酸穿梭主要存在于肝和心肌:首先是NADH+H+与草酰乙酸在苹果酸脱氢酶的作用下将H离子转移到苹果酸上,苹果酸穿梭线粒体内膜入基质侧再在苹果酸脱氢酶的作用下与NAD+结合重新将H离子捕获形成NADH+ H+,而此时生成的草酰乙酸与基质侧的谷氨酸在谷草转氨酶的作用下生成α-酮戊二酸和天冬氨酸,α-酮戊二酸在α-酮戊二酸载体作用下穿梭出内膜入胞液侧,天冬氨酸在氨基酸酸性载体的作用下穿梭出内膜入胞液侧,之后这2者再在谷草转氨酶的作用下重新生成谷氨酸和草酰乙酸,进入下一轮的NADH穿梭机制。

4.比较两条电子传递链顺序和产生ATP部位的异同点。

⑴NADH氧化呼吸链

NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2

NADH →复合体Ⅰ→Q产生一份子ATP,Q →复合体Ⅲ→Cyt c产生一份子ATP,Cyt c →复合体Ⅳ→O2产生一份子ATP。

⑵琥珀酸氧化呼吸链(FADH2氧化呼吸链)

琥珀酸→复合体Ⅱ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2

Q →复合体Ⅲ→Cyt c产生一份子ATP,Cyt c →复合体Ⅳ→O2产生一份子ATP。

5.如何理解生物体内的能量代谢以ATP为中心

ATP在能量代谢中起核心作用,(一)ATP是体内能量捕获和释放利用的重要分子

①ATP是体内最重要的高能磷酸化合物,是细胞可直接利用能量形式。

②营养物分解产生的能量约40%用于产生ATP。

③体内许多代谢物的“活化”反应(吸能)大多直接或间接地与ATP酸酐键的水解放

④反应相偶联,使“活化”反应能顺利进行。

(二)ATP是体内能量转移和磷酸核苷化合物相互转变的核心

(三)ATP通过转移自身基团提供能量

(四)磷酸肌酸是高能键能量的储存形式

第九章氨基酸代谢

一、名词解释

1.营养必需氨基酸:指体内需要而又不能自身合成,必须由食物供给的氨基酸,共有8种:Val、Ile、Leu、Phe、Met、Trp、Thr、Lys。

2.食物蛋白质的互补作用:指营养价值较低的蛋白质混合食用,其必需氨基酸可以互相补充而提高营养价值。

3.蛋白质的腐败作用:肠道细菌对未被消化的蛋白质及其消化产物所起的作用。

4.氨基酸代谢库:食物蛋白质经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸及体内合成的非必需氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库(metabolic pool) 。

5.联合脱氨基:两种脱氨基方式的联合作用,使氨基酸脱下α-氨基生成α-酮酸的过程。

6.转氨基作用:在转氨酶(transaminase)的作用下,某一氨基酸去掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程。

7.一碳单位:某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团,称为一碳单位

8.生糖兼生酮氨基酸:异亮氨酸,苯丙氨酸,酪氨酸,苏氨酸,色氨酸都属于生酮兼生酮氨基酸。

9.丙氨酸-葡萄糖循环:丙氨酸和葡萄糖周而复始的转变,完成骨骼肌与肝之间氨的转运,这一途径即为丙氨酸-葡萄糖循环。

二、问答题

1.简述氨基酸在体内的代谢概况。

成人体内的蛋白质每天约有1%~2%被降解,主要是肌肉蛋白质。蛋白质降解产生的氨基酸,大约70%~80%被重新利用合成新的蛋白质。(1)食物中的蛋白质在胃肠道被消化吸收后转变成氨基酸进入血液,经过脱氨基作用生成α-酮酸和NH3,α-酮酸可彻底氧化分解并提供能量,或经氨基化生成营养非必需氨基酸,还可转变成糖及脂类化合物。而NH3通过丙氨酸-葡萄糖循环从骨骼肌运往肝,也可通过谷氨酰胺从脑和骨骼肌等组织运往肝或肾,而在肝内合成尿素,这是最主要的去路;合成非必需氨基酸和其它含氮化合物以及谷氨酰胺,最后在肾小管分泌的NH3在酸性条件下生成NH4+,随尿排出。(2)组织蛋白质在体内分解生成组织氨基酸,后者经脱羧基作用生成胺和CO2,也可经代谢作用最终生成嘌呤、嘧啶、肌酸等含氮化合物。未被代谢的组织氨基酸又可重新合成组织蛋白质。

2.试述体内氨基酸脱氨基作用有哪些方式

①氨基酸通过转氨基作用脱去氨基,即在转氨酶(transaminase)的作用下,某一氨基酸去

掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程。转氨基作用不仅是体内多数氨基酸脱氨基的重要方式,也是机体合成非必需氨基酸的重要途径。通过此种方式并未产生游离的氨。

②L-谷氨酸通过L-谷氨酸脱氢酶催化脱去氨基,此种方法存在于肝、脑、肾中,辅酶为NAD+ 或NADP+,GTP、ATP为其抑制剂,GDP、ADP为其激活剂。典型为转氨基偶联氧化脱氨基作用:此种方式既是氨基酸脱氨基的主要方式,也是体内合成非必需氨基酸的主要方式。

③氨基酸通过嘌呤核苷酸循环脱去氨基,主要在心肌、骨骼肌组织。

④氨基酸通过氨基酸氧化酶脱去氨基

3.为什么测定血清中转氨酶活性可以作为肝、心组织损伤的参考指标

正常时体内多种转氨酶主要存在于相应组织细胞中,血清含量极低,如谷丙转氨酶(GPT)在肝细胞中活性最高,而谷草转氨酶(GOT)在心肌细胞中活性最高,当肝细胞或心肌细胞受损时上述转氨酶分别释放入血,此时就可在血中测得转氨酶值的升高。

4.脑细胞中产生的氨如何转运、解毒、排出

在脑中,氨与谷氨酸在谷氨酰胺合成酶的催化下合成谷氨酰胺,谷氨酰胺是氨的解毒产物,也是氨的储存及运输形式,谷氨酰胺由血液运往肝或肾,再经谷氨酰胺酶水解成谷氨酸及氨,最后由尿排出体外。

5.试述尿素生成的详细过程

尿素生成的过程称为鸟氨酸循环,又称尿素循环或Krebs- Henseleit循环。反应首先在肝细胞线粒体中进行,第一步:由NH3、CO2和ATP在氨基甲酰磷酸合成酶Ⅰ的作用下缩合生成氨基甲酰磷酸,反应消耗2分子ATP;第二步:氨基甲酰磷酸与鸟氨酸在鸟氨酸氨基甲酰转移酶(OCT)作用下生成瓜氨酸,瓜氨酸生成后进入胞液。第三步:瓜氨酸与天冬氨酸在精氨酸代琥珀酸合成酶作用下合成精氨酸代琥珀酸,此反应在胞液中进行。第四步:精氨酸代琥珀酸在精氨酸代琥珀酸裂解酶作用下裂解生成精氨酸和延胡索酸,后者进入三羧酸循环,而精氨酸则在精氨酸酶的作用下水解释放尿素并再生成鸟氨酸。小结:原料:①2 分子氨,一个来自于游离氨,另一个来自天冬氨酸。②过程:通过鸟氨酸循环,先在线粒体中进行,再在胞液中进行。③耗能:3个ATP,4 个高能磷酸键。

6.为什么VitB12、叶酸缺乏能引起巨红细胞性贫血

(1)叶酸在小肠水解吸收后,在二氢叶酸还原酶的作用下还原成有活性的四氢叶酸(FH4),FH4是一碳单位的载体,一碳单位在体内参加嘌呤、嘧啶等多种物质的合成,FH4缺乏时,嘌呤嘧啶合成障碍造成DNA合成受到抑制,骨髓红细胞DNA合成减少,细胞分裂

速度降低,细胞体积变大,造成巨幼红细胞性贫血。(2)VB12影响一碳单位的代谢和脂肪酸的合成,VB12缺乏时,甲硫氨酸合成减少,FH4再生受到影响,造成核酸合成障碍而组织细胞分裂进而产生巨幼红细胞性贫血。

7.试述体内氨的来源和去路。

来源:(1)食物蛋白质消化吸收入血;(2)组织蛋白质分解;(3)体内合成非必需氨基酸。去路:(1)在肝内合成尿素,这是最主要的去路;(2)合成非必需氨基酸及其它含氮化合物;(3)与谷氨酸在谷氨酰胺合成酶的作用下合成谷氨酰胺;(4)肾小管泌氨:分泌的NH3在酸性条件下生成NH4+,随尿排出。

第11章非营养物质代谢

一、名词解释

1、生物转化:机体对内、外源性的非营养物质通过代谢转化,提高其水溶性和极性,易于从尿或胆汁排出的过程。

2、混合功能氧化酶:在催化反应中,使氧分子中一个氧加到底物分子中,而另一氧原子使NADH氧化生成水,即一个氧分子发挥了两种功能,故又称混合功能氧化酶

3、初级胆汁酸:是肝细胞以胆固醇为原料直接合成的胆汁酸,包括胆酸、鹅脱氧胆酸及相应结合型胆汁酸。

4、胆汁酸的肠肝循环:在肝细胞合成的初级胆汁酸,随胆汁流入肠道变为次级胆汁酸,肠内约有95%胆汁酸经门静脉重吸收入肝,并与肝新合成的结合胆汁酸一道再经胆道排入肠道,此过程称为胆汁酸的肝肠循环。

5、胆色素:是体内铁卟啉化合物主要分解代谢产物,包括:胆红素、胆绿素、胆素原和胆素

6、未结合胆红素:在血浆中主要与清蛋白结合而运输的胆红素称为未结合胆红素,为脂溶性,不能经尿排出,易透过细胞膜产生毒性作用。

7、结合胆红素:胆红素在肝细胞内与葡萄糖醛酸结合生成的胆红素称为结合胆红素,为水溶性,可从尿中排出。

二、问答题

1.生物转化的反应类型主要有哪些

答:氧化、还原、水解、结合

2.试述胆汁酸的主要生理功能

答:①促进脂类的消化和吸收②维持胆汁中胆固醇的溶解状态以抑制胆固醇的析出

3.肝脏在胆红素代谢中有何作用

答:1)游离胆红素可渗透肝细胞膜而被摄取血中胆红素以胆红素-清蛋白的形式送输到肝脏,在与清蛋白分离后很快被肝细胞摄取。胆红素可以自由双向通透肝血窦肝细胞膜表面进入肝细胞。胆红素进入肝细胞后,随即与细胞液中Y和Z蛋白结合,主要是与Y蛋白结合将其携带至肝细胞滑面内质网。

2)胆红素在内质网结合葡糖醛酸生成水溶性结合胆红素胆红素分子的丙酸基与葡萄糖醛酸以酯键结合,生成葡糖醛酸胆红素。把这些在肝与葡糖醛酸结合转化的胆红素称为结合胆红素或肝胆红素。

3)肝细胞向胆小管分泌结合胆红素结合胆红素水溶性强,被肝细胞分泌进入胆管系统,

随胆汁排入小肠。肝细胞向胆小管分泌结合胆红素是一个逆浓度梯度的耗能过程,也是肝脏处理胆红素的一个溥弱环节。

4.胆色素在肠道中如何代谢、转运和排泄

胆色素是铁卟啉化合物的主要分解产物,主要来自衰老的红细胞。单核吞噬系统破坏衰老红细胞释放出珠蛋白和血红素,血红素由血红素加氧酶、胆绿素还原酶催化经胆绿素生成亲脂疏水的胆红素。游离胆红素在血液中与清蛋白结合而运输,被肝摄取后与葡糖醛酸结合转化生成结合胆红素而彻底解毒,结合胆红素经胆管入肠并在肠菌作用下水解、还原生成胆素原,大部分随粪便排出;少量则由小肠重吸收入肝并再排入肠腔,构成胆素原的肠肝循环。有小部分重吸收的胆素原经体循环至肾随尿排出。

5.简述血红素合成的特点

答:1)体内大多数组织均可合成血红素,但主要在骨髓的幼红细胞和网织红细胞合成,其次是肝细胞。成熟红细胞不含线粒体,不能合成血红素。2)血红素合成的原料是琥珀酰CoA、甘氨酸和Fe2+。3)血红素合成的起始和终末阶段在线粒体,中间过程则在胞质中进行,这种亚细胞定位有利于终产物血红素对ALA合酶的有效反馈抑制调节。

第12章物质代谢的整合与调节

1、体内物质代谢有哪些特点

答:(1)体内各种物质代谢过程相互联系形成一个整体;

(2)机体物质代谢不断收到精细调节;

(3)各组织、器官物质代谢各具特色;

(4)体内各种代谢物都具有共同的代谢池;

(5)ATP是机体储存能量和消耗能量的共同形式;

(6)NADPH提供合成代谢所需的还原当量。

2、体内脂肪酸能否转变为葡萄糖为什么

答:不能,脂肪酸分解成乙酰CoA,要转变为糖乙酰CoA首先应变成丙酮酸,但糖分解代谢过程中,丙酮酸至乙酰CoA这步反应为不可逆反应,故乙酰CoA不能朝糖异生的方向进行,脂肪酸也就不能转变为葡萄糖。

3、用所需的知识,简要说明下列物质代谢途径是否能进行,是何原因

(1)葡萄糖→软脂酸

(2)软脂酸→葡萄糖

(3)丙氨酸→葡萄糖

(4)葡萄糖→亚油酸

(5)亮氨酸→葡萄糖

答:(1)葡萄糖生成软脂酸可以在体内进行。葡萄糖分解产生的乙酰COA可以做为软脂酸合成原料,磷酸戊糖途径生成的NADPH可以做为其还原力,通过脂肪酸合成途径合成脂肪酸。

(2)软脂酸不能在哺乳动物体内生成葡萄糖。脂脂酸分解产物乙酰COA不能异生为糖。软脂酸能在植物和微生物体内生成葡萄糖。脂脂酸分解产物乙酰COA通过乙醛酸循环可以生成琥珀酸,琥珀酸可异生为糖。

(3)丙氨酸可生成糖。丙氨酸脱氨后生成丙酮酸,可按糖异生途径生成葡萄糖。

(4)葡萄糖在哺乳动物体内不能合成亚油酸。因为缺少在第九位碳以后再引入双键的酶,不能合成高级不饱和脂肪酸。但植物和微生物可以!

(5)亮氨酸不能生成葡萄糖。因为亮氨酸是生酮氨基酸,代谢产物是乙酰COA,不能转化为糖。

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

生物化学试题及参考答案

121.胆固醇在体内的主要代谢去路是(C) A.转变成胆固醇酯 B.转变为维生素D3 C.合成胆汁酸 D.合成类固醇激素 E.转变为二氢胆固醇 125.肝细胞内脂肪合成后的主要去向是(C) A. C. E. A.胆A.激酶 136.高密度脂蛋白的主要功能是(D) A.转运外源性脂肪 B.转运内源性脂肪 C.转运胆固醇 D.逆转胆固醇 E.转运游离脂肪酸 138.家族性高胆固醇血症纯合子的原发性代谢障碍是(C)

A.缺乏载脂蛋白B B.由VLDL生成LDL增加 C.细胞膜LDL受体功能缺陷 D.肝脏HMG-CoA还原酶活性增加 E.脂酰胆固醇脂酰转移酶(ACAT)活性降低 139.下列哪种磷脂含有胆碱(B) A.脑磷脂 B.卵磷脂 C.心磷脂 D.磷脂酸 E.脑苷脂 )A. D. A. E. A. 谢 A. 216.直接参与胆固醇合成的物质是(ACE) A.乙酰CoA B.丙二酰CoA C.ATP D.NADH E.NADPH 217.胆固醇在体内可以转变为(BDE) A.维生素D2 B.睾酮 C.胆红素 D.醛固酮 E.鹅胆酸220.合成甘油磷脂共同需要的原料(ABE)

A.甘油 B.脂肪酸 C.胆碱 D.乙醇胺 E.磷酸盐 222.脂蛋白的结构是(ABCDE) A.脂蛋白呈球状颗粒 B.脂蛋白具有亲水表面和疏水核心 C.载脂蛋白位于表面 D.CM、VLDL主要以甘油三酯为核心 E.LDL、HDL主要的胆固醇酯为核心 过淋巴系统进入血液循环。 230、写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?

答:胆固醇合成的基本原料是乙酰CoA、NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆汁酸、类固醇激素和维生素D3。231、简述血脂的来源和去路? 答:来源:食物脂类的消化吸收;体内自身合成的 2、 (β-[及 胰岛素抑制HSL活性及肉碱脂酰转移酶工的活性,增加乙酰CoA羧化酶的活性,故能促进脂肪合成,抑制脂肪分解及脂肪酸的氧化。 29、乙酰CoA可进入以下代谢途径: 答:①进入三羧酸循环氧化分解为和O,产生大量

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

生物化学题库及答案1

生物膜 五、问答题 1.正常生物膜中,脂质分子以什么的结构和状态存在? 答:.脂质分子以脂双层结构存在,其状态为液晶态。 2.流动镶嵌模型的要点是什么? 答:.蛋白质和脂质分子都有流动性,膜具有二侧不对称性,蛋白质附在膜表面或嵌入膜内部 3.外周蛋白和嵌入蛋白在提取性质上有那些不同?现代生物膜的结构要点是什么? 4.什么是生物膜的相变?生物膜可以几种状态存在? 5.什么是液晶相?它有何特点? 6.影响生物膜相变的因素有那些?他们是如何对生物膜的相变影响的? 7.物质的跨膜运输有那些主要类型?各种类型的要点是什么? 1.脂质分子以脂双层结构存在,其状态为液晶态。 2.蛋白质和脂质分子都有流动性,膜具有二侧不对称性,蛋白质附在膜表面或嵌入膜内部 3.由于外周蛋白与膜以极性键结合,所以可以有普通的方法予以提取;由于嵌入蛋白与膜通过非极性键结合,所以只能用特殊的方法予以提取。 现代生物膜结构要点:脂双层是生物膜的骨架;蛋白质以外周蛋白和嵌入蛋白两种方式与膜结合;膜脂和膜蛋白在结构和功能上都具有二侧不对称性;膜具有一定的流动性;膜组分之间有相互作用。 4.生物膜从一种状态变为另一种状态的变化过程为生物膜的相变,一般指液晶相与晶胶相之间的变化。生物膜可以三种状态存在,即:晶胶相、液晶相和液相。 5.生物膜既有液态的流动性,又有晶体的有序性的状态称为液晶相。其特点为:头部有序,尾部无序,短程有序,长程无序,有序的流动,流动的有序。 6.影响生物膜相变的因素及其作用为:A、脂肪酸链的长度,其长度越长,膜的相变温度越高;B、脂肪酸链的不饱和度,其不饱和度越高,膜的相变温度越低;C、固醇类,他们可使液晶相存在温度范围变宽;D、蛋白质,其影响与固醇类相似。 7.有两种运输类型,即主动运输和被动运输,被动运输又分为简单扩散和帮助扩散两种。简单扩散运输方 向为从高浓度向低浓度,不需载体和能量;帮助扩散运输方向同上,需要载体,但不需能量;主动运输运 输方向为从低浓度向高浓度,需要载体和能量。 生物氧化与氧化磷酸化 一、选择题 1.生物氧化的底物是: A、无机离子 B、蛋白质 C、核酸 D、小分子有机物 2.除了哪一种化合物外,下列化合物都含有高能键? A、磷酸烯醇式丙酮酸 B、磷酸肌酸 C、ADP D、G-6-P E、1,3-二磷酸甘油酸 3.下列哪一种氧化还原体系的氧化还原电位最大? A、延胡羧酸→丙酮酸 B、CoQ(氧化型) →CoQ(还原型) C、Cyta Fe2+→Cyta Fe3+ D、Cytb Fe3+→Cytb Fe2+ E、NAD+→NADH 4.呼吸链的电子传递体中,有一组分不是蛋白质而是脂质,这就是:

生物化学试题库(试题库+答案)

生物化学试题库及其答案——糖类化学 一、填空题 1.纤维素是由________________组成,它们之间通过________________糖苷键相连。 2.常用定量测定还原糖的试剂为________________试剂和 ________________试剂。 3.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是 ________________,肌肉中含量最丰富的糖是________________。 4.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 5.鉴别糖的普通方法为________________试验。 6.蛋白聚糖是由________________和________________共价结合形成的复合物。 7.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。 8.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。 9.多糖的构象大致可分为________________、________________、 ________________和________________四种类型,决定其构象的主要因素是 ________________。 二、是非题 1.[ ]果糖是左旋的,因此它属于L-构型。 2.[ ]从热力学上讲,葡萄糖的船式构象比椅式构象更稳 定。 3.[ ]糖原、淀粉和纤维素分子中都有一个还原端,所以它们都有还原性。 4.[ ]同一种单糖的α-型和β-型是对映体。 5.[ ]糖的变旋现象是指糖溶液放置后,旋光方向从右旋变成左旋或从左旋变成右旋。 6.[ ]D-葡萄糖的对映体为L-葡萄糖,后者存在于自然界。 7.[ ]D-葡萄糖,D-甘露糖和D-果糖生成同一种糖脎。 8.[ ]糖链的合成无模板,糖基的顺序由基因编码的转移酶决定。 9.[ ]醛式葡萄糖变成环状后无还原性。 10.[ ]肽聚糖分子中不仅有L-型氨基酸,而且还有D-型氨基酸。 三、选择题

生物化学习题及答案

第一章糖习题 一选择题 1.糖是生物体维持生命活动提供能量的(B)(南京师范大学2001年)A.次要来源 B.主要来源 C.唯一来源D.重要来源 2. 纤维素与半纤维素的最终水解产物是(B)(南京师范大学2000年) A.杂合多糖 B。葡萄糖 C.直链淀粉 D.支链淀粉 3. 下列那个糖是酮糖(A)(中科院1997年) A。D—果糖 B。D—半乳糖C.乳糖D.蔗糖 4.下列哪个糖不是还原糖(D)(清华大学2002年) A. D-果糖 B。 D-半乳糖 C。乳糖 D.蔗糖 5。分子式为C5H10O5的开链醛糖有多少个可能的异构体(C)(中科院1996) A。2B.4 C。8 D。6 6。下列那种糖不能生成糖殺(C) A.葡萄糖 B. 果糖 C.蔗糖 D. 乳糖 7. 直链淀粉遇碘呈(D) A.红色 B。黄色 C。紫色 D。蓝色 8.纤维素的组成单糖和糖苷键的连接方式为(C) A. 葡萄糖,α—1,4—糖苷键 B. 葡萄糖,β-1,3—糖苷键 C. 葡萄糖,β-1,4糖苷键 D。半乳糖,β—1,4半乳糖9.有五个碳原子的糖(C) A。 D—果糖B。赤藓糖C.2—脱氧核糖D. D-木糖 10.决定葡萄糖是D型还是L型立体异构体的碳原子是(D) A. C2 B. C3 C。 C4 D.C5二填空题 1。人血液中含量最丰富的糖是___葡萄糖___,肝脏中含量最丰富的糖是___肝糖原___,肌肉中含量最丰富的糖是___肌糖原__. 2.蔗糖是由一分子___D—葡萄糖__和一分子__D-果糖__组成的,他们之间通过_α—β-1,2-糖苷键___糖苷键相连。 3.生物体内常见的双糖有__麦芽糖__,__蔗糖__,和__乳糖__。 4.判断一个糖的D-型和L—型是以__5号___碳原子上羟基的位置作依据。 5.乳糖是由一分子___ D-葡萄糖___和一分子___ D—半乳糖___组成,它们之间通过___β—1,4糖苷键___糖苷键连接起来. 6.直链淀粉遇碘呈____蓝___色,支链淀粉遇碘呈____紫红___色,糖原遇碘呈____红__色。 三名词解释 1.构象分子中各个原子核基团在三维空间的排列和分布。 2.构型在立体异构中取代原子或基团在空间的取向。 3.糖苷键半糖半缩醛结构上的羟基可以与其他含羟基的化合物(如醇、酚类)失水缩合 而成缩醛式衍生物,成为糖苷,之间的化学键即为糖苷键。 4.差向异构体含有多个手性中心的立体异构体中,只有一个手性中心的构型不同,其余

生物化学题库(含答案).

蛋白质 一、填空R (1)氨基酸的结构通式为H2N-C-COOH 。 (2)组成蛋白质分子的碱性氨基酸有赖氨酸、组氨酸、精氨酸,酸性氨基酸有天冬氨酸、谷氨酸。 (3)氨基酸的等电点pI是指氨基酸所带净电荷为零时溶液的pH值。 (4)蛋白质的常见结构有α-螺旋β-折叠β-转角和无规卷曲。 (5)SDS-PAGE纯化分离蛋白质是根据各种蛋白质分子量大小不同。 (6)氨基酸在等电点时主要以两性离子形式存在,在pH>pI时的溶液中,大部分以__阴_离子形式存在,在pH

生物化学试题及答案(1)

生物化学试题(1) 第一章蛋白质的结构与功能 [测试题] 一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序 8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀 15.电泳 16.透析 17.层析 18.沉降系数 19.双缩脲反应 20.谷胱甘肽 二、填空题 21.在各种蛋白质分子中,含量比较相近的元素是____,测得某蛋白质样品含氮量为15.2克,该样品白质含量应为____克。 22.组成蛋白质的基本单位是____,它们的结构均为____,它们之间靠____键彼此连接而形成的物质称为____。 23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带____电荷,在碱性溶液中带____电荷,因此,氨基酸是____电解质。当所带的正、负电荷相等时,氨基酸成为____离子,此时溶液的pH值称为该氨基酸的____。 24.决定蛋白质的空间构象和生物学功能的是蛋白质的____级结构,该结构是指多肽链中____的排列顺序。25.蛋白质的二级结构是蛋白质分子中某一段肽链的____构象,多肽链的折叠盘绕是以____为基础的,常见的二级结构形式包括____,____,____和____。 26.维持蛋白质二级结构的化学键是____,它们是在肽键平面上的____和____之间形成。 27.稳定蛋白质三级结构的次级键包括____,____,____和____等。 28.构成蛋白质的氨基酸有____种,除____外都有旋光性。其中碱性氨基酸有____,____,____。酸性氨基酸有____,____。 29.电泳法分离蛋白质主要根据在某一pH值条件下,蛋白质所带的净电荷____而达到分离的目的,还和蛋白质的____及____有一定关系。 30.蛋白质在pI时以____离子的形式存在,在pH>pI的溶液中,大部分以____离子形式存在,在pH

生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis)11.糖原累积症 2.糖的有氧氧化12.糖酵解途径 3.磷酸戊糖途径13.血糖(blood sugar) 4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin) 5.糖原的合成与分解15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环)16.肾糖阈 7.巴斯德效应(Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路18.低血糖休克 9.乳酸循环(coris循环)19.活性葡萄糖 10.三碳途径20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子A TP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子A TP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个A TP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度A TP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。 三、选择题

生物化学试题及答案 .

生物化学试题及答案 绪论 一.名词解释 1.生物化学 2.生物大分子 蛋白质 一、名词解释 1、等电点 2、等离子点 3、肽平面 4、蛋白质一级结构 5、蛋白质二级结构 6、超二级结构 7、结构域 8、蛋白质三级结构 9、蛋白质四级结构 10、亚基 11、寡聚蛋白 12、蛋白质变性 13、蛋白质沉淀 14、蛋白质盐析 15、蛋白质盐溶 16、简单蛋白质 17、结合蛋白质 18、必需氨基酸 19、同源蛋白质 二、填空题 1、某蛋白质样品中的氮含量为0.40g,那么此样品中约含蛋白 g。 2、蛋白质水解会导致产物发生消旋。 3、蛋白质的基本化学单位是,其构象的基本单位是。 4、芳香族氨基酸包括、和。 5、常见的蛋白质氨基酸按极性可分为、、和。 6、氨基酸处在pH大于其pI的溶液时,分子带净电,在电场中向极游动。 7、蛋白质的最大吸收峰波长为。 8、构成蛋白质的氨基酸除外,均含有手性α-碳原子。 9、天然蛋白质氨基酸的构型绝大多数为。 10、在近紫外区只有、、和具有吸收光的能力。 11、常用于测定蛋白质N末端的反应有、和。 12、α-氨基酸与茚三酮反应生成色化合物。 13、脯氨酸与羟脯氨酸与茚三酮反应生成色化合物。 14、坂口反应可用于检测,指示现象为出现。 15、肽键中羰基氧和酰胺氢呈式排列。 16、还原型谷胱甘肽的缩写是。 17、蛋白质的一级结构主要靠和维系;空间结构则主要依靠维系。 18、维持蛋白质的空间结构的次级键包括、、和等。 19、常见的蛋白质二级结构包括、、、和等。 20、β-折叠可分和。 21、常见的超二级结构形式有、、和等。 22、蛋白质具有其特异性的功能主要取决于自身的排列顺序。 23、蛋白质按分子轴比可分为和。 24、已知谷氨酸的pK1(α-COOH)为2.19,pK2(γ-COOH)为4.25,其pK3(α-NH3+)为9.67,其pI为。 25、溶液pH等于等电点时,蛋白质的溶解度最。 三、简答题

生物化学试题及答案

一、判断题(正确的画“√”,错的画“×”,填入答题框。每题1分,共20分) 1、DNA是遗传物质,而RNA则不是。 2、天然氨基酸都有一个不对称α-碳原子。 3、蛋白质降解的泛肽途径是一个耗能的过程,而蛋白酶对蛋白质的水解不需要ATP。 4、酶的最适温度是酶的一个特征性常数。 5、糖异生途径是由相同的一批酶催化的糖酵解途径的逆转。 6、哺乳动物无氧下不能存活,因为葡萄糖酵解不能合成ATP。 7、DNA聚合酶和RNA聚合酶的催化反应都需要引物。 8、变性后的蛋白质其分子量也发生改变。 9、tRNA的二级结构是倒L型。 10、端粒酶是一种反转录酶。 11、原核细胞新生肽链N端第一个残基为fMet,真核细胞新生肽链N端为Met。 12、DNA复制与转录的共同点在于都是以双链DNA为模板,以半保留方式进行,最后形成链状产物。 13、对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。 14、对于任一双链DNA分子来说,分子中的G和C的含量愈高,其熔点(Tm)值愈大。 15、DNA损伤重组修复可将损伤部位彻底修复。 16、蛋白质在小于等电点的pH溶液中,向阳极移动,而在大于等电点的pH溶液中将向阴极移动。 17、酮体是在肝内合成,肝外利用。 18、镰刀型红细胞贫血病是一种先天性遗传病,其病因是由于血红蛋白的代谢发生障碍。 19、基因表达的最终产物都是蛋白质。 20、脂肪酸的从头合成需要NADPH+H+作为还原反应的供氢体。 二、单项选择题(请将正确答案填在答题框内。每题1分,共30分) 1、NAD+在酶促反应中转移() A、氨基 B、氧原子 C、羧基 D、氢原子 2、参与转录的酶是()。 A、依赖DNA的RNA聚合酶 B、依赖DNA的DNA聚合酶 C、依赖RNA的DNA聚合酶 D、依赖RNA的RNA聚合酶 3、米氏常数Km是一个可以用来度量()。 A、酶和底物亲和力大小的常数 B、酶促反应速度大小的常数 C、酶被底物饱和程度的常数 D、酶的稳定性的常数 4、某双链DNA纯样品含15%的A,该样品中G的含量为()。 A、35% B、15% C、30% D、20% 5、具有生物催化剂特征的核酶(ribozyme)其化学本质是()。 A、蛋白质 B、RNA C、DNA D、酶 6、下列与能量代谢有关的途径不在线粒体内进行的是()。 A、三羧酸循环 B、氧化磷酸化 C、脂肪酸β氧化 D、糖酵解作用 7、大肠杆菌有三种DNA聚合酶,其中主要参予DNA损伤修复的是()。

生物化学试题及答案

《基础生物化学》试题一 一、判断题(正确的画“√”,错的画“×”,填入答题框。每题1分,共20分) 1、DNA是遗传物质,而RNA则不是。 2、天然氨基酸都有一个不对称α-碳原子。 3、蛋白质降解的泛肽途径是一个耗能的过程,而蛋白酶对蛋白质的水解不需要ATP。 4、酶的最适温度是酶的一个特征性常数。 5、糖异生途径是由相同的一批酶催化的糖酵解途径的逆转。 6、哺乳动物无氧下不能存活,因为葡萄糖酵解不能合成ATP。 7、DNA聚合酶和RNA聚合酶的催化反应都需要引物。 8、变性后的蛋白质其分子量也发生改变。 9、tRNA的二级结构是倒L型。 10、端粒酶是一种反转录酶。 11、原核细胞新生肽链N端第一个残基为fMet,真核细胞新生肽链N端为Met。 12、DNA复制与转录的共同点在于都是以双链DNA为模板,以半保留方式进行,最后形成链状产物。 13、对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。 14、对于任一双链DNA分子来说,分子中的G和C的含量愈高,其熔点(Tm)值愈大。 15、DNA损伤重组修复可将损伤部位彻底修复。 16、蛋白质在小于等电点的pH溶液中,向阳极移动,而在大于等电点的pH溶液中将向阴极移动。 17、酮体是在肝内合成,肝外利用。 18、镰刀型红细胞贫血病是一种先天性遗传病,其病因是由于血红蛋白的代谢发生障碍。 19、基因表达的最终产物都是蛋白质。 20、脂肪酸的从头合成需要NADPH+H+作为还原反应的供氢体。 二、单项选择题(请将正确答案填在答题框内。每题1分,共30分) 1、NAD+在酶促反应中转移() A、氨基 B、氧原子 C、羧基 D、氢原子 2、参与转录的酶是()。 A、依赖DNA的RNA聚合酶 B、依赖DNA的DNA聚合酶 C、依赖RNA的DNA聚合酶 D、依赖RNA的RNA聚合酶 3、米氏常数Km是一个可以用来度量()。 A、酶和底物亲和力大小的常数 B、酶促反应速度大小的常数 C、酶被底物饱和程度的常数 D、酶的稳定性的常数 4、某双链DNA纯样品含15%的A,该样品中G的含量为()。 A、35% B、15% C、30% D、20% 5、具有生物催化剂特征的核酶(ribozyme)其化学本质是()。 A、蛋白质 B、RNA C、DNA D、酶 6、下列与能量代谢有关的途径不在线粒体内进行的是()。 A、三羧酸循环 B、氧化磷酸化 C、脂肪酸β氧化 D、糖酵解作用 7、大肠杆菌有三种DNA聚合酶,其中主要参予DNA损伤修复的是()。 A、DNA聚合酶Ⅰ B、DNA聚合酶Ⅱ C、DNA聚合酶Ⅲ D、都不可以 8、分离鉴定氨基酸的纸层析是()。 A、离子交换层析 B、亲和层析 C、分配层析 D、薄层层析 9、糖酵解中,下列()催化的反应不是限速反应。 A、丙酮酸激酶 B、磷酸果糖激酶 C、己糖激酶 D、磷酸丙糖异构酶 10、DNA复制需要:(1)DNA聚合酶Ⅲ;(2)解链蛋白;(3)DNA聚合酶Ⅰ;(4)DNA指导的RNA聚合酶;(5)DNA连接酶参加。其作用的顺序是()。

生物化学试题及答案(期末用)

生物化学试题及答案 维生素 一、名词解释 1、维生素 二、填空题 1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。 2、维生素按溶解性可分为和。 3、水溶性维生素主要包括和VC。 4、脂脂性维生素包括为、、和。 三、简答题 1、简述B族维生素与辅助因子的关系。 【参考答案】 一、名词解释 1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须 食物供给一类小分子有机物。 二、填空题 1、辅因子; 2、水溶性维生素、脂性维生素; 3、B族维生素; 4、VA、VD、VE、VK; 三、简答题

生物氧化 一、名词 解释 1.生物 氧化 2.呼吸链 3.氧化磷酸化 4.P/O 比值 二、填空题 1.生物氧化是____在细胞中____,同时产生____的过程。 3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。 4.真核细胞生物氧化的主要场所是____,呼吸链和氧化磷酸化偶联因子都定位于____。 5.以NADH 为辅酶的脱氢酶类主要是参与____作用,即参与从____到____的电子传递作用;以NADPH 为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____ 反应中需电子的中间物上。 6.由NADH →O2的电子传递中,释放的能量足以偶联ATP 合成的3个部位是____、____和____。

9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 12.ATP生成的主要方式有____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。 三、问答题 1.试比较生物氧化与体外物质氧化的异同。 2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。 7.简述化学渗透学说。 【参考答案】 一、名词解释 1.物质在生物体内进行的氧化反应称生物氧化。

生物化学测试题及答案

生物化学第一章蛋白质化学测试题 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25) A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸是:E A.精氨酸B.赖氨酸C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构的主要化学键是:D A.盐键 B.疏水键 C.肽键D.氢键 E.二硫键(三级结构) 4.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 5.具有四级结构的蛋白质特征是:E A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:C A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性是由于:D A.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 8.变性蛋白质的主要特点是:D A.粘度下降B.溶解度增加C.不易被蛋白酶水解 D.生物学活性丧失 E.容易被盐析出现沉淀

9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:B A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸?E A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸二、多项选择题 1.含硫氨基酸包括:AD A.蛋氨酸 B.苏氨酸 C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACD A.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸 3.芳香族氨基酸是:ABD A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸 4.关于α-螺旋正确的是:ABD A.螺旋中每3.6个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定(氢键) D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括:ABCD A.α-螺旋 B.β-片层C.β-转角 D.无规卷曲 6.下列关于β-片层结构的论述哪些是正确的:ABC A.是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定(氢键) 7.维持蛋白质三级结构的主要键是:BCD A.肽键B.疏水键C.离子键D.范德华引力 8.下列哪种蛋白质在pH5的溶液中带正电荷?BCD(>5) A.pI为4.5的蛋白质B.pI为7.4的蛋白质 C.pI为7的蛋白质D.pI为6.5的蛋白质 9.使蛋白质沉淀但不变性的方法有:AC A.中性盐沉淀蛋白 B.鞣酸沉淀蛋白 C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白 10.变性蛋白质的特性有:ABC

生物化学试题库及其答案糖代谢

一、选择题 1.果糖激酶所催化的反应产物是: A、F-1-P B、F-6-P C、F-1,6-2P D、G-6-P E、G-1-P 2.醛缩酶所催化的反应产物是: A、G-6-P B、F-6-P C、1,3-二磷酸甘油酸 D、3-磷酸甘油酸 E、磷酸二羟丙酮 3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的: A、羧基碳上 B、羟基碳上 C、甲基碳上 D、羟基和羧基碳上 E、羧基和甲基碳上 4.哪步反应是通过底物水平磷酸化方式生成高能化合物的? A、草酰琥珀酸→a-酮戊二酸 B、 a-酮戊二酸→琥珀酰CoA C、琥珀酰CoA→琥珀酸 D、琥珀酸→延胡羧酸 E、苹果酸→草酰乙酸 5.糖无氧分解有一步不可逆反应是下列那个酶催化的? A、3-磷酸甘油醛脱氢酶 B、丙酮酸激酶 C、醛缩酶 D、磷酸丙糖异构酶 E、乳酸脱氢酶 6.丙酮酸脱氢酶系催化的反应不需要下述那种物质? A、乙酰CoA B、硫辛酸 C、TPP D、生物素 E、NAD+ 7.三羧酸循环的限速酶是: A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 8.糖无氧氧化时,不可逆转的反应产物是: A、乳酸 B、甘油酸-3-P C、F-6-P D、乙醇 9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子是: A、NAD+ B、CoA-SH C、FAD D、TPP E、NADP+ 10.下面哪种酶在糖酵解和糖异生作用中都起作用: A、丙酮酸激酶 B、丙酮酸羧化酶 C、3-磷酸甘油酸脱氢酶 D、己糖激酶 E、果糖-1,6-二磷酸酯酶 11.催化直链淀粉转化为支链淀粉的酶是: A、R酶 B、D酶 C、Q酶 D、 a-1,6糖苷酶 12.支链淀粉降解分支点由下列那个酶催化? A、a和b-淀粉酶 B、Q酶 C、淀粉磷酸化酶 D、R—酶 13.三羧酸循环的下列反应中非氧化还原的步骤是: A、柠檬酸→异柠檬酸 B、异柠檬酸→a-酮戊二酸 C、a-酮戊二酸→琥珀酸 D、琥珀酸→延胡羧酸 14.一分子乙酰CoA经三羧酸循环彻底氧化后产物是: A、草酰乙酸 B、草酰乙酸和CO2 C、CO2+H2O D、CO2,NADH和FADH2 15.关于磷酸戊糖途径的叙述错误的是: A、6-磷酸葡萄糖转变为戊糖

基础生物化学习题库及答案

基础生物化学习题集及答案 第一章蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸与侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔就是具有性;而后一类氨基酸侧链(或基团)共有的特征就是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别就是氨基酸与氨基酸;酸性氨基酸也有两种,分别就是氨基酸与氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据就是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团就是 ;半胱氨酸的侧链基团就是 ;组氨酸的侧链基团就是 。这三种氨基酸三字母代表符号分别就是 4.氨基酸与水合印三酮反应的基团就是 ,除脯氨酸以外反应产物的颜色就是 ;因为脯氨酸就是α—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、 ;次级键中属于共价键的就是键。 6.镰刀状贫血症就是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂就是 ;在寡肽或多肽序列测定中,Edman反应的主要特点就是。 8.蛋白质二级结构的基本类型有、、 与。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的α-螺旋往往会。 9.蛋白质水溶液就是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别就是

生物化学新试题库(含答案)

第28章脂代谢 一、判断题(每小题1.0分) 1.脂肪酸合成的碳源可以通过酰基载体蛋白穿过线粒体内膜而进入胞浆。(F ) 2.甘油在生物体内可转变为丙酮酸。(T) 3.在脂肪酸合成中,由乙酰辅酶A生成丙二酸单酰辅酶A的反应需要消耗两个高能键。(F) 4.只有偶数碳脂肪酸氧化分解产生乙酰辅酶A。( F ) 5.酮体在肝内产生,在肝外组织分解,是脂肪酸彻底氧化的产物。( F ) 6.胆固醇是环戊烷多氢菲的衍生物。(T) 7.脂肪酸的合成是脂肪酸?-氧化的逆过程。(F) 8.用乙酰辅酶A合成一分子软脂酸要消耗8分子ATP。( F ) 9.脂肪酸合成的每一步都需要CO2参加,所以脂肪酸分子中的碳都来自CO2。( F ) 10.?-氧化是指脂肪酸的降解每次都在α和?-碳原子之间发生断裂,产生一个二碳 化合物的过程。(T ) 11.磷脂酸是三脂酰甘油和磷脂合成的中间物。(T ) 12.CTP参加磷脂生物合成,UTP参加糖原生物合成,GTP参加蛋白质生物合成(T) 13.在动植物体内所有脂肪酸的降解都是从羧基端开始。(F) 14.不饱和脂肪酸和奇数脂肪酸的氧化分解与?-氧化无关。( F )

15.胆固醇的合成与脂肪酸的降解无关。( F ) 16.植物油的必需脂肪酸含量较动物油丰富,所以植物油比动物油营养价格高。( T ) 17.ACP是饱和脂肪酸碳链延长途径中二碳单位的活化供体。( F ) 18.人可以从食物中获得胆固醇,如果食物中胆固醇含量不足,人体就会出现胆固醇缺乏症。(F ) 19.脂肪酸β—氧化是在线粒体中进行的,其所需的五种酶均在线粒体内。( F ) 20.细胞中酰基的主要载体一般是ACP。( F ) 21.脂肪酸的从头合成与其在微粒体中碳链的延长过程是全完相同的。(F)22.脂肪酸的分解与合成是两个不同的过程,所以它们之间无任何制约关系。( F ) 23.脂肪酸的彻底氧化需要三羧酸循环的参与。(T) 24.动物不能把脂肪酸转变为葡萄糖。(T) 25.柠檬酸是脂肪酸从头合成的重要调节物。(T ) 26.已酸和葡萄糖均含6个碳原子,所以它们氧化放出的能量是相同的。(F)27.酮体是体内不正常的代谢产物。( F ) 28.不饱和脂肪酸与饱和脂酸的β—氧化过程相似,所需的酶均相同。(F )29.脂类代谢与糖类代谢属不同的代谢过程,因而它们之间并无联系。(F)30.胞浆中只能合成小于14个碳原子的脂肪酸。(F) 二、选择题(每小题1.0分)

相关文档
最新文档