差分信号

差分信号
差分信号

差分信号

我们中的大部分都能直观地理解信号是如何沿导线或走线传播的,即便我们也许对这种连接方式的名称并不熟悉——单端模式。术语“单端”模式将这种方式同至少其它两种信号传播模式区分开来:差模和共模。后面两种常常看起来更加复杂。

差模

差模信号沿一对走线传播。其中一根走线传送我们通常所理解的信号,另一根传送一个严格大小相等且极性相反(至少理论上如此)的信号。差分与单端模式并不像它们乍看上去那样有很大的不同。记住,所有信号都有回路。一般地,单端信号从一个零电位,或地,电路返回。差分信号的每一分支都将从地电路返回,除非因为每个信号都大小相

等且极性相反以至于返回电流完全抵消了(它们中没有任何一部分出现在零电位或地电路上)。

尽管我不打算在专栏中就这个问题花太多时间,共模是指同时在一个(差分)信号的线对或者在单端走线和地上出现的信号。对我们来说这并不容易直观地去理解,因为我们很难想象怎样才能产生这样的信号。相反通常我们不会产生共模信号。通常这些都是由电路的寄生环境或者从邻近的外部源耦合进电路产生的。共模信号总是很“糟糕”,许多设计规则就是用来防止它们的发生。

差分走线

尽管看起来这样的顺序不是很好,我要在叙述使用差分走线的优点之前首先来讲述差分信号的布线规则。这样当我讨论(下面)这些优点时,就可以解释这些相关的规则是如何来支持这些优点的。

大部分时候(也有例外)差分信号也是高速信号。这样,高速设计规则通常也是适用的,尤其是关于设计走线使之看起来像是传输线的情况。这意味着我们必须仔细地进行设计和布线,如此,走线的特征阻抗在沿线才能保持不变。

在差分对布线时,我们期望每根走线都与其配对走线完全一致。也就是说,在最大的可实现范围内,差分对中每根走线应该具有一致的阻抗与一致的长度。差分走线通常以线对的方式进行布线,线对的间距沿线处处保持不变。通常地,我们尽可能将差分对靠近布线。

差分信号的优点

“单端”信号通常参考到某些“参考”电位。这有可能是正的或者是地电压,一个器件的门限电压,或者另外某处的信号。另一方面,差分信号仅参考到与其配对信号。也就是说,如果一根走线(正信号)上的电压比另外一根走线(负信号)高,我们就得到了一个逻辑状态,如果是低,我们就得到另外一个逻辑状态(见图1)。这样有几个好处:

时序可以更精确地定义,因为控制一对信号的交点比控制一个关于其他参考电压的绝对电压容易。这也是走线要精确等长的原因之一。任何在源端所进行的时序控制都可以让步,如果信号在不同的时间到达另一端。进一步来讲,如果线对的远端信号没有精确相等且极性相反,共模信号就可能产生并将导致信号时序与EMI问题。

因为除了自身,差分信号没有参考任何其它信号,并且信号交叉的同步可以更有力地控制,差分电路通常可以运行在比类似的单端电路更高的频率上。

因为差分电路对两根走线(两者的信号大小相等极性相反)上信号的差作出响应,得到的净信号两倍于(可比的环境噪声)任一单端信号。因此在其它条件等同的情况下,差分信号有着更大的信噪比及性能。

差分电路对线对信号之间的电位差敏感。但是(相对地)对线上与其它参考电压相比(特别是地)的绝对电位不敏感。因此,相对而言,差分电路对诸如地弹、其它存在于电源和/

或地平面的噪声信号以及可能出现在每一根走线中相等的共模信号这样的问题不敏感。

差分信号对EMI和串扰略微免疫。如果线对走得很近,这样任何外部耦合噪声将相等地耦合进线对。这样一来耦合噪声就变成“共模”噪声,而电路对此是(理论上)免疫的。如果导线是“缠绕”(比如双绞线)的,那么对噪声的免疫性就更好。因为我们不能方便地将印制板上的差分走线缠绕起来,把它们尽可能地靠近走线就是最好的办法了。

紧挨着布线的差分对彼此紧密耦合。这种互耦减少了EMI辐射,特别是与单端走线相比。你可以把这个认为是每根走线的辐射彼此大小相等且极性相反,这样彼此的输出就相互抵消了,就像在双绞线中一样!差分走线彼此越靠近,耦合越强,EMI辐射的可能性就越小。

缺陷

差分电路的主要缺陷是走线的增加。因此,如果你的应用中这些优点没有一个是特别重要的,那么就不值得为差分信号以及附带的布线考虑增加面积。但是如果这些优点在你的电路中产生了显著的性能差异,那么增加的布线面积就是我们付出的代价。

重要结论

差分线彼此耦合。这种耦合影响了走线的对外阻抗,因此端接方法(关于这个问题的讨论以及如何计算差分阻抗请参见脚注2)所用的差分阻抗的计算是困难的。在这里国家半导体有一些参考,Polar Instruments提供了一个独立的计算器(是收费的)可以计算许多不同结构差分走线的差分阻抗。高端设计工具包也能计算差分阻抗。

但是注意是耦合直接影响了差分阻抗的计算。差分走线之间的耦合必须在整个线长内保持一致或者阻抗是连续的。这就是设计规则中“固定间距”的原因。

我们通常认为信号以三种模式沿电路传播:单端、差模或共模。

单模是我们最熟悉的。它包括介于驱动器与接收器之间的单根导线或走线。信号沿走线传播并从地返回1。

差模包括介于驱动器与接收器的一对走线(或导线)。我们一般认为其中一根走线传送正信号而另一根传送负信号,并且大小相等极性相反,没有通过地的返回信号;信号沿一根走线前进并从另外一根返回。

共模信号通常更难于理解。既可以包括单端走线也可以包括两个(可能更多)差分走线。同样的信号沿走线以及返回路径(地)或者沿差分对中的两根走线流动。大部分人往往对共模

信号不熟悉,因为我们自己从来不会故意产生它们。它们通常是由从其它(邻近或外部)源耦合进电路的噪声引起的。一般来讲,结果最好情况是中性的,最坏情况是具有破坏性的。共模信号能够产生干扰电路正常运行的噪声,并且是常见的EMI 问题的来源。

优点

差分信号相比单端信号有一个显著的缺点:需要两根走线而不是一根,或者两倍的电路板面积。但是差分信号有几个优点:如果没有通过地的返回信号,地回路的连续性相对就变得不重要了。因此,假如我们有一个模拟信号通过差分对连接到数字器件,就无需担心跨越电源边界,平面不连续等等问题。差分器件的电源分割也更容易处理2。差分电路在低压信号的应用中是非常有益的。如果信号电平非常低,或者如果信噪比是个问题,那么差分信号可以有效地倍增信号电平(+v-(-v)=2v)。差分信号和差分放大器通常用于信号电平非常低的系统的输入级。

差分接收器往往对输入信号电平的差敏感,但是常常被设计为对输入的共模偏移不敏感。因此在强噪声环境中差分信号往往比单端信号有着更好的性能。

相比单端信号(以一个不太精确的受电路板其他位置的噪声的干扰的信号为参考)差分

信号(彼此互为参考)的翻转时序可以更精确地设定。差分对的交叉点定义得非常精确(图1)。单端信号位于逻辑1 和逻辑0 之间的交叉点受制于(举例)噪声、噪声门限以及门限检测问题等等。

重要假设

差分信号的一个重要方面常常被工程师或者设计人员忽略,甚至有时被误解。我们从两条广为人知的规则开始:(a)电流在一个闭合的环路内流动以及(b)电流在环路内处处相等。

考虑差分对的“正”走线。电流沿走线流动并且必须在一个环路内流动,通常从地返回。另外一根走线中的负信号也必须在一个环路内流动,通常也从地返回。这很容易明白如果我们暂时想象一个差分对中的一根走线上的电流保持不变。另一根走线中的信号必须从某个地方返回并且很清楚返回路径应该是单端信号的返回路径(地)。我们说差分对没有通过地的返回信号不是因为不能,而是因为返回信号的确存在并且大小相等且极性相反所以相互抵销了(和为零)。这一点非常重要。如果从一个信号(+i)返回的信号严格等于,且符号相反,另一个信号(-i),那么它们的和(+i-i)为零,没有电流从任何地方流过(特别是地)。现在假定信号并非严格相等且极性相反。设一个为+i1 另一个为-i2。这里i1 和i2 的值近似但是不等。返回电流的和为(i1-i2)。因为不是零,这个增加的电流必须从某个地方返回,推测应该是地。

你说什么?那么让我们假定发送电路发送一对差分信号,严格相等且极性相反。再假定他们在路径的终点仍然如此。但是如果路径长度不等会如何呢?如果(差分对中的)一条路径比另外一条长,那么信号在传输到接收器的阶段就不再是严格相等且极性相反了(图2)。如果信号在它们从一个状态到另一个状态的转变过程中不再是严格相等且相反,没有电流流经地就不再是正确的了。如果有流经地的电流存在,那么电源完整性就一定成为一个问题,并且可能EMI也会成为一个问题。

设计规则1

我们处理差分信号的第一个规则是:走线必须等长。有人激烈地反对这条规则。通常他们的争论的基础包括了信号时序。他们详尽地指出许多差分电路可以容忍差分信号两个部分相当的时序偏差而仍然能够可靠地进行翻转。根据使用的不同的逻辑门系列,可以容忍500 mil 的走线长度偏差。并且这些人们能够将这些情况用器件规范和信号时序图非常详尽地描绘出来。问题是,他们没有抓住要点!差分走线必须等长的原因与信号时序几乎没有任何关系。与之相关的仅仅是假定差分信号是大小相等且极性相反的以及如果这个假设不成立将会发生什么。将会发生的是:不受控的地电流开始流动,最好情况是良性的,最坏情况将导致严重的共模EMI问题。

因此,如果你依赖这样的假定,即:差分信号是大小相等且极性相反,并且因此没有通过地的电流,那么这个假定的一个必要推论就是差分信号对的长度必须相等。差分信号与环路面积:如果我们的差分电路处理的信号有着较慢的上升时间,高速设计规则不是问题。但是,假设我们正在处理的信号有着有较快的上升时间,什么样的额外的问题开始在差分线上发生呢?考虑一个设计,一对差分线从驱动器到接收器,跨越一个平面。同时假设走线长度完全相等,信号严格大小相等且极性相反。因此,没有通过地的返回电流。但是,尽管如此,平面层上存在一个感应电流!

任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,

如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。

但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。因此电流完全在差分走线下方的一个环路中流动(图3)。它们看上去就像是涡流。耦合电流在其中流动的环路由(a)差分线自身和(b)走线在每个端点之间的间隔来定义。

设计规则2

现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,EMI 也可以得到更好的控制。

值得一提的是一些工程师要求设计人员去掉差分线下方的平面。原因之一是减小或消除走线下方的感应电流环路。另外一个原因是防止平面上已有的噪声耦合到(推测如此)走线上的低压信号4。

还有一个将差分线彼此靠近布线的理由。差分接收器设计为对输入信号的差敏感而对输入的共模偏移不敏感。也就是说即使(+)输入相对(-)输入仅有轻微的偏移,接收器也会检

测到。但是如果(+)和(-)输入一起偏移(在同样的方向),相对而言接收器对这种偏移不敏感。因此如果任何外部噪声(比如EMI 或串扰)等同地耦合到差分线中,接收器将对此种(共模耦合)噪声不敏感。差分线布得越彼此靠近,任何偶合噪声在每根走线上就越相近。因此电路的噪声抑制就越好。

规则2推论

再次假定高速环境中,如果差分线彼此紧挨着布线(为了使其下方的环路面积最小化)

那么走线将彼此耦合。如果走线足够长以至于端接成为一个问题,这种耦合就会影响到确切的端接阻抗5的计算。原因是:考虑一个差分线对,线1 和线2。假使它们分别携带信号V1 和V2。因为它们是差分线,V2=V1*V1 在线1 引起一个电流I1 而V2在线2 引起一个电流I2。电流必然是从欧姆定律导出,I=V/Z0,这里Z0 是走线的特征阻抗。现在线1(举例)携带的电流事实上由i1 和k*i2 组成,这里k 是线1 与线2 间的耦合比例。这表明这种耦合的最终效果是线1 上的一个明显的阻抗,这个阻抗等于Z=Z0-Z12这里Z12 由线1 与线2 间的互耦6引起。如果线1 和线2 分得很开,它们之间的耦合就很小,确切的端接阻抗就只是Z0,单端走线的特征阻抗。但是如果走线靠的更近,它们之间的耦合就会增加,这样走线的阻抗与这种耦合成比例地减小。这就是说确切的走线端接(为了防止反射)为Z0-Z12,或者某个小于Z0 的值。这对差分对的两根走线都适用。因为没有流经地的电流(大概这是个假设)那么端接电阻被连接在线1 和线2 之间,且确切的端接阻抗算得是2(Z0-Z12)。这个值经常被叫做“差分阻抗”7。

设计规则3

差分阻抗因互耦而变,而互耦因线距而变。因此在任何情况下,走线阻抗,也就是互耦,在全线为常数是很重要的。这就得到了我们的第三个规则:(差分对的)线距必须在全线为常数。

注意对差分阻抗的影响只是规则2 的推论。差分阻抗根本不是与生俱来的。我们要把差分线彼此靠近布线与EMI 和噪声免疫有关。它对“长”线确切端接以及线距一致性的影响的事实只不过是为了EMI 控制而将走线彼此靠近布线的一个推论8。

结论

差分信号有几个优点,它们中的三个是(a)与电源系统有效隔离,(b)对噪声免疫,和(c)增强信噪比。与电源系统(特别是系统地)隔离依赖于差分线上的信号真正地大小相等且极性相反。这个假定也许不成立,如果差分对中单个线长不完全匹配。对噪声的免疫经常依赖于走线的紧耦合。这将依次影响到为防止反射而对走线进行正确的端接的值,以及如果走线必须紧耦合,通常也是需要的,它们的间距必须全线为常数。

注释

1 事实上信号可以仅仅/同时从地或电源系统返回。在这篇文章中我通篇使用单个术语“地”完全是为了方便。

2 光耦器件是解决这类问题的另一种方法。

3 参见"Loop Areas: Close 'Em Tight", January, 1999

4 据我所知没有权威的研究支持或者反驳这个惯例。

5 阻抗控制走线在行业中有许多参考。比如,参见"PCB Impedance Control: Formulas and Resources", March, 1998; "Impedance Terminations: What's the Value?" March, 1999; 和"What Is Characteristic Impedance" by Eric Bogatin, January, 2000, 第18 页。

6 参见"Differential Impedance: What's the Difference", August, 1998

7 对线对的差模及共模成分的有趣讨论,参见"Terminating Differential Signals on PCBs", Steve Kaufer and Kellee Crisafalu, March, 1999, 第25 页。

共模和差模信号的定义及产生机理

共模和差模信号的定义及产生机理、电缆、绞线、变压器和扼流圈电磁干扰产生及其的抑制 1 引言 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、 共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引

起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2 差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。 2.1 差模信号

纯差模信号是:V1=-V2 (1) 大小相等,相位差是180° VDIFF=V1-V2 (2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2 共模信号 纯共模信号是: V1=V2=VCOM (3) 大小相等,相位差为0° V3=0 (4) 共模信号的电路如图3所示,

其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 两个电压瞬时值之和(V1+V2)不等于零。相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。 3 差模和共模信号及其在无屏蔽对绞线中的EMC 在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。流过每根导线的电流所产生的磁场受螺旋形的制约。流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。在每对

(完整word版)SerDes知识详解

SerDes知识详解 一、SerDes的作用 1.1并行总线接口 在SerDes流行之前,芯片之间的互联通过系统同步或者源同步的并行接口传输数据,图1.1演示了系统和源同步并行接口。 随着接口频率的提高,在系统同步接口方式中,有几个因素限制了有效数据窗口宽度的继续增加。 ?时钟到达两个芯片的传播延时不相等(clock skew) ?并行数据各个bit的传播延时不相等(data skew) ?时钟的传播延时和数据的传播延时不一致(skew between data and clock) 虽然可以通过在目的芯片(chip #2)内用PLL补偿时钟延时差(clock skew),但是PVT变化时,时钟延时的变化量和数据延时的变化量是不一样的。这又进一步恶化了数据窗口。 源同步接口方式中,发送侧Tx把时钟伴随数据一起发送出去, 限制了clock skew对有效数据窗口的危害。通常在发送侧芯片内部,源同步接口把时钟信号和数据信号作一样的处理,

也就是让它和数据信号经过相同的路径,保持相同的延时。这样PVT变化时,时钟和数据会朝着同一个方向增大或者减小相同的量,对skew最有利。 我们来做一些合理的典型假设,假设一个32bit数据的并行总线, a)发送端的数据skew = 50 ps ---很高的要求 b)pcb走线引入的skew = 50ps ---很高的要求 c)时钟的周期抖动jitter = +/-50 ps ---很高的要求 d)接收端触发器采样窗口= 250 ps ---Xilinx V7高端器件的IO触发器 可以大致估计出并行接口的最高时钟= 1/(50+50+100+250) = 2.2GHz (DDR)或者1.1GHz (SDR)。 利用源同步接口,数据的有效窗口可以提高很多。通常频率都在1GHz以下。在实际应用中可以见到如SPI4.2接口的时钟可以高达DDR 700MHz x 16bits位宽。DDR Memory接口也算一种源同步接口,如DDR3在FPGA中可以做到大约800MHz的时钟。 要提高接口的传输带宽有两种方式,一种是提高时钟频率,一种是加大数据位宽。那么是不是可以无限制的增加数据的位宽呢?这就要牵涉到另外一个非常重要的问题-----同步开关噪声(SSN)。 这里不讨论SSN的原理,直接给出SSN的公式:SSN = L *N* di/dt。 L是芯片封装电感,N是数据宽度,di/dt是电流变化的斜率。 随着频率的提高,数据位款的增加,SSN成为提高传输带宽的主要瓶颈。图1.2是一个DDR3串扰的例子。图中低电平的理论值在0V,由于SSN的影响,低电平表现为震荡,震荡噪声的最大值达610mV,因此噪声余量只有1.5V/2-610mV=140mV。

共模信号和差模信号

共模信号和差模信号 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 图1差模信号 图2差模信号的波形图 2差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2 来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是C p。其电路如图1所示,其波形如图2所示。

2.1差模信号 纯差模信号是:V1=-V2(1) 大小相等,相位差是180° VDIFF=V1-V2(2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。 在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2共模信号 纯共模信号是: V1=V2=VCOM(3) 大小相等,相位差为0° V3=0(4) 共模信号的电路如图3所示,其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 图3共模信号

PCB三种特殊布线分享及检查方法详解

PCB三种特殊布线分享及检查方法详解 手术很重要,术后恢复也必不可少!各种PCB布线完成之后,就ok了吗?很显然,不是!PCB布线后检查工作也很必须,那么如何对PCB设计中布线进行检查,为后来的PCB设计、电路设计铺好路呢?本文会从PCB设计中的各种特性来教你如何完成PCB布线后的检查工作,做好最后的把关工作! 在讲解PCB布线完成后的检查工作之前,先为大家介绍三种PCB的特殊走线技巧。将从直角走线,差分走线,蛇形线三个方面来阐述PCB LAYOUT的走线: 一、直角走线(三个方面) 直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。 二、差分走线(等长、等距、参考平面) 何为差分信号(DifferenTIal Signal)?通俗地说就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态0还是1。而承载差分信号的那一对走线就称为差分走线。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三方面: 1、抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可被完全抵消。 2、能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 3、时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。

共模与差模完美解释

共模与差模 虽然我们在学习模电时经常提到关于共模和差模两个知识点,但是有时候总无法与实际电路结合起来,搞不清楚为什么要去抑制共模,为什么电平输入时一定会带入共模信号。特此在摘录网上大侠们的知识论点,争取把这个问题弄清楚。 共模信号与差模信号 最简单理解,共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同。 差模信号:双端输入时,两个信号的相位相差180度。 任何两个信号都可以分解为共模信号和差模信号。 设两路的输入信号分别为: A,B. m,n分别为输入信号A,B的共模信号成分和差模信号成分。 输入信号A,B可分别表示为:A=m+n;B=m-n 则输入信号A,B可以看成一个共模信号 m 和差模信号 n 的合成。 其中m=(A+B)/2;n=(A-B)/2。 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。 但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。 例如对于仪放,差分输入不是0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 牛人的形象比喻:两只船,分别站着一个MM和一个GG. MM和GG手拉着手. 当船上下波动时,MM才能感觉到GG变化的拉力。这两个船之间的高度差就是差模信号。 当水位升高或者降低时,MM并不能感觉到这个拉力. 这两个船离水底的绝对高度就是共模信号。

差分信号和单端信号概述.

差分信号与单端信号概述 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b.能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。 1、共模电压和差模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-)也可以表示为vi = (vic, vid)。c 表示共模,d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。当水位上升或者下降时,A并不能感觉到这个拉力。这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留。理论上,A 和B应该只是对差模有响应。 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。说笑了啊,不过大致也就是这个意思。 当然,差模电压也不可以太大,否则会导致把A和B拉开。

详解差模电压和共模电压-简单易懂

差模电压与共模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。 当水位上升或者下降时,A并不能感觉到这个拉力。 这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留 理论上,A和B应该只是对差模有响应 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。 当然,差模电压也不可以太大,否则会导致把A和B拉开。 主要是 “共模是两输入端的算术平均值,差模是直接的同相端与反相端的差值”。 共模电压应当是从源端看进来时,加到放大电路输入端的共同值,差模则是加到放大电路两个输入端的差值。 共模电压有直流的,也有交流的。直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。一般

差模滤波器和共模滤波器

共模和差模信号与滤波器 山东莱芜钢铁集团动力部周志敏(莱芜271104) 1概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 2差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。 共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 3滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF; CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。

高速电路 接口电平最佳详解.

高速电路 (由于高速电路有很多参考资料,本文并不侧重全面讲述原理、各种匹配和计算方法,而是侧重评析一些高速电路的优缺点,并对常用电路进行推荐使用。) 一、高速信号简介: 常见的高速信号有几种:ECL电平、LVDS电平、CML电平 其中ECL电平根据供电的不同还分为: ECL――负电源供电(一般为-5.2v) PECL――正5V供电 LVPECL――正3v3供电,还有一种2.5V供电 一般情况下,常见的高速信号都是差分信号,因为差分信号的抗干扰能力比较强,并且自身产生的干扰比较小,能够传输比较高的速率。 二、几种常见的高速信号: 1、PECL电平 从发展的历史来说,ECL信号最开始是采用-5.2V供电的(为何采用负电源供电下面会详细说明),但是负电源供电始终存在不便,后来随着工艺水平的提升,逐渐被PECL 电平(5V供电)所替代,后来随着主流芯片的低电源供电逐渐普及,LVPECL也就顺理成章地替代了PECL电平。

PECL信号的输出门特点: A、输出门阻抗很小,一般只有4~5欧姆左右: a、输出的驱动能力很强;直流电流能达到14mA; b、同时由于输出门阻抗很小,与PCB板上的特征阻抗Z0(一般差分100欧姆),相差 甚远当终端不是完全匹配的时候,信号传到终端后必然有一定的反射波,而反射波传会到源端后,也不能在源端被完全匹配,这样必然发送二次反射。正因为存在这样的二次反射,导致了PECL信号不能传输特别高的信号。一般155M、622M的信号还都在使用PECL/LVPECL信号,到了2.5G以上的信号就不用这种信号了。 c、 B、PECL信号的回流是依靠高电平平面(即VCC)回流的,而不是低电平平面回流。所以, 为了尽可能的避免信号被干扰,要求电源平面干扰比较小。也就是说,如果电源平面干扰很大,很可能会干扰PECL信号的信号质量。 a、这就是ECL信号出现之初为何选用负电源供电的根本原因。一般情况下,我们认为 GND平面是比较干净的平面。因为我们可以通过良好的接地来实现GND的平整(即干扰很小)。 b、从这个角度来说,PECL信号和LVPECL信号都是容易受到电源(VCC)干扰的,所以 必须注意保证电源平面的噪声不能太大。 C、对于输出门来说,P/N二个管脚不管输出是高还是低,输出的电流总和是一定的(即恒 流输出)。恒流输出的特性应该说是所有的差分高速信号的共同特点(LVDS/CML电平也是如此)。这样的输出对电源的干扰很小,因为不存在电流的忽大忽小的变化,这样对电源的干扰自然就比较小。而普通的数字电路,如TTL/CMOS电路,很大的一个弊病就是干扰比较大,这个干扰大的根源之一就是对电源电流的需求忽大忽小,从而导致供电平面的凹陷。 D、PECL的直流电流能达到14mA,而交流电流的幅度大约为8mA(800mV/100ohm),也就 是说PECL的输出门无论是输出高电平还是低电平,都有直流电流流过,换一句话说PECL 的输出门(三极管)始终工作在放大区,没有进入饱和区和截至区,这样门的切换速度就可以做得比较快,也就是输出的频率能达到比较高的原因之一。 下面是PECL电平的输入门结构: 其中分为二种:一种是有输入直流偏置的,一种是没有输入直流偏置,需要外接直流偏置的。 一般情况下,ECL/PECL/LVPECL信号的匹配电阻(差分100欧姆)都是需要外加的,芯片内部不集成这个电阻。 大家可以看到,VCC-1.3V为输入门的中间电平(即输入信号的共模电压),对于LVPECL 来说大约为2V,对于PECL来说为3.7V。 也就是说,我们要判断一个PECL/LVPECL电平输入能否被正常接收,不仅要看交流幅度能否满足输入管脚灵敏度的要求,而且要判断直流幅度是否在正常范围之内(即在VCC-1.3V 左右,不能偏得太大,否则输入门将不能正常接收)。在这一点上与LVDS有很大的差别,务必引起注意。

共模与差模信号及其抑制原理

共模与差模信号及其抑制原理 1、引言 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。 变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。 共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。 本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。 在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2、差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。 2.1 差模信号 纯差模信号是:V1 = -V2,(1) 大小相等,相位差是180°, VDIFF = V1-V2 (2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。 局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。 两个电压(V1+V2)瞬时值之和总是等于零。 2.2 共模信号 纯共模信号是:V1 = V2 = VCOM(3) 大小相等,相位差为0°,

V3=0 (4) 共模信号的电路如图3所示,其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。 在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 两个电压瞬时值之和(V1+V2)不等于零。 相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。 3、差模和共模信号及其在无屏蔽对绞线中的EMC 在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。 流过每根导线的电流所产生的磁场受螺旋形的制约。 流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。 在每对导线上流过差模和共模电流所引起的发射程度是不同的,差模电流引起的噪音发射是较小的,所以噪音主要是由共模电流决定。 3.1 对绞线中的差模信号 对纯差模信号而言,它在每一根导线上的电流是以相反方向在一对导线上传送。如果这一对导线是均匀的缠绕,这些相反的电流就会产生大小相等,反向极化的磁场,使它的输出互相抵消。 在无屏蔽对绞线中,不含噪音的差模信号不产生射频干扰。 在无屏蔽对绞线系统中的差模信号如图5所示。 3.2 对绞线中的共模信号 共模电流ICOM在两根导线上以相同方向流动,并经过寄生电容Cp到地返回。在这种情况下,电流产生大小相等极性相同的磁场,它们的输出不能相互抵消。 在无屏蔽对绞线中,共模信号产生射频干扰。 如图6所示,共模电流在对绞线的表面产生一个电磁场,它的作用正如天线一样

什么叫差分信号差分信号详解

什么叫差分信号?差分信号详解 什么叫差分信号?差分信号详解 一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统'地'被用作电压基准点。当'地'当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。 另一方面,一个差分信号作用在两个导体上。信号值是两个导体间的电压差。尽管不是非常必要,这两个电压的平均值还是会经常保持一致。我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了- 但是他们的平均位置是不变的。继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。0 表示两个人都是同一水平。 图1 用跷跷板表示的差分信号 应用到电学上,这两个跷跷板用一对标识为V+和V-的导线来表示。当V+>V-时,信号定义成正极信号,当V+

差模信号

85总线就是利用差分传输信号的一种具体应用。 实际应用中,温度的变化各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中,两根线的对地噪声哀减的不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。 差分放大器,差模输入差模是相对共模来说的。。差分是一 种方式。。 差模共模信号,差分放大电路 举例来说,假如一个ADC有两个模拟输入端,并且AD转换结果取决于这两个输入端电压之差,那么我们说 这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压 并不一定总是大小相等方向相反,甚至很多情况下是同符号的。(注:即不一定是一正一负)我们把它们 的差叫做差模输入,而把它们共有的量(即平均值)叫做共 模输入。

差分是一种电路形式的叫法.... 差模是对信号的定义....(想对来说有共模..) 差动=======差分 回答:差模信号:大小相等,方向相反的交流信号,共模信号:大小相等。方向相同。在差分放大电路 中,经常提到共模信号和差模信号,在差分放大电路中共模信号是不会被放大的,可以理解为三极管的 温漂引起的电流型号,为了形象化温漂而提出了共模信号,差模信号为输入信号,就是Ui,就是放大的对 象。 在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这是有 用的信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放 大倍数。 如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化而产生的信号 ,是一种有害的东西),我们把这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。由于差动

LVDS接口详解

1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL 多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。

电磁干扰(EMI)共模和差模信号与滤波

电磁干扰(EMI)共模和差模信号与滤波 摘要 介绍了共模、差模信号的关键特性及其抑制方法,以及滤波器的工作原理及其应用电路。 Common Mode and Differential Mode Signals and Filter Abstract:The key characterisics of common mode anddifferential mode signals as well as the method of rejection was presented.The principl of filter was introduced and the application circuit was given. 一.概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰应用包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传输途经分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz—30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 二.差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等, 在两线电缆传输回路,每一线对地电压用符号V1和V2 来表示。差模信号分量是V DIFF。纯差模信号是V1=-V2, 其大小相等,相位相差180o,V DIFF=V1-V2,因为V1 和V2对地是对称的,所以地线上没有电流流过,差模 信号的电路如图1所示。所有的差模电流(I DIFF)全流 过负载。差模干扰侵入往返两条信号线,方向与信号电 流方形一致,其一种是由信号源产生,另一种是传输过 程中由电磁感应产生,它和信号串在一起且同相位,这 样的干扰一般难以抑制。

共模和差模区别与处理

1、共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同(同相)。 差模信号:双端输入时,两个信号的相位相差180度(相位相反)。 任何两个信号都可以分解为共模信号和差模信号。 设两路的输入信号分别为: A,B. m,n分别为输入信号A,B的共模信号成分和差模信号成分。 输入信号A,B可分别表示为:A=m+n;B=m-n 则输入信号A,B可以看成一个共模信号 m 和差模信号 n 的合成。 其中m=(A+B)/2;n=(A-B)/2。 差动放大器将两个信号作差,作为输出信号。则输出的信号为A-B,与原先两个信号中的共模信号和差模信号比较,可以发现: 共模信号m=(A+B)/2不见了,而差模信号n=(A-B)/2得到两倍的放大。 这就是差模放大器的工作原理。 2、任何电源线上传导干扰信号,均可用差模和共模信号来表示。差模干扰在 两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。 3、电压电流的变化通过导线传输时有二种形态,我们将此称做"共模"和"差模".设备的电源线,电话等的通信线,与其它设备或外围设备相互交换的通讯 线路,至少有两根导线,这两根导线作为往返线路输送电力或信号.但在这两根导线之外通常还有第三导体,这就是"地线".干扰电压和电流分为两种:一种是两 根导线分别做为往返线路传输;另一种是两根导线做去路,地线做返回路传输.前者叫"差模",后者叫"共模". 共模干扰是在信号线与地之间传输,属于非对称性干扰。消除共模干扰的方法包括: (1)采用屏蔽双绞线并有效接地 (2)强电场的地方还要考虑采用镀锌管屏蔽

电磁兼容中三大类PCB布线设计详解

电磁兼容中三大类PCB布线设计详解 从电磁兼容的角度,我们需要对以下四种布线加以关注:A 强辐射信号线(高频、高速、时钟走线为代表)B 敏感信号(如复位信号)C 功率电源信号D 接口信号(模拟接口或数字通信接口) 一、单双面布线设计1.在单层板中,电源走线附近必须有地线与其紧邻、平行走线。减小电源电流回路面积,减小差模环路辐射。 2.电源走线单面板或双面板,电源线走线很长,每隔3000mil 对地加去耦电容(10uF +1000pF)。滤除电源线上地高频噪声。 3.Guide Ground Line对于单、双层板,关键信号线两侧应该布“Guide GroundLine”。关键信号线两侧地“包地线”一方面可以减小信号回路面积,另外还可以防止信号与其他信号线之间的串扰。 4.回流设计在单层板或双层板中,布线时应该注意“回流面积最小化”设计,回路面积越小,回路对外辐射越小,并且搞干扰能力越强。 对于多层板来说,要求关键信号线有完整的信号回流,最后是GND 平面回流。次重要信号有完整平面回流。通过减小回路来防止信号串扰,同时降低对外的辐射。 5.直角走线PCB 走线不能有直角走线。直角走线导致阻抗不连续,导致信号发射,从而产生振铃或过冲,形成强烈的EMI 辐射。 6.PCB走线粗细应一致。粗细不一致时,走线阻抗突变,导致信号反射,从而产生振铃或过冲,形成强烈的EMI 辐射。 7.相邻布线层注意在分层设计时,应避免布线层相邻。如果无法避免,应适当拉大两布线层上的平行信号走线会导致信号串扰。线层之间的层间距,缩小布线层与其信号回路之间的层间距,布线层1与布线层2不宜相邻。 相邻布尽可能避免相邻布线层的层设置,无法避免时,尽量使两布线层中的走线相互垂直或平行走线长度小于1000mil ,这样减小平行走线之间的串扰。

共模信号与差模信号辨析

共模信号与差模信号辨析 差模又称串模,指的是两根线之间的信号差值;而共模噪声又称对地噪声,指的是两根线分别对地的噪声。 对于一对信号线A、B,差模干扰相当于在A与B之间加上一个干扰电压,共模干扰相当于分别在A与地、B与地之间加上一个干扰电压;像平常看到的用双绞线传输差分信号就是为了消除共模噪声,原理很简单,两线拧在一起,受到的共模干扰电压很接近, Ua - Ub依然没什么变化,当然这是理想情况。比如说,RS422/485总线就是利用差分传输信号的一种具体应用。 实际应用中,温度的变化各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中,两根线的对地噪声哀减的不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。差分放大器,差模输入差模是相对共模来说的。。差分是一种方式。。 差模共模信号,差分放大电路 举例来说,假如一个ADC有两个模拟输入端,并且AD转换结果取决于这两个输入端电压之差,那么我们说 这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压 并不一定总是大小相等方向相反,甚至很多情况下是同符号的。(注:即不一定是一正一负)我们把它们 的差叫做差模输入,而把它们共有的量(即平均值)叫做共模输入。 差分是一种电路形式,它与差动是一个意思。差模是对信号的定义,与共模是想对应的。 差模信号:大小相等,方向相反的交流信号。 共模信号:大小相等,方向相同。 在差分放大电路中,经常提到共模信号和差模信号,在差分放大电路中共模信号是不会被放大的,可以理解 为三极管的温漂引起的电流信号,为了形象化温漂而提出了共模信号,差模信号为输入信号,是被放大的对 象。

共模和差模信号与滤波

共模和差模信号与滤波 一.概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰应用包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传输途经分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz—30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 二.差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是V DIFF。纯差模信号是V1=-V2,其大小相等,相位相差180o,V DIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(I DIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方形一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这样的干扰一般难以抑制。共模信号又称为对地感应信号或不对称信号,共模信号分量是V com,纯共模信号是:V com=V1=V2,大小相等,相位差为0o。V3=0。共模信号的电路如图表2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路,原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 三.滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送的干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),他们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用л型滤波器抑制,如图3所示。 图3(a)中,L D为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,Lc为滤波扼流圈。由于Lc的两个线圈绕向一致,当电源输入电流流过Lc时,所产生的磁场可以抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。Lc对共模噪声来说相当于一个大电感,能有效抑制共模噪声。开关电源输入端分别对地并接的电容C Y对共模噪声起抑制作用。R为Cx的放电电阻,它是VDE-0806和IEC-380安全技术标准所推荐的。图3(b)中各元件参数范围为:Cx=0.1—2.0uF。CY=2.0nF—33nF。Lc=几—几十mH,随工作电流不同而取不同的参数值,如电流为25A时Lc=1.8mH。电流为0.3A时,Lc=47mH。

相关文档
最新文档