2019-2020年七年级下学期第二次月考数学试题含答案解析
湖北省武汉市六中2019-2020学年第二学期人教版七年级下(3月份)月考考试数学试卷(解析版)

2019-2020学年七年级第二学期(3月份)月考数学试卷一、选择题1.下列各数中是无理数的是()A.B.0.C.D.2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,正确的是()A.B.C.D.4.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为()A.138°B.128°C.117°D.102°5.如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,1)C.(1,﹣2)D.(1,2)6.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°7.下列命题中:①若=﹣,则=﹣;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④的算术平方根是9.是真命题的有()A.1 个B.2 个C.3 个D.4 个8.如图,小数沿正东方向散步行至A处后,沿北偏东40°方向继续前行至B处,接着沿北偏西30°方向继续前行至C处,之后小数决定沿正东方向行走,则方向的调整应该是()A.右转60°B.左转60°C.右转120°D.左转120°9.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°10.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)11.如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.412.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°二、填空题(共4小题)13.比较大小:.14.离最近的整数是.15.点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为.16.已知y=++x+3,求=.三、解答题(共1题,共8分,一空一分)17.完成以下推理过程:如图,已知∠A=∠1,∠C=∠F,求证:∠CBA=∠E.证明:∵∠A=∠1(已知)∴AC∥()∴∠C=()又∵∠C=∠F(已知)∴∠F=∠(等量代换)∴BC∥()∴∠CBA=∠E()三、填空题(共4小题,每小题4分,共16分)18.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA =2PB,则点P的坐标为.19.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为度.(用n来表示)20.A,B,C三点是同一个平面直角坐标系内不同的三点,A点在坐标轴上,点A向左平移3个单位长度,再向上平移2个单位长度就到了B点;直线BC∥y轴,C点的横坐标、纵坐标互为相反数,且点B和点C到x轴的距离相等.则A点的坐标是.21.如图,已知A(0,2),B(﹣1,﹣2),将AB向右平移到CD的位置,S四边形ABDC=a(a>30),若E(m,n)为四边形ABDC内一点,且S△ABE=5,则m与n的数量关系为,m的取值范围是.三、解答题(共5小题,第22题8分,第23题8分,第24题8分,第25题12分,第26题12分,共48分)22.计算:(1)+﹣(2)(+2)﹣|﹣2|23.求下列各式中的x:(1)(x﹣1)2=16(2)(x﹣1)3﹣3=24.如图,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).(1)P(x0,y0)是△ABC内任一点,经平移后对应点为P1(x0+2,y0+1),将△ABC 作同样的平移,得到△A1B1C1,①直接写出A1、B1、C1的坐标.②若点E(a﹣2,5﹣b)是点F(2a﹣3,2b﹣5)通过平移变换得到的,求b﹣a的平方根.(2)若Q为x轴上一点,S△BCQ=S△ABC,直接写出点Q的坐标.25.已知,如图1,E为BC延长线上一点.(1)请你添加平行线证明:∠ACE=∠ABC+∠A.(2)如图2,若点D是线段AC上一点,且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.(3)如图3,已知E为BC延长线上一点,D是线段AC上一点,连接DE,若∠ABC 的平分线与∠ADE的平分线相交于点P,请你判断∠P、∠A、∠E的数量关系并证明你的结论.26.如图,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.(1)如图1,求A、B、C三点的坐标.(2)如图2,延长AC至P(﹣a,﹣5),连PO、PB.求.(3)将线段AC平移,使点A的对应点E恰好落在y轴正半轴上,点C的对应点为F,连AF交y轴于G,当EG=3OG时,求点E的坐标.参考答案一、选择题(共12小题,每小题3分,共36分)1.下列各数中是无理数的是()A.B.0.C.D.解:A.=3,是整数,属于有理数;B.是循环小数,属于有理数;C.是无理数;D.是分数,属于有理数.故选:C.2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限解:点P(2,﹣3)在第四象限.故选:D.3.下列各式中,正确的是()A.B.C.D.解:A、=|﹣3|=3;故A错误;B、=﹣|3|=﹣3;故B正确;C、=|±3|=3;故C错误;D、=|3|=3;故D错误.故选:B.4.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,则∠AOF的度数为()A.138°B.128°C.117°D.102°解:∵OE⊥CD,∴∠EOD=90°,∵∠EOF=142°,∴∠DOF=142°﹣90°=52°.∵∠BOD:∠BOF=1:3,∴∠BOD=∠DOF=26°,∴∠BOF=∠BOD+∠DOF=78°,∵∠AOF+∠BOF=180°,∴∠AOF=180°﹣∠BOF=180°﹣78°=102°.故选:D.5.如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,1)C.(1,﹣2)D.(1,2)解:建立平面直角坐标系如图,嘴的坐标为(1,2).故选:D.6.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB于点G,若∠BEF=70°,则∠AGF的度数为()A.35°B.45°C.55°D.65°【解答】证明:∵AB∥CD,∴∠EGF=∠DFG,∵FG平分∠DEF,∴∠EFG=∠DFG,∴∠EFG=∠EGF,∵∠BEF=70°,∴∠AGF=∠EFG=(180°﹣70°)=55°,故选:C.7.下列命题中:①若=﹣,则=﹣;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④的算术平方根是9.是真命题的有()A.1 个B.2 个C.3 个D.4 个解:①若=﹣,则=﹣,正确;②在同一平面内,若a⊥b,a⊥c,则b∥c,正确;③若ab=0,则P(a,b)表示原点或坐标轴,错误;④的算术平方根是3,错误;故选:B.8.如图,小数沿正东方向散步行至A处后,沿北偏东40°方向继续前行至B处,接着沿北偏西30°方向继续前行至C处,之后小数决定沿正东方向行走,则方向的调整应该是()A.右转60°B.左转60°C.右转120°D.左转120°解:由题意得:∠CBD=30°,过C作CD⊥BD于D,∵小数决定沿正东方向行走,∴∠CDB=90°,∴∠DCB=60°,∴∠ECD=120°,∴方向的调整应该是右转120°,故选:C.9.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.10.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(b﹣1,﹣a+1),故选:D.11.如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.4解:①若∠1=∠2,可得∠3=∠2,可得DB∥EC,则∠D=∠4,正确;②若∠C=∠D,得不出∠4=∠C,错误;③若∠A=∠F,得不出∠1=∠2,错误;④若∠1=∠2,∠C=∠D,则∠A=∠F,正确;⑤若∠C=∠D,∠A=∠F,则∠1=∠2,正确.故选:C.12.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°解:设∠DEF=α,则∠EFG=α,∵折叠11次后CF与GF重合,∴∠CFE=11∠EFG=11α,如图(2),∵CF∥DE,∴∠DEF+∠CFE=180°,∴α+11α=180°,∴α=15°,即∠DEF=15°.故选:D.二、填空题(共4小题,每小题3分,共12分)13.比较大小:>.解:∵()2=,()2=,∴>.故答案为:>.14.离最近的整数是8.解:∵49<58<64,∴7<<8,∵7.52=56.25<58,∴离最近的整数是8,故答案为:8.15.点M在第四象限,它到x轴的距离是4,到y轴的距离是5,则点M的坐标为(5,﹣4).解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为4,到y轴的距离为5,所以点M的坐标为(5,﹣4).故答案为:(5,﹣4).16.已知y=++x+3,求=3.解:由题意得:,解得:x=3,则y=6,∴===3,故答案为:3.三、解答题(共1题,共8分,一空一分)17.完成以下推理过程:如图,已知∠A=∠1,∠C=∠F,求证:∠CBA=∠E.证明:∵∠A=∠1(已知)∴AC∥DF(同位角相等,两直线平行)∴∠C=∠DGB(两直线平行,同位角相等)又∵∠C=∠F(已知)∴∠F=∠DGB(等量代换)∴BC∥EF(同位角相等,两直线平行)∴∠CBA=∠E(两直线平行.同位角相等)【解答】证明:∵∠A=∠1(已知)∴AC∥DF(同位角相等,两直线平行)∴∠C=∠DGB(两直线平行,同位角相等)又∵∠C=∠F(已知)∴∠F=∠DGB(等量代换)∴BC∥EF(同位角相等,两直线平行)∴∠CBA=∠E(两直线平行.同位角相等);故答案为:DF;同位角相等,两直线平行;∠DGB;两直线平行,同位角相等;DGB;EF;同位角相等,两直线平行;两直线平行.同位角相等.三、填空题(共4小题,每小题4分,共16分)18.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA =2PB,则点P的坐标为(﹣3,2)或(﹣3,﹣1).解:∵AB∥y轴,∴3a﹣6=﹣3,解得a=1,∴A(﹣3,5),∵B点坐标为(﹣3,2),∴AB=3,B在A的下方,①当P在线段AB上时,∵PA=2PB∴PA=AB=2,∴此时P坐标为(﹣3,2),②当P在AB延长线时,∵PA=2PB,即AB=PB,∴PA=2AB,∴此时P坐标为(﹣3,﹣1);故答案为(﹣3,2)或(﹣3,﹣1).19.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为n或180﹣n度.(用n来表示)解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.20.A,B,C三点是同一个平面直角坐标系内不同的三点,A点在坐标轴上,点A向左平移3个单位长度,再向上平移2个单位长度就到了B点;直线BC∥y轴,C点的横坐标、纵坐标互为相反数,且点B和点C到x轴的距离相等.则A点的坐标是(5,0)或(0,﹣5).解:当A点在x轴上时,设A(a,0),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(a﹣3,2),∵直线BC∥y轴,∴C点的横坐标是a﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(a﹣3,3﹣a),∵点B和点C到x轴的距离相等,∴2=|3﹣a|,∴a=1或a=5,∴A(1,0)或A(5,0),当A(1,0)时,B(﹣2,2),C(﹣2,2),不合题意;当A点在y轴上时,设A(0,a),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(﹣3,2+a),∵直线BC∥y轴,∴C点的横坐标是﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(﹣3,3),∵点B和点C到x轴的距离相等,∴|2+a|=3,∴a=1或a=﹣5,∴A(0,1)或A(0,﹣5),当A(0,1)时,B(﹣3,3),C(﹣3,3),不合题意;综上所述:A点的坐标为(5,0)或(0,﹣5).21.如图,已知A(0,2),B(﹣1,﹣2),将AB向右平移到CD的位置,S四边形ABDC=a(a>30),若E(m,n)为四边形ABDC内一点,且S△ABE=5,则m与n的数量关系为n=4m﹣8,m的取值范围是 1.5<m<2.5.解:如图,过点E作AB的平行线,交x轴于K,设K(a,0),AB交x轴于G,∵S△ABE=5,∴点E在平行于AB的直线EK上.设直线AB的解析式为y=kx+b.∵A(0,2),B(﹣1,﹣2),∴,解得,∴直线AB的解析式为y=4x+2,当y=0时,4x+2=0,解得x=﹣,∴G(﹣,0),∵AB∥EK,∴S△ABE=S△ABK=×(a+)×4=5,解得a=2,∴K(2,0),∴点E在直线y=4x﹣8上,∵E(m,n),∴n=4m﹣8(1.5<m<2.5).故答案为n=4m﹣8,1.5<m<2.5.三、解答题(共5小题,第22题8分,第23题8分,第24题8分,第25题12分,第26题12分,共48分)22.计算:(1)+﹣(2)(+2)﹣|﹣2|解:(1)原式=6+3﹣(﹣4),=6+3+4,=13;(2)原式=2+2﹣(2﹣),=2+2﹣2+,=2+.23.求下列各式中的x:(1)(x﹣1)2=16(2)(x﹣1)3﹣3=解:(1)(x﹣1)2=16,则x﹣1=±4,解得:x=5或﹣3;(2)∵(x﹣1)3﹣3=,∴(x﹣1)3=,∴x﹣1=,解得:x=.24.如图,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).(1)P(x0,y0)是△ABC内任一点,经平移后对应点为P1(x0+2,y0+1),将△ABC 作同样的平移,得到△A1B1C1,①直接写出A1、B1、C1的坐标.②若点E(a﹣2,5﹣b)是点F(2a﹣3,2b﹣5)通过平移变换得到的,求b﹣a的平方根.(2)若Q为x轴上一点,S△BCQ=S△ABC,直接写出点Q的坐标.解:(1)①△A1B1C1如图所示,A1(0,4),B1(﹣2,0).C1(3,1).②由题意:a﹣2=2a﹣3+2,5﹣b=2b﹣5+1,解得a=1,b=3,∴b﹣a=2,2的平方根为±.(2)设Q(m,0),由题意:•|m﹣1|×1=×(20﹣×2×4﹣×1×5﹣×3×3),解得m=﹣或,∴Q(﹣,0)或(,0).25.已知,如图1,E为BC延长线上一点.(1)请你添加平行线证明:∠ACE=∠ABC+∠A.(2)如图2,若点D是线段AC上一点,且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.(3)如图3,已知E为BC延长线上一点,D是线段AC上一点,连接DE,若∠ABC 的平分线与∠ADE的平分线相交于点P,请你判断∠P、∠A、∠E的数量关系并证明你的结论.解:(1)过点C作CD∥AB,如图1,∴∠A=∠ACD,∠B=∠DCE,∴∠ACD+∠DCE=∠A+∠B,即∠ACE=∠A+∠B;(2)∵DF∥BC,∴∠BDF=∠CBD,∵DG平分∠BDF,∴∠BDG=∠BDF=∠CBD,∵∠BCD+∠BDC+∠CBD=180°,∠BDC比∠ACB大20°,∴∠BDC=100°﹣,∴∠CDG=∠BDC+∠BDG=100°﹣+∠CBD=100°,∵DH平分∠GDC,∴∠GDH==50°;(3)设BP与AC的交点为点F,如图2,∵BP平分∠ABC,∴∠ABP=∠CBP=∠ABC,∵∠ACE=∠A+∠ABC,∠ADE=∠DCE+∠E,∴∠ADE=∠A+∠ABC+∠E,∵DP平分∠ADE,∴∠FDP=∠ADE=,∵∠AFP=∠A+∠ABF=∠A+,∠AFP=∠P+∠FDP,∴∠A+=∠P+∴∠P=(∠A﹣∠E).26.如图,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.(1)如图1,求A、B、C三点的坐标.(2)如图2,延长AC至P(﹣a,﹣5),连PO、PB.求.(3)将线段AC平移,使点A的对应点E恰好落在y轴正半轴上,点C的对应点为F,连AF交y轴于G,当EG=3OG时,求点E的坐标.解:(1)∵(a﹣2)2++|c+2|=0又∵(a﹣2)2≥0,≥0,|c+2|≥0,∴a﹣2=0,b+4=0,c+2=0,∴a=2,b=﹣4,c=﹣2,∴点A(2,1),点B(﹣4,﹣2),点C(0,﹣2).(2)如图2中,∵点A(2,1),点B(﹣4,﹣2),点C(0,﹣2),点P(﹣2,﹣5),∴S△AOC=×2×2=1,S△BOP=×2×4+×4×3﹣×2×2=8,∴==8.(3)如图3﹣1中,当E,G在原点同侧时,∵AC∥EF,∴∠A=∠F,∵∠EGF=∠AGC,EF=AC,∴△EGF≌△CGA(AAS),∴GE=GC,∵EG=3OG,C(0,﹣2)设OG=m,则EG=3m,∴OC=2,∴2=m+3m,∴m=1,∴OE=4m=4,∴E(0,4).如图2﹣2中,当E,G在原点两侧时,同法可证:EG=CG.设OG=n,则EG=3n,OE=2n,∴2﹣n=3n,∴n=,∴OE=1,∴E(0,1),综上所述,满足条件的点E的坐标为(0,1)或(0,4).。
北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
陕西省西安市灞桥区滨河学校2023-2024学年七年级下学期第二次月考数学试题

陕西省西安市灞桥区滨河学校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A .B .C .D .2.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为( )A .9710-⨯B .8710-⨯C .90.710-⨯D .80.710-⨯ 3.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是( )A .13B .29C .23D .494.如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,点E 为AB 的中点,连接DE ,若24AB =,6CD =,则DBE V 的面积为( )A .18B .24C .36D .725.下列对△ABC 的判断,错误的是( )A .若123ABC ∠∠∠=::::,则ABC V 是直角三角形B .若30A ∠=︒,50B ∠=︒,则ABC V 是锐角三角形C .若AB AC =,40B ∠=︒,则ABC V 是钝角三角形D .若22A B C ∠=∠=∠,则ABC V 是等腰直角三角形6.点P 在AOB ∠的平分线上,点P 到OA 边的距离等于7,点Q 是OB 边上的任意一点,下列选项正确的是( )A .7PQ <B .7PQ >C .7PQ ≥D .7PQ ≤7.如图,在Rt V ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB ,若∠BDE =56°,则∠DAE 的度数为( )度.A .23B .28C .52D .568.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度()h cm 与注水时间()t min 的函数图象大致是( )A .B .C .D .9.如图,已知CAE BAD ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,已知在四边形ABCD 内,DB DC =,60DCA ∠=︒,78DAC ∠=︒,24CAB ∠=︒,则ACB =∠( )A .15︒B .18︒C .20︒D .12︒二、填空题11.若35A ∠=︒,则A ∠的余角等于度.12.“任意买一张电影票座位号是偶数”,此事件是(填“不可能事件”或“必然事件”或“随机事件”).13.如图,△ABC 中,∠BAC =90°,AC =8cm ,DE 是BC 边上的垂直平分线,△ABD 的周长为14cm ,则△ABC 的面积是cm 2.14.已知三角形的三边长为410x 、、,化简:|5||15|x x -+-=.15.如图,在ABC V 中,点D ,E ,F 分别为BC AD CE ,,的中点,且12ABC S =△,则阴影部分AEF △的面积为.16.如图,在四边形ABCD 中,90B D ∠=∠=︒,在B C C D ,上分别找一点M ,N ,使A M N V 周长最小,此时80MAN ∠=︒,则BAD ∠的度数为.三、解答题17.计算:(1)202401(π 3.14)|2|---+-; (2)()()23422132m n m n mn ⎛⎫-⋅÷- ⎪⎝⎭; (3)()()()223352x y x y x y +---;(4)用简便方法计算:2202320202026-⨯.18.先化简,再求值:()()()()2254226x y y y x x y y x x ⎡⎤+----+÷⎣⎦,其中2x =,1y =. 19.尺规作图:已知△ABC ,在△ABC 内求作一点P ,使P 到∠A 的两边AB 、AC 的距离相等,且PB =P A .20.如图,在ABC V 中,40B ∠=︒,30C ∠=︒.边AB 的垂直平分线分别交BC AB 、于点D 和点F ,连接AD ,作CAD ∠的平分线交BC 于点E ,求DAE ∠的度数.21.在一个不透明的袋子中装有9个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后.(1)求摸出的球是红球的概率;(2)为了使摸出两种球的概率相同,再放进去同样的红球和黄球共7个,求再放入的红球的个数.22.如图,在ABC V 中,D 是AB 边上的点,BE 平分ABC ∠交CD 于点E ,EF AC ∥交AB 于点F ,已知A BCD ∠=∠.(1)试说明:EF EC =;(2)若110BEF ∠=︒,求ACD ∠的度数.23.科学家一直以来都在不断探索地球奥秘的路途中,经过大量的模拟实验,发现地表以下岩层的温度()C y ︒与所处深度()km x 的关系如表所示.(1)表中,自变量为______,因变量为______;(2)请求出地表以下岩层的温度与所处深度()km x 的关系式;(3)当岩层的温度为1280℃时,求所处深度.24.【数学思考】(1)在数学活动课上.老师让同学们就三角形的中线进行进一步的探究:如图1,AD 是ABC V 的中线,过点B 作AC 的平行线,交AD 的长线于点E ,发现DE 的长恰好等于中线AD 的长,请验证这一结论;【深入探究】(2)如图2,ABC V 中,点D ,E 在BC 边上,CD DE =,过点E 作EF AB ∥,交BAC ∠的角平分线AD 于点F ,试判断EF 与AC 的数量关系,并说明理由.【拓展延伸】(3)如图3,在ABC V 中,90BAC ∠=︒,AD 平分BAC ∠,点E 为BC 边的中点,过点E 作EF AD ∥,交AC 于点F ,交BA 的延长线于点G ,若16ABC S =V ,6CF =,则AG 的长度.。
人教版七年级数学下学期第二次数学月考试卷【含答题卡】

人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
2019-2020学年陕西省西安交大附中七年级(下)第二次月考数学试卷 解析版

2019-2020学年陕西省西安交大附中七年级(下)第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.3610.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为.13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC =°.三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)2019-2020学年陕西省西安交大附中七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A错误.(B)原式=8x3,故B错误.(D)原式=4a2﹣4ab+b2,故D错误.故选:C.2.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90°,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:D.5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:骑车的同学比步行的同学晚出发30分钟,所以A正确;步行的速度是6÷1=6千米/小时,所以B正确;骑车的同学从出发到追上步行的同学用了50﹣30=20分钟,所以C正确;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提前6分钟到达目的地,所以D错误;故选:D.6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°【分析】首先判定△DAE≌△CAB,进而可得∠1=∠AED,再根据余角的性质可得答案.【解答】解:∵在△DAE和△CAB中,∴△DAE≌△CAB(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:D.7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD 的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选:D.9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.36【分析】由题意表示出AB,AD,CG、FG,进而表示出BG,阴影部分面积=正方形ABCD+正方形ECGF面积﹣三角形ABD面积﹣三角形FBG面积,求出即可.【解答】解:由题意得:AB=AD=a,CG=FG=b,BG=BC+CG=a+b,∴S阴影=S正方形ABCD+S正方形ECGF﹣S直角△ABD﹣S直角△FBG=AB•AD+CG•FG﹣AB•AD﹣BG•FG=a2+b2﹣a2﹣(a+b)b=(a2+b2﹣ab)=[(a+b)2﹣3ab],∵a+b=18,ab=60,∴S阴影=×(182﹣3×60)=72.故选:B.10.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得到OE=OF =OD=2,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵O为∠ABC与∠ACB的平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=2,∴△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积=×(AB+BC+AC)×OD=×10×2=10,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.【分析】根据a m÷a n=a m﹣n;(a m)n=a mn得到a2m﹣n=a2m÷a n=(a m)2÷a n,然后把a m=3,a n=2代入计算即可.【解答】解:∵a2m﹣n=a2m÷a n=(a m)2÷a n,而a m=3,a n=2,∴a2m﹣n=32÷2=.故答案为.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为7×10﹣9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000007=7×10﹣9;故答案为:7×10﹣913.三角形两边长分别是2,4,第三边长为偶数,第三边长为4.【分析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为65°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A =FD,推出∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入求出即可.【解答】解:∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=∠BAD=x°,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=65°,∴∠F AD=∠F AC+∠CAD=65°+x°,∵∠FDA=∠B+∠BAD=∠B+x°,∴65°+x°=∠B+x°,∴∠B=65°,故答案为:65°.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC=72或()°.【分析】分两种情况讨论,依据等腰三角形的性质以及三角形内角和定理,即可得到∠ABC的度数.【解答】解:①如下图,若AB=AC,AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°,∴∠ABC=72°;②如图下图,若AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=()°,∴∠ABC=()°,故答案为:72或().三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及单项式乘以单项式运算法则计算得出答案.【解答】解:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.=9﹣4﹣1=4;(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.=8a4b6﹣9a4b6=﹣a4b6.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y)=[4(x2﹣2xy+y2)﹣(4x2﹣y2)]÷(﹣2y)=[(4x2﹣8xy+4y2)﹣(4x2﹣y2)]÷(﹣2y)=(5y2﹣8xy))÷(﹣2y)=4x﹣y,当x=2,y=﹣1时,原式=4×2﹣×(﹣1)=.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.【分析】用不打折的区域除以总区域即可得出答案.【解答】解:不打折的概率是:=.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)【分析】利用基本作图,过点C作直线AB的垂线,垂足为D.【解答】解:如图,CD为所作.21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.【分析】由等腰三角形的性质和平行线的性质证出∠DEA=∠CEB,由SAS证明△ADE ≌△BCE,即可得出结论.【解答】证明:∵AE=BE,∴∠EAB=∠EBA,∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E是CD的中点,∴DE=CE,在△ADE和△BCE 中,,∴△ADE≌△BCE(SAS),∴∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.【分析】(1)根据给出的体积公式,列表已经给出了面积和高,直接求解即可.(2)剩余的淤泥量=淤泥总量﹣清除的淤泥的量,由此可得出y与x的函数关系式.(3)将y=22代入(2)所求的式子中,得出的x的值就是所求的天数.【解答】解:(1)160×0.7=112万米3;(2)由题意y=112﹣0.6x(3)当y=22时,112﹣0.6x=22,解得:x=150天答:需要150天.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)【分析】(1)如图1中,作点D关于直线BC的对称点D′,连接ED′交BC于点P,连接PE,点P即为所求.(2)①如图2中,分别作A、B关于公路m、n的对称点A′、B′,连接A′B′交m、n于M、N两点,连AM、BN,则A→M→N→B即为最短路线.②如图,作点Q关于直线BD的对称点Q′,作AM⊥BC于M.由P A+PQ=P A+PQ′,推出根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.(3)作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P即为所求的点.【解答】解:(1)如图1中,点P即为所求.(2)①如图2中,线路A→M→N→B即为所求.②解:如图3中,作点Q关于直线BD的对称点Q′,作AM⊥BC于M,∵P A+PQ=P A+PQ′,∴根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.∵△ABC中,∠BAC=90°,AB=6,BC=10,∴AC=8,∴AM===.故答案为.(3)如图4中,作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P 即为所求的点.∵点B、E关于AC对称,∴∠DPC=∠BPC,∴∠APB=∠APD.故点P即为所求的点.。
2019-2020学年贵阳市名校七年级第二学期期末学业质量监测数学试题含解析

解:0.0007=7×10﹣4
故选C.
【点睛】
本题考查科学计数法,难度不大.
二、填空题
11.“b的 与c的和是负数”用不等式表示为_________.
【答案】 b+c<0
【解析】
“b的 与c的和是负数”用不等式表示为: .
故答案为: .
12.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.
三、解答题
18.解不等式组 并写出它的整数解.
【答案】不等式组的解集为 ,整数解为:2,3和1
【解析】
【分析】
先求出不等式组的解集,再求出不等式组的整数解即可.
【详解】
解:
由①得
由②得
该不等式组的解集为: ,
该不等式组的整数解为:2,3和1.
【点睛】
本题考查解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解题的关键.
19.△ABC中,∠C=60°,点D,E分别是边AC,BC上的点,点P是直线AB上一动点,连接PD,PE,设∠DPE=α.
(1)如图①所示,如果点P在线段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如图②所示,如果点P在线段BA上运动,
①依据题意补全图形;
②写出∠PEB+∠PDA的大小(用含α的式子表示);并说明理由。
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
人教版2019-2020学年七年级(下)开学考试数学试卷含解析

人教版2019-2020学年七年级(下)开学考试数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一、精心选一选(每小题3分,共30分)1.(3分)下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数2.(3分)下列各组数中,相等的是()A.(﹣5)2与﹣52B.|﹣5|2与﹣52C.(﹣7)3与﹣73D.|﹣7|3与﹣733.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣284.(3分)轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C 处的方向是()A.南偏东54°B.东偏北36°C.东偏南54°D.南偏东36°5.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对6.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣27.(3分)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣48.(3分)图的展开图是()A.B.C.D.9.(3分)如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a10.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.二、耐心填一填(每小题3分,共21分)11.(3分)南偏东15°和北偏东25°的两条射线组成的角等于度.12.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a=.13.(3分)若(a﹣3)2+|b+2|=0,则﹣b a=.14.(3分)八点三十分,时针与分针夹角的度数是.15.(3分)已知nx|n﹣1|+5=0为一元一次方程,则n=.16.(3分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB=cm.17.(3分)图形表示运算a﹣b+c,图形表示运算x+n﹣y﹣m,则×=(直接写出答案).三、用心做一做(本大题共49分)18.(5分)计算:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)219.(6分)解方程:(1);(2)20.(6分)已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.21.(5分)如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.22.(6分)已知线段AB=CD.且彼此重合各自的,M、N分别为AB、CD的中点,若MN=14,求AB的长.23.(6分)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.24.(7分)下列各小题中,都有OE平分∠AOC,OF平分∠BOC.(1)如图,若点A、O、B在一条直线上,则∠AOB与∠EOF的数量关系是:∠AOB=∠EOF.(2)如图,若点A、O、B不在一条直线上,则题(1)中的数量关系是否成立?请说明理由.(3)如图,若OA在∠BOC的内部,则题(1)中的数量关系是否仍成立?请说明理由25.(8分)李云是某农村中学的在校住宿生,开学初父母通过估算为他预存了一个学期的伙食费600元,学校的学生食堂规定一天的伙食标准:早餐每人1元,中餐、晚餐只能各选一份价格如表中的饭菜.价格1(单位:元/份)价格2(单位:元/份)中餐23晚餐23(1)请问该校每位住宿生一天的伙食费有几种可能的价格?其金额各是多少元?(2)若李云只选择(1)中的两种价格,并计划用餐108天,且刚好用完预存款,那么他应该选择哪两种价格?两种价格各用餐多少天?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.(3分)下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数【解答】解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.2.(3分)下列各组数中,相等的是()A.(﹣5)2与﹣52B.|﹣5|2与﹣52C.(﹣7)3与﹣73D.|﹣7|3与﹣73【解答】解:A、(﹣5)2=25,﹣52=﹣25,25≠﹣25,故本选项错误;B、|﹣5|2=25,﹣52=﹣25,25≠﹣25,故本选项错误;C、(﹣7)3=﹣343,﹣73=﹣343,故本选项正确;D、|﹣7|3=343,﹣73=﹣343,故本选项错误.故选:C.3.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣28【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选:B.4.(3分)轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C 处的方向是()A.南偏东54°B.东偏北36°C.东偏南54°D.南偏东36°【解答】解:轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C处的方向是南偏东54°,故选:A.5.(3分)∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对【解答】解:∵∠A=180°﹣125°12′,∴∠A的余角为90°﹣∠A=90°﹣(180°﹣125°12′)=125°12′﹣90°=35°12′.故选:B.6.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣2【解答】解:A、因为c=0时式子不成立,所以A错误;B、根据等式性质2,两边都乘以c,即可得到a=b,所以B正确;C、若a2=b2,则a=b或a=﹣b,所以C错误;D、根据等式性质2,两边都乘﹣3,得到x=﹣18,所以D错误;故选:B.7.(3分)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣4【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,∴2x3﹣8x2+x﹣1﹣(3x3+2mx2﹣5x+3)=﹣x3﹣(8+2m)x2+6x﹣4,∴8+2m=0,解得:m=﹣4.故选:D.8.(3分)图的展开图是()A.B.C.D.【解答】解:A、三角符号、圆圈和感叹号不在一条直线上,故本选项错误;B、感叹号应在圆圈的右面,故本选项错误;C、所给的图形不能折叠成正方体,故本选项错误;D、所给的图形经过折叠符合图的展开图,故本选项正确.故选:D.9.(3分)如图所示,a,b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为()A.3a+b B.3a﹣b C.3b+a D.3b﹣a【解答】解:由数轴得,﹣1<a<0,b>1,∴a+b>0,b﹣a>0,∴|a|+|b|+|a+b|+|b﹣a|=﹣a+b+a+b+b﹣a=3b﹣a.故选:D.10.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.二、耐心填一填(每小题3分,共21分)11.(3分)南偏东15°和北偏东25°的两条射线组成的角等于140度.【解答】解:南偏东15°和北偏东25°的两条射线组成的角=180°﹣15°﹣25°=140°.12.(3分)已知x=3是方程11﹣2x=ax﹣1的解,则a=2.【解答】解:将x=3代入方程中得:11﹣6=3a﹣1解得:a=2.故填:2.13.(3分)若(a﹣3)2+|b+2|=0,则﹣b a=8.【解答】解:根据题意得:a﹣3=0,b+2=0,解得:a=3,b=﹣2,则﹣b3=﹣(﹣2)3 =8.故答案是:8.14.(3分)八点三十分,时针与分针夹角的度数是75°.【解答】解:∵八点三十分,时针指在8与9中间,分针指在数字6上,∴时针与分针夹角是(2+0.5)×30°=75°.故答案为:75°.15.(3分)已知nx|n﹣1|+5=0为一元一次方程,则n=2.【解答】解:∵nx|n﹣1|+5=0为一元一次方程,∴n﹣1=1,且n≠0,故答案为:216.(3分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB=20cm.【解答】解:∵M是AB的中点,∴AM=AB,∵P为线段AB上一点,且AP=AB,∴PM=AM﹣AP=AB﹣AB=AB=2cm,∴AB=20cm.故答案为AB=20cm.17.(3分)图形表示运算a﹣b+c,图形表示运算x+n﹣y﹣m,则×=0(直接写出答案).【解答】解:根据题意得:×=[1﹣2+(﹣3)]×[4+7﹣6﹣5]=0.答案:0.三、用心做一做(本大题共49分)18.(5分)计算:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)2【解答】解:﹣8×(﹣2)4﹣(﹣)2×(﹣2)4+×(﹣3)2=﹣8×16﹣×16+×9=﹣128﹣4+4=﹣128.19.(6分)解方程:(1);(2)【解答】解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.20.(6分)已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.【解答】解:∵A=x3﹣5x2,B=x2﹣11x+6,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=x3﹣5x2﹣5(x2﹣11x+6),=x3﹣5x2﹣5x2+55x﹣30,=x3﹣10x2+55x﹣30,当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.21.(5分)如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.【解答】解:22.(6分)已知线段AB=CD.且彼此重合各自的,M、N分别为AB、CD的中点,若MN=14,求AB的长.【解答】解:设BC=x,则AC=BD=2x,BM=x=DN,BN=x,则x+x=14,解得:x=7,则AB=3x=21.23.(6分)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.【解答】解:设沙包落在A区域得x分,落在B区域得y分,根据题意,得解得∴x+3y=9+3×7=30分答:小华的四次总分为30分.24.(7分)下列各小题中,都有OE平分∠AOC,OF平分∠BOC.(1)如图,若点A、O、B在一条直线上,则∠AOB与∠EOF的数量关系是:∠AOB=2∠EOF.(2)如图,若点A、O、B不在一条直线上,则题(1)中的数量关系是否成立?请说明理由.(3)如图,若OA在∠BOC的内部,则题(1)中的数量关系是否仍成立?请说明理由【解答】解:(1)∠AOB=2∠EOF.(2分)(2)成立,理由是:(1分)因为OE平分∠AOC,所以∠EOC=∠AOC因为OF平分∠BOC,所以∠COF=∠BOC所以∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB(4分)(3)成立(1分)理由是:因为OE平分∠AOC,所以∠EOC=∠AOC因为OF平分∠BOC,所以∠COF=∠BOC所以∠EOF=∠COF﹣∠EOC=∠BOC﹣∠AOC=(∠BOC﹣∠AOC)=∠AOB所以∠AOB=2∠EOF(4分)25.(8分)李云是某农村中学的在校住宿生,开学初父母通过估算为他预存了一个学期的伙食费600元,学校的学生食堂规定一天的伙食标准:早餐每人1元,中餐、晚餐只能各选一份价格如表中的饭菜.价格1(单位:元/份)价格2(单位:元/份)中餐23晚餐23(1)请问该校每位住宿生一天的伙食费有几种可能的价格?其金额各是多少元?(2)若李云只选择(1)中的两种价格,并计划用餐108天,且刚好用完预存款,那么他应该选择哪两种价格?两种价格各用餐多少天?【解答】解:(1)该校每位住宿生一天的伙食费有3种可能价格,其金额分别是:1+2+2=5(元),1+2+3=1+3+2=6(元),1+3+3=7(元).(2)因为600÷108≈5.56所以他不可能选择6元和7元这两种价格.若他选择5元和6元两种价格,设选择5元的x天,则选择6元的(108﹣x)天,则5x+6(108﹣x)=600解得x=48,所以108﹣x=60.即选择每天5元的48天,每天6元的60天;若他选择5元和7元两种价格,设选择5元的y天,则选择7元的(108﹣y)天,则5y+7(108﹣y)=600解得y=78,所以108﹣x=30.即选择每天5元的78天,每天7元的30天.。
上海市七年级下学期数学第二次月考试卷

上海市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七下·碑林期末) 医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为()A . 0.156×10﹣3B . 1.56×10﹣3C . 1.56×10﹣4D . 15.6×10﹣42. (2分)如果t>0,那么a+t与a的大小关系是()A . a+t>aB . a+t<aC . a+t≥aD . 不能确定3. (2分) (2017九下·鄂州期中) 若方程组的解x,y满足0<x+y<1,则k的取值范围是()A . ﹣4<k<0B . ﹣1<k<0C . 0<k<8D . k>﹣44. (2分)下列因式分解中,正确的是()A . x2﹣4=(x+4)(x﹣4)B . 2x2﹣8=2(x2﹣4)C . a2﹣3=(a+ )(a﹣)D . 4x2+16=(2x+4)(2x﹣4)5. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2020八上·青山期末) 下列四个命题中的真命题有()①两条直线被第三条直线所截同位角相等;②三角形的一个外角等于它的两个内角之和;③两边分别相等且一组内角相等的两个三角形全等;④直角三角形的两锐角互余A . 1个B . 2个C . 3个D . 4个7. (2分)(2017·肥城模拟) 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A .B .C .D .8. (2分)不等式组的最小整数解为()A . -1B . 0C . 1D . 4二、填空题 (共8题;共9分)9. (1分)若x﹣y=﹣1,xy=3,则(x﹣1)(y+1)=________.10. (1分) (2019八上·花都期中) |-2|-20190=________;11. (2分)某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,老板最多降价________ 元.12. (1分)(2012·北海) 一个多边形的每一个外角都等于18°,它是________边形.13. (1分)(2017·沭阳模拟) 如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为________.14. (1分)有一组单项式:,,,.........,请观察它们的构成规律,用你发现的规律写出第10个单项式:________ .15. (1分)不等式组的解集是x>﹣2,则a的取值范围是________16. (1分) (2019七下·淮北期末) 已知关于x的不等式组无解,若m为正整数,则m的值是________.三、解答题 (共10题;共85分)17. (5分)先化简,再求值:(1) 3a2+[a2+(5a2﹣2a)﹣3(a2﹣3a)],其中a=﹣2.(2)﹣2(2x+y)2﹣(2x+y)+3(2x+y)2+(y+2x)﹣5,其中x=﹣1,y=2.18. (10分) (2019七下·南县期中) 解方程组:.19. (10分)(2019·凤山模拟) 解不等式组: .20. (6分)解答下列各题:(1) x取何值时,代数式3x+2的值不大于代数式4x+3的值?(2)当m为何值时,关于x的方程 x﹣1=m的解不小于3?(3)已知不等式2(x+3)﹣4<0,化简:|4x+1|﹣|2﹣4x|21. (2分) (2017七下·通辽期末) 综合题:解下列各式(1)解方程组(2)解不等式组:,并把解集在数轴上表示出来.22. (10分) (2019七下·越城期末) 杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式________;(3)运用:若今天是星期四,经过84天后是星期________,经过8100天后是星期________.23. (10分) (2019七下·黄石期中) 解方程组时,小强正确解得,而小刚只看错了c,解得(1)小刚把C错看成了什么数?并求出原方程组中的c值.(2)求a,b的值.24. (12分) (2019七上·黄埔期末) 如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.25. (10分) (2020八下·北镇期中) A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.(1)求A,B两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A种型号的空调多少台?26. (10分) (2017七下·莒县期末) 莒县两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的部分按八折收费;在新世纪商场累计购物超过50元后,超出50元的部分按九折收费.(1)若小薇妈妈准备购120元的商品,你建议小薇妈妈去________商场购物(在横线上直接填写“万德福”或者“新世纪”);(2)请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共85分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份) 解析版

2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.32.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.(3分)下列计算正确的是()A .=±4B .C .D .4.(3分)如图,关于x的不等式x ≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.35.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm29.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1 10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.14.(3分)已知方程组的解是,则方程组的解是.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)参考答案与试题解析一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
七年级数学(下)学期 第二次质量检测测试卷含答案

52×_____=______×25;
(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b的式子表示这类“数字对称等式”的规律是_______.
24.对于实数a,我们规定:用符号 表示不大于 的最大整数,称 为a的根整数,例如: , =3.
5.给出下列各数①0.32,② ,③ ,④ ,⑤ (每两个6之间依次多个0),⑥ ,其中无理数是()
A.②④⑤B.①③⑥C.④⑤⑥D.③④⑤
6.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣ 不仅是有理数,而且是分数;④ 是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )
D.实数包括正实数、负实数
3.如图,在数轴上表示实数 的点可能是()
A.点 B.点 C.点 D.点
4.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,则数2019对应的点为()
A.点AB.点BC.点CD.这题我真的不会
A.7个B.6个C.5个D.4个
7.下列命题中,①81的平方根是9;② 的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤ ,其中正确的个数有()
A.1B.4B.±4C. D.±
9.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是4,用式子表示是 .⑤若a0,则 ,其中错误的有()
2020-2021学年度第二学期七年级第二次月考数学试卷及答案

2020-2021年七年级第二次质量检测数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是(▲)A.B.C.D.2.下列长度的三条线段,不能首尾依次相接构成三角形的是(▲)A.1cm,2cm,3cm B.2cm,3cm,4cm C.3cm,4cm,5cm D.4cm,5cm,6cm3.下列计算正确的是(▲)A.B.C.D.4.下列等式从左到右的变形属于因式分解的是(▲)A.B.C.D.5.下列各图中,正确画出△ABC中AC边上的高的是(▲)A.B.C.D.6.如图,由下列已知条件推出的结论中,正确的是(▲)A.由∠1=∠5,可以推出AD∥BC.B.由∠2=∠6,可以推出AD∥BC.C.由∠1+∠4=90°,可以推出AB∥CD.D.由∠ABC+∠BCD=180°,可以推出AD∥BC.7.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两。
问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为(▲)A.B.C.D.8.计算结果的个位数字是(▲)A.2B.4C.8D.6二、填空题(本大题共10小题,每小题3分,共30分)9.计算:▲.10.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它的平均直径为0.00000008,其中,0.00000008用科学记数法可以表示为▲.11.分解因式:▲.12.若,,则▲.13.若代数式是一个完全平方式,则的值为▲.14.在△ABC中,∠A=2∠B=3∠C,则△ABC为▲(填“锐角”、“直角”或“钝角”)三角形.15.已知的展开式中不含项和项,则▲.16.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1800元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有▲种.17.若,则的值为▲.18.如图,在△ABC中,∠A=30°,点E为AC边上一点。
冀教版七年级数学下学期第二次月考试卷含解答

七年级数学下学期第二次月考试卷(冀教版9-10章)一、选择题(本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题中的括号内)1.在下列式子中①02<-;②a=3错误!未找到引用源。
;③x+2>x+1错误!未找到引用源。
;④2a+3错误!未找到引用源。
;⑤x ≠-2 错误!未找到引用源。
;⑥4x+5>0,是不等式的有( )A.2个B.3个C.4个D.5个2.下列列出的不等关系中,正确的是( )A.m 与4的差是负数,可表示为m-4<0B.x 不大于3可表示为x<3错误!未找到引用源。
C.a 错误!未找到引用源。
是负数可表示为a>0错误!未找到引用源。
D.x 与2的和是非负数可表示为x+2>0错误!未找到引用源。
3.下列各组线段能组成一个三角形的是( )A.4 cm ,6 cm ,11 cmB.4 cm ,5 cm ,l cmC.3 cm ,4 cm ,5 cmD.2cm ,3 cm ,6 cm4.如果一个三角形的两边分别为2和4,则第三边长可能是( )A.8B.6C.4D.25.如果a>b 错误!未找到引用源。
,下列各式中不正确的是( )A.a-3>b-3错误!未找到引用源。
B.22b a -<-C.-2a<-2b 错误!未找到引用源。
D.-2+a<-2+b 错误!未找到引用源。
6.不等式22123x x +-≥的解集为( ) A.x ≥8 B.x ≤8 错误!未找到引用源。
C.x<8错误!未找到引用源。
D. x ≤78错误!未找到引用源。
错误!未找到引用源。
7.不等式65312+-≤x x 的解集在数轴上表示正确的是( )8.在△ABC 中,若∠A=95°,∠B=40°,则∠C 的度数为( )A .35°B .40°C .45°D .50°9.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A .35°B .95°C .85°D .75°10.下列四个图形中,线段BE 是△ABC 的高的是( )二、填空题(11-12每小题2分,13-20每小题3分共30分)11.已知a>b ,用“>错误!未找到引用源。
人教版七年级下学期第二次月考数学试卷(含答案解析)

人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
最新2022-2022年七年级下第二次月考数学试卷含答案

七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
2019-2020学年重庆一中七年级(下)月考数学试卷(3月份) 解析版

2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)26.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.1007.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣19.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.4312.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为.14.已知:m﹣n=6,mn=1,则m2+n2=.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是米.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为cm2.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②(角平分线的定义)∴∠3=∠4(③)∵a∥b(已知)∴∠4=∠5(④)∴∠3=∠5(⑤)21.先化简,再求值.,其中m=2,n=﹣1.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了名学生,其中“名著阅读”所占的圆心角度数为.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=cm.(2)图2中m=;n=.(3)当△AHP的面积y为2时,求对应的x的值.25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:=+;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)参考答案与试题解析一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据定义依次分析题目中的事件即可解决.【解答】解:A、一个数的绝对值为非负数是必然事件,不符合题意;B、两数相乘,同号得正是必然事件,不符合题意;C、两个有理数之和为正数是随机事件,符合题意;D、对顶角不相等是不可能事件,不符合题意;故选:C.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:在球的体积公式V=πR3中,V,R是变量,,π是常量,故选:C.3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等【分析】分别按照“点到直线的距离”的概念、平行线的判定定理及两角互补与互余的定义分析即可.【解答】解:选项A:点到直线的距离是指:直线外一点到这条直线的垂线段的长度,即距离是“数”,而不是垂线段这个“物”,故A错误;选项B:“同位角相等,两直线平行”是平行线的判定定理之一,故正确;选项C:两直线不平行,则同旁内角不互补,故C错误;选项D:设这个角为α,则其补角为:180°﹣α;其余角为:90°﹣α当180°﹣α=90°﹣α时,得180°=90°,矛盾,故D错误.综上,只有选项B正确.故选:B.4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.【分析】让黄球的个数除以球的总数即为摸到黄球的概率.【解答】解:∵布袋中装有红、黄、白球分别为3、4、5个,共12个球,从袋中任意摸出一个球共有12种结果,其中出现黄球的情况4种可能,∴得到黄球的概率是:=.故选:B.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)2【分析】分别根据完全平方公式和平方差公式逐一判断即可.【解答】解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.6.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.100【分析】在理解题意的基础上,把x=7代入式子求值,其结果与40作比较,小于40则重新代入2x﹣4中计算,直到结果大于40就是输出结果.【解答】解:当x=7时,2x﹣4=10∵10<40∴将x=10继续代入2x﹣4=16∵16<40∴将x=16继续代入2x﹣4=28∵28<40∴将x=28继续代入2x﹣4=52∵52>40∴输出结果是52故选:C.7.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少60°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【解答】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣60,解得:x=30,∴这两个角的度数是30°和30°;若这两个角互补,则180﹣x=3x﹣60,解得:x=60,∴这两个角的度数是60°和120°.∴这两个角的度数是30°和30°或60°和120°.故选:C.8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣1【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选:D.9.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【分析】原长方形的边长减少xcm后得到的新长方形的边长为(10﹣x)cm,和(6﹣x)cm,周长为y=2(10﹣x+6﹣x),自变量的范围应能使长方形的边长是正数,即满足x >0,6﹣x>0.【解答】解:∵长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,∴y与x之间的关系式是:y=2[(10﹣x)+(6﹣x)]=32﹣4x(0<x<6).故选:A.10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.43【分析】首先根据前几个图形圆点的个数规律即可发现规律,从而得到第12个图摆放圆点的个数.【解答】解:观察图形可知:摆第1个图案需要4个圆点,即3×1+1=4;摆第2个图案需要7个圆点,即3×2+1=7;摆第3个图案需要10个圆点,即3×3+1=10;摆第4个图案需要13个圆点,即3×4+1=13;按照这个规律继续摆放,第12个图摆放圆点的个数3×12+1=37.故选:C.12.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α,故答案选B.【解答】解:如图所示:∵BD为∠ABC的角平分线,∴∠ABC=2∠CBD,又∵AD∥BC,∴∠A+∠ABC=180°,∴∠A+2∠CBD=180°,又∵DF是∠ADC的角平分线,∴∠ADC=2∠ADF,又∵∠ADF=∠ADB+α∴∠ADC=2∠ADB+2α,又∵∠ADC+∠C=180°,∴2∠ADB+2α+∠C=180°,∴∠A+2∠CBD=2∠ADB+2α+∠C又∵∠CBD=∠ADB,∴∠A=∠C+2α,故选:B.二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 1.25×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.14.已知:m﹣n=6,mn=1,则m2+n2=38.【分析】根据完全平方公式(m﹣n)2=m2+n2﹣2mn即可解题.【解答】解:∵(m﹣n)2=m2+n2﹣2mn,∵36=m2+n2﹣2,∴m2+n2=38,故答案为38.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=270°.【分析】作FE∥AB,然后根据平行线的性质,即可得到∠ABE+∠BEF+∠FED+∠EDC 的度数,再根据BE⊥DE,即可得到∠ABE+∠CDE的度数,本题得以解决.【解答】解:过点E作FE∥AB,∵AB∥CD,∴AB∥FE∥CD,∴∠ABE+∠BEF=180°,∠FED+∠EDC=180°,∴∠ABE+∠BEF+∠FED+∠EDC=360°∵BE⊥DE,∴∠BEF+∠FED=90°,∴∠ABE+∠CDE=270°,故答案为:270°.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.【分析】设小圆的半径为r,得出大圆的半径是3r,根据圆的面积公式先求出7个小圆的面积和一个大圆的面积,然后根据概率公式即可得出答案.【解答】解:设小圆的半径为r,则大圆的半径就是3r,7个小圆的面积是:7•r2π=7πr2,大圆的面积是:(3r)2π=9πr2,则蚂蚁停留在涂有颜色部分的概率为=;故答案为:.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是40米.【分析】设甲的速度为am/min,乙的速度为bm/min,由第一次相遇时,图象上的数据求得a与b的关系,再根据“当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇”求得两人的速度和a+b,进而求得两人的速度a与b,再求得第二次相遇时间,由图象知7.5min时,乙到达B地,求得此时甲与B地相距的路程.【解答】解:设甲的速度为am/min,乙的速度为bm/min,由函数图象知,当x=1.5min时,y=0m,即两人第一次相遇,根据题意得,(1.5+0.5)a=1.5b,∴b=a,∵当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,∴a+b=70÷=140,∴a+a=140,∴a=60(m/min),b=80(m/min),于是,当甲、乙之间的距离刚好是70米时,乙出发的时间为:1.5+70÷(80﹣60)=5(min),∴两人第二次相遇时的时间为:5+0.5=5.5(min),根据函数图象知,当x=7,5min时,乙到达了B地,此时,两人相距:(80﹣60)×(7.5﹣5.5)=40(m),∴甲与B两地的距离为:40m.故答案为:40.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为956 cm2.【分析】根据x+y+z+xy+xz+yz+xyz=439可得(x+1)(y+1)(z+1)=440,再根据题意可得(x+1)+(z+1)=2(y+1),进一步得到x+1=11,y+1=8,z+1=5,解方程求得x,y,z,再根据最优化处理时,最大的表面被重叠,依此可求表面积.【解答】解:∵x+y+z+xy+xz+yz+xyz=439,∴x+y+z+xy+xz+yz+xyz+1=440,∴(x+1)(y+1)(z+1)=440,∵x+z=2y,∴(x+1)+(z+1)=2(y+1),∵z+1≥3,y+1≥4,x+1≥5,其中5+11=2×8,∴x+1=11,y+1=8,z+1=5,解得x=10,y=7,z=4,最优化处理时,最大的表面被重叠,表面积为(7×10×2+4×7×12+4×10×12=956(cm2).故答案为:956.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.【分析】(1)分别根据幂的定义,负整数指数幂的运算法则,绝对值的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式和完全平方公式化简即可.【解答】解:(1)原式=﹣1+4﹣3+1=1(2)原式=(a+c)2﹣(2b)2﹣2ac=a2+2ac+c2﹣4b2﹣2ac=a2﹣4b2+c2.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换)【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【解答】证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换).故答案为:垂直的定义;∠2;等角的余角相等;两直线平行,内错角相等;等量代换.21.先化简,再求值.,其中m=2,n=﹣1.【分析】直接利用乘法公式进而化简,再合并同类项,利用整式的除法运算法则计算,把已知数据代入得出答案.【解答】解:原式=(m2+4n2﹣4mn﹣2mn﹣5n2+n2﹣4m2)÷3m=(﹣3m2﹣6mn)÷3m=﹣m﹣2n,当m=2,n=﹣1时,原式=﹣2+2=0.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了20名学生,其中“名著阅读”所占的圆心角度数为54°.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.【分析】(1)用喜欢“其它课程“的人数除以它所占的百分比得到调查的总人数,然后用“名著阅读”所占的百分比乘以360°得到扇形统计图中,“名著阅读”所占的圆心角度数;(2)利用喜欢名著阅读的人数补全条形统计图;(3)根据概率公式计算;(4)利用样本估计整体,用3000乘以样本中最喜爱的课程是“体育锻炼”的人数所占的百分比.【解答】解:(1)2÷10%=20,所以本次调查中一共调查了20名学生,其中“名著阅读”的人数为20﹣5﹣6﹣4﹣2=3,所以在扇形统计图中,×360°=54°;故答案为20,54°;(2)如图,(3)他恰好最喜爱的课程是“艺术欣赏”的概率==;(4)3000×=900,所以估算出全校最喜爱的课程是“体育锻炼”的人数为900人.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.【分析】已知等式配方变形后,利用非负数的性质求出a与b的值,代入原式计算即可求出值.【解答】解:已知等式整理得:(a2﹣4a+4)+(b2+8b+16)=0,即(a﹣2)2+(b+4)2=0,∴a﹣2=0,b+4=0,解得:a=2,b=﹣4,可得a﹣1=2﹣1=1,则原式=(a﹣1)(a+1)(a2+1)(a4+1)(a8+1)﹣()b=(a2﹣1)(a2+1)(a4+1)(a8+1)﹣()b=(a4﹣1)(a4+1)(a8+1)﹣()b=(a8﹣1)(a8+1)﹣()b=a16﹣1﹣()b当a=2,b=﹣4时,原式=216﹣1﹣()﹣4=216﹣1﹣216=﹣1.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=3cm.(2)图2中m=6;n=26.(3)当△AHP的面积y为2时,求对应的x的值.【分析】(1)由图象可得点P在B点时,x=3,y=3,由三角形面积公式可求解;(2)由图象可得点P在点D时,x=11,y=m,由三角形面积公式可求解,由点P在直线AH上时,y=0,即可求解;(3)由三角形面积公式可求点P到直线AH的距离为2cm,分别在线段AB上,线段EF 上,即可求解.【解答】解:(1)由图象可得:3=×2×AB,∴AB=3cm,故答案为:3;(2)由图象可得:0<x≤3时,点P在AB上运动,3<x≤5时,点P在BC上运动,5<x≤11时,点P在CD上运动,11<x≤17时,点P在DE上运动,17<x≤30时,点P 在EF上运动,∴m=×2×(11﹣2﹣3)=6,当点P在线段EF上,且在直线AH上时,y=0,∴n=17+11﹣2=26,故答案为:6,26;(3)∵△AHP的面积y为2,AH=2cm,∴点P到直线AH的距离为2cm,当点P在AB上时,x=2cm,当点P在EF上时,x=25+2=27cm或x=25﹣2=23cm,∴x=2或23或27;25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有7个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.【分析】(1)由已知可得352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,满足条件;(2)设二位数的“威武数”N的十位数字是a,则N=10a+5,再由M=(10a+5)2=100a2+25+100a=100a(a+1)+25,即可证明;(3)M分两种情况讨论:当M是四位数时,设M的千位数是x,百位数是y,此时N 是两位数,设N的十位数字是z,根据已知可得z2+2=9x,则当x=2时,z=4;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,由于五位数中3152=99225,再分两种情况:设N的十位数字是a,当N的首位是1时,可得1+a=2+x+y+z,(10+a)(10+a+1)=100x+10y+z,联立求出a=4;当N的首位是2时,可得2+a=2+x+y+z,(20+a)(20+a+1)=100x+10y+z,此时a不存在.【解答】解:(1)∵352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,再由“平武数”的特点,∴四位数的“平武数”共有7个,故答案为7;(2)设二位数的“威武数”N的十位数字是a,∴N=10a+5,∴M=(10a+5)2=100a2+25+100a=100a(a+1)+25,∴M的末尾两位数是25,∴当“威武数”N为任意二位数时,“平武数”M都满足以上特点;(3)当M是四位数时,设M的千位数是x,百位数是y,此时N是两位数,设N的十位数字是z,∴10x+y=z(z+1),∵N的各位数字之和与M的各位数字之和相等,∴z+5=x+y+2+5,∴z=x+y+2,∴z2+2=9x,∴当x=2时,z=4;∴M=2025;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,∵3152=99225,∴N的首位两个数字和最大是11,设N的十位数字是a,当N的首位是1时,∴1+a=2+x+y+z,∴a﹣1=x+y+z,又∵(10+a)(10+a+1)=100x+10y+z,∴a2+20a+111=9(9x+y),∴a2+20a+111=(a+10)2+11=9(9x+y),∴a=4,∴1452=21025,∴M=21025;当N的首位是2时,∴2+a=2+x+y+z,∴a=x+y+z,又∵(20+a)(20+a+1)=100x+10y+z,∴a2+40a+420=(a+20)2+20=9(9x+y),此时a不存在;∴M的值为2025或21025.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:∠AHE=∠KEH+∠F AH;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.【分析】(1)根据平行线的性质和三角形的外角性质可得答案;(2)设∠BEF=x,用x分别表示出∠BAK、∠BEC、∠BAK、∠KAG、∠AME和∠AHE,再由AG⊥BE,得关于x的方程,解得x的值,则问题可解;(3)由(2)可得,∠KHE=105°,再分4种情况列方程求解即可:①当KH∥EN时;②当kE∥GN时;③当HE∥GN时;④当HK∥GN时.【解答】解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠F AH∴∠AHE=∠KEH+∠F AH故答案为:∠AHE;∠KEH;∠F AH;(2)设∠BEF=x∵∠BEF=∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°﹣30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°﹣30°﹣30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.。
陕西省西安高新逸翠园初级中学2023-2024学年七年级下学期第二次月考数学试题

陕西省西安高新逸翠园初级中学2023-2024学年七年级下学期第二次月考数学试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D . 2.“燕山雪花大如席,片片吹落轩辕台.”这是诗仙李白眼里的雪花.单个雪花的重量其实很轻,只有0.00003kg 左右,0.00003用科学记数法可表示为( )A .40.3310-⨯B .4310-⨯C .5310-⨯D .53010-⨯ 3.如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △△≌,其判定依据是( )A .ASAB .AASC .SSSD .SAS4.如图,AD 是ABC V 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,7ABC S =△,2DE =,4AB =,则AC 的长是( )A .6B .5C .4D .35.如图,同学们将平行于凸透镜主光轴的红光AB 和紫光CD 射入同一个凸透镜,折射光线BM DN ,交于点O ,与主光轴分别交于点1F ,2F ,由此发现凸透镜的焦点略有偏差.若165ABM ∠=︒,160CDN ∠=︒,则12FOF ∠的度数为( )A .165︒B .160︒C .155︒D .145︒6.等腰三角形的两边a 、b 满足22614580a b a b +--+=,,则这个三角形的周长为( ) A .13 B .15 C .17 D .13或177.如图,已知Rt ABC △中,90C ∠=︒,30A ∠=︒.在直线BC 或AC 上取一点P ,使得PAB V 是等腰三角形,则符合条件的P 点有( )处.A .6B .7C .8D .38.如图,在锐角△ABC 中,∠ACB =50°;边AB 上有一定点P ,M 、N 分别是AC 和BC 边上的动点,当△PMN 的周长最小时,∠MPN 的度数是( )A .50°B .60°C .70°D .80°二、填空题9.嘉淇同学周末去公园踏青,看到了一座色彩鲜艳的高塔(下图),为了测量古塔底部的底角AOB ∠的度数,嘉淇设计了如下测量方案:作AO ,BO 的延长线OC ,OD ,量出COD ∠的度数,从而得到AOB ∠的度数,这个测量方案的依据是.10.学校举行“爱我中华"知识竞赛,某班从5名男生和4名女生(含小云)中选6名学生参加这次竞赛.若选择男生n 名,则当n =时,小云参加这次竞赛是必然事件.11.如图,在ABC V 中,40B ∠=︒,30C ∠=︒,D 为边BC 上一点,将ADC △沿直线AD 翻折后,点C 落到点E 处.若DE AB ∥,则ADB ∠的度数为.12.如图,AD ,AE 分别是ABC V 的高线和角平分线,若38B ∠=︒,70C ∠=︒,则D A E ∠=.13.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为.三、解答题14.计算: (1)()()320190121 3.142π-⎛⎫-+-⨯--- ⎪⎝⎭ (2)用简便方法计算:2202320222024-⨯15.化简:(1)22232()()x x y xy y x x y x y ---÷;(2)2(3)(1)(1)2(24)a a a a +-+--+.16.化简求值:已知2230a a --=,求2(23)(23)(21)a a a +-+-的值.17.如图,在ABC V 中,90C ∠=︒请用尺规作图法,在AB 边上求作一点P ,使得PA PC AB +=.(保留作图痕迹,不写作法)18.如图,在单位长度为1的正方形网格中,已知ABC V 的三个顶点都在格点上.(1)画出ABC V 关于直线DE 的轴对称图形111A B C △;(2)求111A B C △的面积.19.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的=a ______;b =______;(2)请估计:当次数s 很大时,摸到白球的频率将会接近______(精确到0.1); (3)请推算:摸到红球的概率是_______(精确到0.1);(4)试估算:这一个不透明的口袋中红球有______只.20.如图,在ABC V 中,点E 是边BC 上一点,连接AE ,延长EA 至点D ,连接CD ,B D ∠=∠,BAC ∠+180CAE ∠=︒,求证:BC DC =.21.如图,△ABC 中,AD ⊥BC 于点D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD =DE ,连接AE .(1)若∠BAE =30°,求∠C 的度数;(2)若△ABC 的周长为13cm ,AC =6cm ,求DC 的长.22.目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:(1)一户家庭人口为3人,年用气量为3200m,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m(1200)x x>,该年此户需缴纳燃气费用为y元,求y与x的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m)23.【初步探索】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;【灵活运用】(2)如图2,△ABC为等边三角形,直线a∥AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.。
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份) 解析版

2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±32.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<04.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣35.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD =.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =度.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.20.(5分)解方程组.21.(5分)解不等式组并写出这个不等式组的所有整数解.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是,理由是;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为人.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是.29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:.2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±3【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:B.2.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<0【分析】根据解一元一次不等式基本步骤移项、合并同类项1可得.【解答】解:由题意知﹣2+m<0,则m<2,故选:A.4.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.5.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角【分析】根据内错角,对顶角,同位角以及同旁内角的概念进行判断.【解答】解:A、∠1和∠4是内错角,说法正确,故本选项错误;B、∠1和∠3是对顶角,说法正确,故本选项错误;C、∠3和∠4是同位角,说法正确,故本选项错误;D、∠1和∠2是邻补角,说法错误,故本选项正确.故选:D.6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.【分析】根据估算无理数大小的方法进行估算,再确定数字在数轴上的位置即可求解.【解答】解:A.1<<2,不符合题意;B.1<<2,不符合题意;C.2<<3,符合题意;D.3<<4,不符合题意.故选:C.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°【分析】根据对顶角相等可得∠AOD=∠BOC,AO不是∠COE的角平分线,因此∠AOC 和∠AOE不一定相等,根据∠EOD=90°,利用平角定义可得∠AOE+∠BOD=90°,根据邻补角互补可得∠AOD+∠BOD=180°【解答】解:A、∠AOD=∠BOC,说法正确;B、∠AOC=∠AOE,说法错误;C、∠AOE+∠BOD=90°,说法正确;D、∠AOD+∠BOD=180°,说法正确;故选:B.9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)【分析】根据演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.【解答】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(﹣1,﹣2),故本选项正确;B、国际馆的坐标为(3,﹣1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(﹣7,﹣4),故本选项错误;10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③【分析】从图中根据①②③的信息依次统计,即可求解;【解答】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;一天中甲送了65件,乙送了75件,③正确;故选:B.二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是5.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为10s.【分析】把h=490代入h=4.9t2即可求解.【解答】解:把h=490代入h=4.9t2中,t2=100,∵t>0,∴t=10.故答案是:10.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据已知得关于m的不等式,求出即可.【解答】解:4x+m+1=x﹣1,移项得:4x﹣x=﹣1﹣1﹣m,∴x=,∵方程的解是负数,∴<0,∴m>﹣2,故答案为m>﹣2.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD = 1.5.【分析】先根据DA=6,DB=3求出线段AB的长,再由C为线段AB的中点求出BC的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =56度.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.【分析】直接利用立方根以及二次根式的性质化简得出答案.【解答】解:原式=5﹣4﹣3=﹣2.20.(5分)解方程组.【分析】应用代入法,求出二元一次方程组的解是多少即可.【解答】解:由(2),可得x=2﹣y(3),将(3)代入(1)得,可得2(2﹣y)=6﹣3y,解得y=2,将y=2代入(3),可得x=0,∴原方程组的解为:.21.(5分)解不等式组并写出这个不等式组的所有整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:,∵由①,得x≤2,由②,得x>﹣,∴原不等式组的解集为﹣<x≤2,∴原不等式组的所有整数解为0,1,2.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x、y的值,再计算3x+5y的值,根据平方根的定义,可得答案.【解答】解:由x+2是27的立方根,3x+y﹣1的算术平方根是4,得:,解得:,∴7x+3y=7+42=49,∵49的平方根为±7,∴7x+3y的平方根为±7.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.【分析】依据对顶角的性质以及角平分线的定义,即可得到∠DOE的度数,再根据垂线的定义,即可得到∠EOF的度数.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠EOD=∠BOD=×76°=38°,∵OF⊥OD,∴∠DOF=90°,∴∠FOE+∠EOD=90°,∴∠FOE=90°﹣∠EOD=90°﹣38°=52°.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标(1,0);(2)直接写出以A,B,O为顶点的三角形的面积 4.5;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程先向左平移3个单位长度,再向下平移1个单位长度.【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【解答】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣×1×4﹣×1×2﹣×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是B,理由是在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为130人.【分析】(1)根据题意,画出直方图,频数分布表即可.(2)B较好.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)求出A项目优秀人数即可判断.【解答】解:(1)补全图、表如下.(2)B.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.故答案为:B,在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)300×=130.答:估计A项目和B项目成绩都是优秀的人数最多为130人.故答案为130.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是a≤﹣1.【分析】先把两式相加求出2x+y的值,再代入2x+y≤3中得到关于a的不等式,求出a 的取值范围即可.【解答】解:,①+②得,2x+y=4+a,∵2x+y≤3,∴4+a≤3,解得:a≤﹣1,故答案为:a≤﹣1.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是点A.【分析】求出不等式的解集,根据已知得出关于m的不等式,求出不等式的解集即可.【解答】解:mx+1>5﹣2x,(m+2)x>4,∵关于x的一元一次不等式mx+1>5﹣2x的解集是x<,∴m+2<0,∴m的取值范围是m<﹣2,∵数轴上的A,B,C,D四个点中,只有点A表示的数小于﹣2,∴实数m对应的点可能是点A.故答案为点A29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5..【分析】利用运算程序,当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,…,然后把输出结果分别等于656,再解方程求出对应的正整数x的值即可.【解答】解:当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,若5x+1=656,解得x=131;、若25x+6=656,解得x=26;若125x+31=656,解得x=5;若625x+156=656,解得x=,所以当开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣4,﹣3.【分析】表示出不等式组的解集,由解集中恰好有2个整数解,确定出整数a的值即可.【解答】解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组A是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是a ≥2;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为﹣4;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:m≤2,n>9.【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集,故答案为A;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2,故答案为a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4,故答案为﹣4;(4)不等式组M:整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,故答案为m≤2,n>9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P 2
P 1
P
O
C
B A
D 11题
2019-2020年七年级下学期第二次月考数学试题含
答案解析
6.若不等式组⎩
⎨⎧<≥b x a
x 无解,则有( )
A 、a b >
B 、a b <
C 、a b =
D 、b ≤a 7.已知a>b>c>0,则以a 、b 、c 为三边组成三角形的条件是( ) A.b+c>a B.a+c>b C.a+b>c D.以上都不对 8.下列正多边形的组合中,能够铺满地面不留缝隙的是( ) A.正八边形和正三角形 B.正五边形和正八边形 C.正六边形和正三角形 D.正六边形和正五边形
9.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形
10.现用甲.乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ) A.4辆 B.5辆 C.6辆 D.7辆 11.已知,如图,点P 关于OA 、OB 的对称点分别是P 1,P 2, 分别交OA 、OB 于C,D,P 1P 2=6cm,则△PCD 的周长为( ) A.3cm B.6cm C.12cm D.无法确定
二、填空题(每题3分,7题共21分)
12.把方程2x-3y+5=0写成用含有y 的代数式表示x 的形式为__________________;
13.已知方程组{
2x+y=7x+2y=8
,则x -y = ,x +y = 。
14.一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是 .
15..若不等式()327m x -<的解集为1
3
x >-,则m 的值为 .
16.、过m 边形的顶点能作7条对角线,n 边形没有对角线,k 边形有k 条对角线,则 (m-k )n =___.
17.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .
18.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是 边形. 三、作图题
题目 一 二 三 四 总分 得分
19.(6分)如图,直线a ⊥b,请你设计两个不同的轴对称图形,使a 、b 都是它的对称轴.
a
b
b
a
20.(3分)将上图中的小船向左平移5格,画出平移后的小船.
21.(3分)如图,A 、B 、C 三点表示三个镇的地理位置,随着乡镇工业的发展需要, 现三镇联合建造一所变电站,要求变电站到三镇的距离相等 ,请画出变电站的位置(用P 点表示),并简单说明理由.
四、解答题
22.解方程(组)(每题6分,共12分) (1)
142
312-+=-y y (2)5615.2320.4
x y x y +=⎧⎨
-=-⎩
23.(6分)解不等式组⎪⎩⎪⎨⎧≤--<+2123
932x x ,并把解集在数轴上表示出来
24.(8分)已知正多边形的内角和与其外角和的和为900°,求边数及每个内角的度数
C
B
A
13题
25.(8分)如图,在⊿ABC中,∠B=75º,∠C=45º,AD是高,AE是∠BAC的平分线,求∠DAE的度数.
26.(8分)《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的三分之一,若从树上飞下去一只,则树上、树下的鸽子就一样多了。
”你知道树上、树下各有多少只鸽子吗?
27.(12分)某服装店老板到厂家选购A、B两种型号的服装,
如果购进A种型号服装9件,B种型号服装10件,就需要1810元;如果购进A种型号服装12件,B种型号服装8件,就需要1880元。
问题:
(1)求A、B两种型号的服装每件分别为多少钱?
(2)已知销售1件A种型号服装可获利18元,销售B种型号服装可获利30元。
根据市场需求,服装店老板的决定,购进A种型号服装的数量要比B种型号服装数量的2倍多4件,且A种型号服装最多购进28件,这样服装全部售出后,可使总的获利不少于732元。
问有几种进货方案?
七年级第二次月考数学答案
一.选择题(共11小题,每题3分,共33分)
1.A
2.D
3.C
4.A
5.C
6.D
7.A 8.C 9.C 10.C 11.B
二.填空题(共7小题,每题3分,共21分)
12.x=1.5y-2.5
13.-1 5
14.36
15.-19\3
16.125
17.1440度
18.5
三.作图题
19.(6分)答案不唯一
20.(3分)向左移动5格后的图形
21.(3分)连结三点,取每条边的垂直平分线的交点就是P的位置
四.解答题
22.(1)(6分)y=-0.6
(2)(6分)
1
1.7 x
y
=
⎧
⎨
=
⎩
23.(6分)-2≤x<3
24. (8分) 5 108°
25. (8分)15°
26.(8分)树上7只,树下5只
27.(12分)(1)90元,100元
(2)设B型号x件,则A型号2x+4件,解得10≤x≤12三种进货方案:进24件A型号,10件B型号
26件A型号,11件B型号
28件A型号,12件B型号。