现代数字信号处理实验报告

现代数字信号处理实验报告
现代数字信号处理实验报告

现代数字信号处理实验报告

1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式:

999

1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。

(c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即:

999

00

1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑

与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗?

(d)再将1000点的白噪声()x n 通过滤波器1

1

()10.9H z z

-=

-产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。

仿真结果:

(a)

图1.1零均值单位方差高斯白噪声的1000个样本点

分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b)

图1.2()

x n的前100个自相关序列值

分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r

(k)=δ(k)

x

比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

(c)

图1.3基于Bartlett 法的前100个自相关序列值

与(b)的结果相比,同样在k=0时达到峰值,k ≠0时0值附近上下波动;估计值的方差比较小,随着k 的增大波动幅度逐渐变小,在k 较大时它更接近真实自相关序列()()x r k k δ=。即采用分段方法得到的自相关序列的估计值更加接近r x (k)=δ(k)。分析仿真图也可以看出:将样本数据分段,将所有子段的样本自相关的平均值作为()x n 自相关的估值时,可以有效的降低自相关估计的方差,而分段样本估计的优点在于,估计自相关序列与实际自相关序列的方差减小,且当分段数越大,估计值越趋向于无偏估计。 (d)

图1.4y(n)的前100个自相关序列值与真实值的对比从图中可以看出在k=0时估计与真实的自相关序列之间有较小的误差,随着k的增大,估计得到的值有较大的波动,存在一定误差。

源程序

clc

clear

%%产生1000个高斯白噪声的样本点

x=randn(1,1000);

K=1000;

figure(1);

k=0:K-1;

stem(k,x,'.'); %绘制1000个高斯白噪声

title('零均值单位方差高斯宝噪声,1000个样本点');

xlabel('k');ylabel('x[k]');

mean_x=mean(x)

var_x=var(x)

%%

for k=0:99

for n=k+1:1000

y_ess(n)=x(n)*x(n-k);

end

r_ess(k+1)=sum(y_ess)/1000;

end

figure(2);

k=[0:99];

stem(k,r_ess,'.');

title('根据样本点估计出的前100自相关序列值');

xlabel('k');ylabel('r_ess[k]');

hold on;

realvalue=[1,zeros(1,99)];

stem(k,realvalue,'r','.');

legend('根据样本点估计出的前100自相关序列值','真实的自相关序列');

error1=r_ess-realvalue;

mean_error_b=mean(error1)

var_error_b=var(error1)

%%

for k=0:99

for m=0:9

for n=k+1:100

y_ess2(m+1,n)=x(n+100*m)*x(n-k+100*m);

end

end

r_ess2(k+1)=sum(sum(y_ess2))/1000;

end

figure(3);

k=0:99;

stem(k,r_ess2,'b.');

hold on;

realvalue2=[1,zeros(1,99)];

stem(k,realvalue2,'r.','.');

title('Bartlett法估计功率谱方法得出的前100个自相关序列值');

xlabel('k');ylabel('r_ess2[k]');

legend('Bartlett法估计功率谱方法得出的前100个自相关序列值','真实的自相关序列');

error2=r_ess2-realvalue2;

mean_error_c=mean(error2)

var_error_c=var(error2)

%%

y=zeros(1,1000);

B=[1]; A=[1,-0.9];

y=filter(B,A,x);

r_ess3=zeros(1,100); for k=0:99

for n=(k+1):1000

r_ess3(k+1)=r_ess3(k+1)+y(n)*y(n-k); end

r_ess3(k+1)=r_ess3(k+1)/1000; end

figure(4);

stem(r_ess3,'.');

title('y[n]前100个自相关序列估计值'); xlabel('k'),ylabel('r_ess3(k)'); hold on;

p=[1,zeros(1,99)]; h=filter(B,A,p); for i=1:100

h1(i)=h(101-i); end

rh=conv(h,h1); rh=rh(100:199);

realvalue3=conv(p,rh);

realvalue3=realvalue3(1:100); stem(realvalue3,'r.','.');

legend('y[n]前100个自相关序列估计值','y[n]的真实自相关序列');

2、计算机练习2:AR 过程的线性建模与功率谱估计。考虑AR 过程:

()(1)(1)(2)(2)(3)(3)(4)(4)(0)()x n a x n a x n a x n a x n b v n =-+-+-+-+

()v n 是单位方差白噪声。

(a) 取b (0)=1, a (1)=0.-7348, a (2)=-1.8820, a (3)=-0.7057, a (4)=-0.8851,产生x (n )的N =256个样点。

(b)计算其自相关序列的估计?()x r

k ,并与真实的自相关序列值相比较。 (c) 将?()x r

k 的DTFT 作为x (n )的功率谱估计,即: 1

21

1

??()()|()|N j jk j x

x k N P e r

k e X e N

ωωω--=-+==∑

。 (d)利用所估计的自相关值和Yule-Walker 法(自相关法),估计(1), (2), (3), (4)

a a a a 和(0)

b 的值,并讨论估计的精度。

(e)用(d)中所估计的()a k 和(0)b 来估计功率谱为:2

2

4

1|(0)|?()1()j x

jk k b P e a k e ω

ω

-==+∑。

(f)将(c)和(e)的两种功率谱估计与实际的功率谱进行比较,画出它们的重叠波形。 (g)重复上面的(d)~(f),只是估计AR 参数分别采用如下方法:(1) 协方差法;(2) Burg 方法;(3) 修正协方差法。试比较它们的功率谱估计精度。 仿真结果: (a )

图2.1x (n )的N =256个样点

(b )

图2.2自相关序列的估计值与真实的对比

图2.2中估计的自相关序列与真实的自相关序列差异较大;在k>100后,真实的自相关序列就波动得很小,而估计的自相关序列则仍有较大的波动,但总体上来言两者都随着k的增大而逐渐衰减,当k>150时,真实自相关序列逐渐趋于0,而估计出的自相关序列却仍有较大的波动,这是因为估计的点数较少,使得估计精度不够。

(c)

图2.3 估计的功率谱与真实功率谱对比

(d)Yule-Walker法(自相关法)

估计的参数值为:

b(0)= 1.1537

[a(1) a(2) a(3) a(4)]=[-0.7174-1.7952-0.6387-0.8167]

图2.4 Yule-Walker法估计的功率谱与真实功率谱对比

Yule-Walker法(自相关法)估计的参数,其系数的符号正确,但数值大小相差较大,并且多次实验的相差值也很大,参数估计的精度远远不够。因此从图2.4中也能看出,该方法得到功率谱与真实的谱相差很大

(e)协方差法

图2.5 协方差法估计的功率谱与真实功率谱对比

采用协方差法估计的参数,其系数与真实的系数非常接近,该方法能够较精确的估计出功率谱。

(f)修正协方差

图2.6 修正的协方差法估计的功率谱与真实功率谱对比采用修正的协方差法估计的参数,其系数虽然没有协方差法和burg法那么精确,但是估计误差也很小。从图2.6中也能看出,该方法能够较精确的估计出功率谱。

(g)Burg算法

图2.7 burg法估计的功率谱与真实功率谱对比

采用burg估计的参数,其系数几乎等于真实的系数,分析图2.7中也能看出,

该方法非常精确的估计出功率谱,几乎与真实的功率谱曲线重合。源程序:

clc;clear;

N=256;

NN=20000;

v1=normrnd(0,1,50,NN);

v=v1(:,1:N);

r=zeros(1,N);

r1=zeros(1,N);

w=0:2*pi/100:2*pi;

P=zeros(1,length(w));

PP1=zeros(1,length(w));

PP2=zeros(1,length(w));

PP3=zeros(1,length(w));

PP4=zeros(1,length(w));

for s=1:50

x1=filter([1],[1,0.7348,1.8820,0.7057,0.8851],v1(s,:)); x=x1(1:N);

for k=1:N

rx(k)=0;

for n=k:N

rx(k)=rx(k)+x(n)*x(n-(k-1));

end

rx(k)=rx(k)/(N);

end

r=r+rx;

for k=1:N

rx1(k)=0;

for n=k:NN

rx1(k)=rx1(k)+x1(n)*x1(n-(k-1));

end

rx1(k)=rx1(k)/(NN);

end

r1=r1+rx1;

for i=1:length(w)

P(i)=P(i)+rx(1);

for n=2:N

P(i)=P(i)+rx(n)*exp(-j*(n-1)*w(i))+rx(n)*exp(j*(n-1)*w(i)); end

end

A=toeplitz(rx(1:4)',rx(1:4));

B=-rx(2:5)';

Ap=A\B;

b0=rx(1);

for i=1:4

b0=b0+Ap(i)*rx(i+1);

end

b0=sqrt(b0);

for i=1:length(w)

P1(i)=1;

for k=1:4

P1(i)=P1(i)+Ap(k)*exp(-j*k*w(i));

end

P1(i)=b0^2/abs(P1(i))^2;

end

PP1=PP1+P1;

A=[];

for k=1:4

c=[];

for l=1:4

rr=0;

for n=5:N

rr=rr+x(n-l)*x(n-k);

end

c=[c;rr];

end

A=[A c];

end

B=[];

for l=1:4

rr=0;

for n=5:N

rr=rr+x(n-l)*x(n);

end

B=[B;rr];

end

B=B*(-1);

Ap=A\B;

for i=1:length(w)

P2(i)=1;

for k=1:4

P2(i)=P2(i)+Ap(k)*exp(-j*k*w(i));

end

P2(i)=x(1)^2/abs(P2(i))^2;

end

PP2=PP2+P2;

A=[];

for k=1:4

c=[];

for l=1:4

rr=0;

for n=5:N

rr=rr+x(n-l)*x(n-k)+x(n-4+l)*x(n-4+k); end

c=[c;rr];

end

A=[A c];

end

B=[];

for l=1:4

rr=0;

for n=5:N

rr=rr+x(n-l)*x(n)+x(n-4+l)*x(n-4);

end

B=[B;rr];

end

B=B*(-1);

Ap=A\B;

for i=1:length(w)

P3(i)=1;

for k=1:4

P3(i)=P3(i)+Ap(k)*exp(-j*k*w(i));

end

P3(i)=x(1)^2/abs(P3(i))^2;

end

PP3=PP3+P3;

p=4;

ef=zeros(1+p,N);

eb=zeros(1+p,N);

ef(1,:)=x;

eb(1,:)=x;

km=[];

for m=2:p+1

mol=0;

den=0;

for n=m:N

mol=mol+(-2)*ef(m-1,n)*eb(m-1,n-1);

den=den+(ef(m-1,n))^2+(eb(m-1,n-1))^2; end

km(m-1)=mol/den;

for n=m:N

ef(m,n)=ef(m-1,n)+km(m-1)*eb(m-1,n-1); eb(m,n)=eb(m-1,n-1)+km(m-1)*ef(m-1,n); end

end

aa=[1];

for i=1:4

aa=[aa;0];

bb=aa(length(aa):-1:1);

aa=aa+bb*km(i);

end

for i=1:length(w)

P4(i)=1;

for k=2:5

P4(i)=P4(i)+aa(k)*exp(-j*(k-1)*w(i));

end

P4(i)=1/abs(P4(i))^2;

end

PP4=PP4+P4;

end

figure(1)

stem(1:N,x,'.');

title('x[n]的256个样本点');

xlabel('n');ylabel('x[n]');

figure(2)

plot(0:N-1,r/50); hold on;

plot(0:N-1,r1/50,'r');

title('x[n]的256个样本点估计出的前256个自相关序列和真实值'); ylabel('Rx(k)');

xlabel('k');

legend('估计值','真实值');

grid on;

axis([0 256 -40 40]);

hold off;

figure(3)

plot(w/pi,10*log10(P/50)); hold on;

title('功率谱估计');

ylabel('P(dB)');

xlabel('w/pi');

plot(w/pi,10*log10(PP1/50),'r');

plot(w/pi,10*log10(PP2/50),'g');

plot(w/pi,10*log10(PP3/50),'y');

plot(w/pi,10*log10(PP4/50),'k');

aap=[0.7348,1.8820,0.7057,0.8851];

for i=1:length(w)

P5(i)=1;

for k=1:4

P5(i)=P5(i)+aap(k)*exp(-j*k*w(i)); end

P5(i)=1/abs(P5(i))^2;

end

plot(w/pi,10*log10(P5),':');

legend('Rx(k)的DTFT','Yule-Walker');

grid on;

hold off;

figure(4)

plot(w/pi,10*log10(P/50)); hold on;

title('功率谱估计比较');

ylabel('P(dB)');

xlabel('w/pi');

plot(w/pi,10*log10(P5),'r');

legend('Rx(k)的DTFT','真实频谱');

grid on;

hold off;

figure(5)

plot(w/pi,10*log10(PP1/50)); hold on;

title('Yule-Walker法功率谱估计比较'); ylabel('P(dB)');

xlabel('w/pi');

plot(w/pi,10*log10(P5),'r');

legend('Yule-Walke法','真实频谱');

grid on;

hold off;

figure(6)

plot(w/pi,10*log10(PP2/50)); hold on; title('协方差法功率谱估计比较'); ylabel('P(dB)'); xlabel('w/pi');

plot(w/pi,10*log10(P5),'r'); legend('协方差法','真实频谱'); grid on; hold off;

figure(7)

plot(w/pi,10*log10(PP3/50)); hold on; title('修正协方差法功率谱估计比较'); ylabel('P(dB)'); xlabel('w/pi');

plot(w/pi,10*log10(P5),'r'); legend('修正协方差法','真实频谱'); grid on; hold off;

figure(8)

plot(w/pi,10*log10(PP4/50)); hold on; title('Burg 法功率谱估计比较'); ylabel('P(dB)'); xlabel('w/pi');

plot(w/pi,10*log10(P5),'r'); legend('Burg 法','真实谱'); grid on; hold off;

3、计算机练习3:维纳噪声抑制(例6.6的扩展实验)。假定图6.8中所需的信号()d n 是一个正弦序列0()sin()d n n ωφ=+,

00.02ωπ=, 噪声序列1()v n 和2()v n 都是AR(1) 过程,分

别由如下的一阶差分方程产生:

11()0.8(1)()v n v n g n =-+

22()0.6(1)()v n v n g n =--+

其中()g n 是零均值、单位方差的白噪声,与()d n 不相关。

(a) 试用Matlab 程序产生x (n )和2()v n 的500个样点,画出波形图。

(b)基于x (n )和2()v n 的500个样点,设计p 阶的最优FIR 维纳滤波器,由2()v n 估计1()v n ,

进而估计出()d n ,其中阶数p 分别取为p=3,6,9,12,试计算各种情况下估计1()v n 时的平均平方误差(均方误差的样本估计,要叙述估计方案),并画出对d (n )估计的结果。 (c)有时辅助观测数据中也会漏入一些d (n )信号,即辅助观测信号不仅是2()v n ,而是

02()()()v n v n d n α=+

试针对p=12的情况,分别取几个不同的α值(如0.1, 0.5, 1.0),研究这时的噪声抑制性能。 (d)若只有一路观测1()()()x n d n v n =+的1000个样点,你能想办法近似完成对噪声1()v n 的

有效抑制吗?试解释你的方法的基本原理,叙述你的实现方案。

图6.8 有辅观测数据的维纳噪声抑制器的原理图

仿真结果:

(a )

图3.12()v n 的波形

图3.2 x (n )的500个样点的波形

(b )

基于()X n 和2()V n 的500个样点,可以得到

122201?()()()N v n r

k V n V n k N -==-∑、1

220

1?()()()N xv n r k x n V n k N -==-∑ 求解Wiener-Hopf 22v xv R w r =方程可以得到最优FIR 维纳滤波器。

均方误差的样本估计可以用1

2110

1??(()())N n v n v n N ξ-==-∑计算得当p=3、6、9、12时,估计1()v n 时的平均平方误差分别为0.7849、0.2173、0.0747、0.0453。

图3.3滤波器阶数p=3时的估计值与真实值对比

图3 .4滤波器阶数p=6时的估计值与真实值对比

数字信号处理期末重点复习资料

1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。 2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性 卷积。 5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞∑ 6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。 7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。 8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型的运算速度最高。 9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是 __N 1+N 2-1_。 11、N=2M 点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。 12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。 16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。 17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。 18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表 达式分别是h(n)=h1(n)*h2(n), =H1(ej ω)×H2(ej ω)。 19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。 20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。

数字信号处理期末考试试题以及参考答案.doc

2020/3/27 2009-2010 学年第二学期 通信工程专业《数字信号处理》(课程)参考答案及评分标准 一、 选择题 (每空 1 分,共 20 分) 1.序列 x( n) cos n sin n 的周期为( A )。 4 6 A . 24 B . 2 C . 8 D .不是周期的 2.有一连续信号 x a (t) cos(40 t) ,用采样间隔 T 0.02s 对 x a (t) 进行采样,则采样所得的时域离散信 号 x(n) 的周期为( C ) A . 20 B . 2 C . 5 D .不是周期的 3.某线性移不变离散系统的单位抽样响应为h(n) 3n u( n) ,该系统是( B )系统。 A .因果稳定 B .因果不稳定 C .非因果稳定 D .非因果不稳定 4.已知采样信号的采样频率为 f s ,采样周期为 T s ,采样信号的频谱是原模拟信号频谱的周期函数,周 期为( A ),折叠频率为( C )。 A . f s B . T s C . f s / 2 D . f s / 4 5.以下关于序列的傅里叶变换 X ( e j ) 说法中,正确的是( B )。 A . X ( e B . X ( e C . X (e D . X (e j j j j ) 关于 是周期的,周期为 ) 关于 是周期的,周期为 2 ) 关于 是非周期的 ) 关于 可能是周期的也可能是非周期的 6.已知序列 x(n) 2 (n 1) (n)(n 1) ,则 j X (e ) 的值为( )。 C

2020/3/27 A . 0 B . 1 C . 2 D . 3 N 1 7.某序列的 DFT 表达式为 X (k ) x(n)W M nk ,由此可看出,该序列的时域长度是( A ),变换后数字域 n 0 上相邻两个频率样点之间的间隔( C )。 A . N B . M C .2 /M D . 2 / N 8.设实连续信号 x(t) 中含有频率 40 Hz 的余弦信号,现用 f s 120 Hz 的采样频率对其进行采样,并利 用 N 1024 点 DFT 分析信号的频谱,得到频谱的谱峰出现在第( B )条谱线附近。 A . 40 B . 341 C . 682 D .1024 9.已知 x( n) 1,2,3,4 ,则 x ( ) R 6 ( ) ( ), x ( n 1) R 6 (n) ( ) n 6 n 6 A C A . 1,0,0,4,3,2 B . 2,1,0,0,4,3 C . 2,3,4,0,0,1 D . 0,1,2,3,4,0 10.下列表示错误的是( B )。 A . W N nk W N ( N k) n B . (W N nk ) * W N nk C . W N nk W N (N n) k D . W N N /2 1 11.对于 N 2L 点的按频率抽取基 2FFT 算法,共需要( A )级蝶形运算,每级需要( C )个蝶形运算。 A . L B . L N 2 C . N D . N L 2 12.在 IIR 滤波器中,( C )型结构可以灵活控制零极点特性。 A .直接Ⅰ B .直接Ⅱ C .级联 D .并联 13.考虑到频率混叠现象,用冲激响应不变法设计 IIR 数字滤波器不适合于( B )。 A .低通滤波器 B .高通、带阻滤波器 C .带通滤波器 D .任何滤波器

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

数字信号处理期末试卷!

数字信号处理模拟试题一 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系(A ) A.Ωs>2Ωc B.Ωs>Ωc C.Ωs<Ωc D.Ωs<2Ωc 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?(D) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1) 3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为(D ) A.有限长序列 B.右边序列 C.左边序列 D.双边序列 4.实偶序列傅里叶变换是(A ) A.实偶序列 B.实奇序列 C.虚偶序列 D.虚奇序列 5.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)=(B) A.N-1 B.1 C.0 D.-N+1 6.设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B ) A.M+N B.M+N-1 C.M+N+1 D.2(M+N) 7.下面说法中正确的是(C) A.连续非周期信号的频谱为周期连续函数 B.连续周期信号的频谱为周期连续函数 C.离散非周期信号的频谱为周期连续函数 D.离散周期信号的频谱为周期连续函数 8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?(C ) A.直接型 B.级联型 C.频率抽样型 D.并联型 9.下列关于FIR滤波器的说法中正确的是(C) A.FIR滤波器容易设计成线性相位特性

数字信号处理期末试卷(含答案)全..

数字信号处理期末试卷(含答案) 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。 1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=x 3(n) B.y(n)=x(n)x(n+2) C.y(n)=x(n)+2 D.y(n)=x(n 2) 3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。 A .M+N B.M+N-1 C.M+N+1 D.2(M+N) 4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混 叠现象,则频域抽样点数N 需满足的条件是( )。 A.N ≥M B.N ≤M C.N ≤2M D.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。 A.N B.N 2 C.N 3 D.Nlog 2N 6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。 A.直接型 B.级联型 C.并联型 D.频率抽样型 7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称 C 关于0=w 、π2偶对称 关于=w π奇对称 D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数

数字信号处理期末复习题

一、选择题 2、对于x(n)=n 21??? ??u(n)的Z 变换,( )。 A. 零点为z=21,极点为z=0 B. 零点为z=2 1 ,极点为z=2 C. 零点为z=21,极点为z=1 D. 零点为z=0,极点为z=21 3、()?? ? ??=n A n x π513sin 是一个以( )为周期的序列。 A. 16 B. 10 C. 14 D. 以上都不对,是一个非周期序列 6、序列()1+n δ的波形图为( )。 C B A 7、s 平面的虚轴对应z 平面的( )。 A. 单位圆内 B. 单位圆外 C. 正实轴 D. 单位圆上 8、关于快速傅里叶变换,下述叙述中错误的是( )。 A.相对离散傅里叶变换来说,它不是一种全新的算法 B.nk N W 具有对称、周期和可约性 C.每个蝶形运算的两个输出值仍放回到两个输入所在的存储器中,能够节 省存储单元 D.就运算量来说,FFT 相对DFT 并没有任何减少 9、下列关于FIR 滤波器的说法中正确的是( )。 A. FIR 滤波器不能设计成线性相位 B. 线性相位FIR 滤波器的约束条件是针对()h n C. FIR 滤波器的单位冲激响应是无限长的

D.不管加哪一种窗,对于FIR 滤波器的性能都是一样的 10、幅度量化、时间离散的的信号是( )。 A. 连续时间信号 B. 离散时间信号 C. 数字信号 D. 模拟信号 11、幅值连续、时间为离散变量的信号是( )。 A. 连续时间信号 B. 离散时间信号 C. 数字信号 D. 模拟信号 12、右面的波形图代表序列( )。 A. ()34-n R B. ()25+n R C. ()25-n R D. ()24-n R 13、序列()??? ??-=ππ6183cos n A n x 的周期为( )。 A. 16 B. 10 C. 14 D. 以上都不对,是一个非周期序列 14、从奈奎斯特采样定理得出,要使信号采样后能够不失真还原,采样频率f 与信号最高频率 f h 关系为:( )。 A. f ≤2f h B. f ≥2f h C. f ≥f h D. f ≤f h 16、无限长单位冲激响应(IIR )滤波器的结构是( )型的。 A. 非递归 B. 无反馈 C. 递归 D. 不确定 17、已知序列Z 变换的收敛域为|z |<1,则该序列为( )。 A.有限长序列 B. 左边序列 C. 右边序列 D.双边序列 18、下面说法中正确的是( )。 A. 连续非周期信号的频谱为周期连续函数 B. 连续周期信号的频谱为周期连续函数 C. 离散周期信号的频谱为周期连续函数 D. 离散非周期信号的频谱为周期连续函数 19、利用矩形窗函数法设计FIR 滤波器时,在理想频率特性的不连续点附近形 成的过滤带的宽度近似等于( )。

数字信号处理期末试题及答案(1)

一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 答案: 1.10 2.交换律,结合律、分配律 3. 4 11,01z z z --->- 4. k N j e Z π2= 5.{0,3,1,-2; n=0,1,2,3} 6.()()()y n x n h n =* 7. x(0) 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( a ) A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( c ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( b ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( d ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完 全不失真恢复原信号 ( a ) A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( b ) A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( c ) A. 实轴 B.原点 C.单位圆 D.虚轴

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列 )1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A. a Z < B. a Z ≤ C. a Z > D. a Z ≥ 3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()(Λ=?=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,) ()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案) 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 一、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

现代数字信号处理期末复习

“现代数字信号处理”复习思考题 变换 1. 给出DFT的定义和主要性质。 2. DTFT与DFT之间有什么关系? 3. 写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2. 全通数字滤波器、最小相位滤波器有何特点? 3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如 何? 4. 简述FIR离散时间系统的Lattice结构的特点。 5. 简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。

6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的值,值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1. 为什么偏差为零的估计不一定是正确的估计? 2. 什么叫一致估计?它要满足哪些条件? 3. 什么叫维拉-辛钦(Wiener-Khinteche)定理? 4. 功率谱的两种定义。 5. 功率谱有哪些重要性质? 6. 平稳随机信号通过线形系统时输入和输出之间的关系。 7. AR模型的正则方程(Yule-Walker方程)的导出。 8. 用有限长数据估计自相关函数的估计质量如何? 9. 周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10. 改进的周期图法谱估计有哪些方法?它们的根据是什么? 11. 既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要 引用各种窗?

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

数字信号处理完整试题库

1. 有一个线性移不变的系统,其系统函数为: 2z 2 1 )21)(2 11(2 3)(11 1<<-- - = ---z z z z H 1)用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 4.试用冲激响应不变法与双线性变换法将以下模拟滤波器系统函数变换为数字滤波器系统函数: H(s)= 3) 1)(s (s 2 ++其中抽样周期T=1s 。 三、有一个线性移不变的因果系统,其系统函数为: ) 21)(2 1 1(2 3)(111------= z z z z H 1用直接型结构实现该系统 2)讨论系统稳定性,并求出相应的单位脉冲响应)(n h 七、用双线性变换设计一个三阶巴特沃思数字低通虑波器,采样频率为kHz f s 4=(即采样周期为s T μ250=),其3dB 截止频率为kHz f c 1=。三阶模拟巴特沃思滤波器为: 3 2 ) ()(2)(211)(c c c a s s s s H Ω+Ω+Ω+= 解1)2 111112 5 12 3) 21)(2 1 1(2 3)(------+-- = --- = z z z z z z z H …………………………….. 2分 当2 1 2> >z 时: 收敛域包括单位圆……………………………6分 系统稳定系统。……………………………….10分 1111 1211 2 111)21)(2 11(2 3)(------- -= -- - = z z z z z z H ………………………………..12分 )1(2)()2 1 ()(--+=n u n u n h n n ………………………………….15分 4.(10分)解: 3 1 11)3)(1(1)(+- +=++= s s s s s H ………………1分 1 311)(------ -= Z e s T Z e T z H T T ……………………3分

数字信号处理期末试卷及答案

A 一、选择题(每题3分,共5题) 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20 点 DFT ,得 )(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理期末复习题

一. 填空题 1)一线性时不变系统,输入为x(n)时,输出为y(n);则输入 为2x(n)时,输出为2y(n);输入为x(n-3)时,输出为y(n-3)。 2)从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原, 采样频率f与信号最高频率f s关系为:f大于等于2f s。 3)若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 4)序列x(n-2)可以通过x(n)__右____移两位得到 5)根据采样定理,若采样频率小于信号的2倍最高频率,则采样后 信号的频率会产生______混叠________。 6)若已知x(n)的z变换为X(Z),x(n-m)的z变换为_ Z -m X(Z)______。 二.选择填空题 1 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f与信号最高频 率f s关系为: A 。 A. f≥2f s B. f≤2f s C. f≥f s D. f≤f s 2 序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点 圆周卷积的长度是 B 。 A. 5, 5 B. 6, 5 C. 6, 6 D. 7, 5 3 无限长单位冲激响应(IIR)滤波器的结构是__B____型的 A. 非反馈 B. 反馈 C. 不确定 4 若正弦序列x(n)=sin(60nπ/120)是周期的,则周期是N= C 。 A. 2π B. 4π C. 4 D. 8 5 一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为

A ;输入为x(n-3)时,输出为。 A. 2y(n),y(n-3) B. 2y(n),y(n+3) C. y(n),y(n-3) D. y(n),y(n+3) 6 在N=32的时间抽取法FFT运算流图中,从x(n)到X(k)需 B 级蝶形运算 过程。 A. 4 B. 5 C. 6 D. 3 7 设系统的单位抽样响应为h(n),则系统因果的充要条件为( C ) A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0 C.当n<0时,h(n)=0 D.当n<0时,h(n)≠0 8 若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C )。 A.R3(n) B.R2(n) C.R3(n)+R3(n-1) D.R2(n)+R2(n-1) 9 .下列哪一个单位抽样响应所表示的系统不是因果系统?( D ) A.h(n)=δ(n) B.h(n)=u(n) C.h(n)=u(n)-u(n-1) D.h(n)=u(n)-u(n+1) 10.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。 A.单位圆 B.原点 C.实轴 D.虚轴 11.已知序列Z变换的收敛域为|z|<1,则该序列为( C )。 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 三,判断题 1.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。(对) 2、x(n)=cos(w0n)所代表的序列一定是周期的。(错) 3、y(n)=x2(n)+3所代表的系统是线性系统。(错) 4、一个线性时不变离散系统是因果系统的充分必要条件是:系统函数H(Z)的极点在圆内。(错) 5、y(n)=cos[x(n)]所代表的系统是线性系统。(错) 6、x(n) ,y(n)的线性卷积的长度与x(n) ,y(n)的长度无关。(错)

数字信号处理期末考试题

一、填空: 1、 数字信号处理内容十分丰富,但数字滤波和数字频谱分析是其中最重要的内容。 2、 离散时间信号是指时间上取离散值,而幅度上取连续值的信号。 3、 与模拟信号处理相比,数字信号处理具有精度高、可靠性好、便于大规模集成、灵活性好,可以分时多路复用、易实现线性相位以及多维滤波的特点。 4、 数字信号处理的应用技术有滤波、变换、调制解调、均衡、增强、压缩、估值、识别、产生等, 应用方式可分为数据的非实时处理、数据的实时处理、系统或设备的设计与模拟。 5、 单位抽样序列的定义式是:000 1 )(≠=?? ?=n n n δ,单位阶跃信号的定义为:0 00 1 )(<≥???=n n n u 。 6、 一般任意序列可表述为:∑∞ -∞ =-= k k n k x n x )()()(δ。 7、 若对于每个有界的输入x (n ),都产生一有界的输出y (n ),则称该系统为稳定系统,其充要条件是: ∞<∑∞ -∞ =|)(|k k h . 8、 若系统在n 0时的输出只取决于其输入序列在n ≤n 0时的值,则称该系统为因果系统。其充要条件 是:当n <0时,h (n )=0。非因果系统在物理上是不可实现的。 9、 n x (n )的Z 变换为-zdX(z )/dz ,收敛域为:R x -<|z |<R x +。 10、 DFT 的循环位移特性可表述为:DFT[x (n +m )]= W N -km DFT[x (n )]。 11、 对于长序列用循环卷积分段计算线性卷积时一般采用重叠相加法。 12、 美国德州仪器公司生产的DSP 芯片TMS320系列属于通用DSP 芯片,它采用了不同于通用计算机CPU 的哈佛结构。 13、 FIR 数字滤波器的优点是用较高的阶数为代价换来的。 14、 FIR 数字滤波器的设计一般有窗函数法和频率抽取法,此外还有等纹波优化设计法。 15、 IIR 数字滤波器的设计分为模拟转化法和直接法两种。 16、 双线型Z 变换通过变换关系:s=(z-1)/ (z+1),将s 平面映射到z 平面。 17、 目前最实用、高效的FFT 算法是分裂基算法,其L 形蝶形算法结构结合了基2算法和基4算法,适用于N=2M 的情况。 18、 TMS320C25指令系统有三种寻址方式:直接寻址、间接寻址和立即数寻址。 19、 IIR 数字滤波器的优点是用牺牲线性相位为代价换来的。 二、选择: 1、 下面是稳定的线性系统的是:B A T[x (n )]= a x (n )+ b B )65.0sin()()]([πn x n x T = C )()]([2 n x n x T = 2、 若下截止频率为Ω1,上截止频率为Ω2,低通滤波器到带通滤波器的转换关系是:A A ) (133 12 Ω-ΩΩΩ+→ s s s B 2 12 12)(ΩΩ+Ω-Ω→ s s s C s →Ω2 / s 3、 巴特沃斯滤波器是:A A 幅频响应最平的滤波器 B 通带内等纹波的滤波器 C 阻带内等纹波的滤波器 4、 Hamming 窗的系数和最大边瓣是: B A 0.5,0.5,-31d B B 0.54,0.46,-41dB C 0.42,0.58,-57dB 5、双线型Z 变换通过变换将( B )映射到Z 平面 A 频率f B s 平面 C 相位φ 三、简答:

12《现代数字信号处理》课程复习...

2012《现代数字信号处理》课程复习... “现代数字信号处理”复习思考题变换 1. 2. 3. 给出DFT的定义和主要性质。DTFT与DFT 之间有什么关系?写出FT、DTFT、DFT的数学表达式。离散时间系统分析 1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。2. 全通数字滤波器、最小相位滤波器有何特点? 3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4. 简述FIR离散时间系统的Lattice结构的特点。 5. 简述IIR离散时间系统的Lattice结构的特点。采样1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标?维纳滤波1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。2.写出最优滤波器的均方误差表示式。3.试说明

最优滤波器满足正交性原理,即输出误差与输入信号正交。4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。6.维纳滤波理论对信号和系统作了哪些假设和限制?自适应信号处理1.如何确定LMS算法的?值,?值与算法收敛的关系如何?2.什么是失调量?它与哪些因素有关?3.RLS 算法如何实现?它与LMS算法有何区别?4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。功率谱估计 1. 为什么偏差为零的估计不一定是正确的估计? 2. 什么叫一致估计?它要满足哪些条件? 3. 什么叫维拉-辛钦

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

北京化工大学2018《数字信号处理》期末考试

北京化工大学2010——2011学年第一学期 《数字信号处理》试卷A 课程代码:EEE33500T 班级: 姓名: 学号: 分数: 一、 填空:(每小题2分,共40分) (1) 两序列)(n x 和)(n h 的卷积和定义为)(*)()(n h n x n y == 。 (2) 序列)1.09 5 sin(3ππ+n 的周期为___ __。 (3) 分析离散时间系统6)(3)(+=n x n y 的线性特性,它是 性系统。 (4) 将两个单位冲击响应分别为)(1n h 和)(2n h 的离散系统进行级联形成的系统的单 位冲击响应为 。 (5) 线性时不变系统是因果系统的充分必要条件是 。 (6) 已知序列)(n x 的z 变换为1 11 )(--= az z X ,||||a z <,则)(n x = 。 (7) 数字角频率ω是模拟角频率Ω对抽样频率的归一化,其关系是 。 (8) 因果稳定系统的收敛域一定包含 。 (9) 序列)(n x 的傅立叶变换定义为)(ωj e X = 。 (10) 序列)(n x 的实部序列的傅立叶变换为=)]}({Re[n x DTFT 。 (11) 序列)(n x 的前向差分)(n x ?= 。

(12) 当系统输入为正弦序列时,则输出为 频率的正弦序列,其幅度受 ,而输出的相位则为输入相位与系统相位响应之和。 (13) 为实现线性相位,要求FIR 滤波器的单位冲激响应)(n h (长度为N )满足 条件 。 (14) 已知有限长序列)(1n x 和)(2n x ,则)(1n x 和)(2n x 的L 点圆周卷积)(n y 用其线 性卷积)(n y l 表示的表达式为)(n y = 。 (15) 直接计算有限长序列)(n x 的N 点DFT 的复乘次数是 ,用基2-FFT 计算的复乘次数是 。 (16) 当极点都在坐标原点、2个零点分别在z=-0.9和z=-1.1时,该系统的 滤波功能是 通滤波器。 (17) 设实际信号的时间长度为0T ,则频率分辨力0F 可表示为0F = 。 (18) 一个离散时间系统,如果它是全通系统,则系统函数)(z H 的幅度响应应满 足 。 (19) 长度为6的序列,其6点DFT 与12点DFT 结果中相同的数有 个。 (20) 如果要将序列)(n x 的抽样频率s f 转换为33.0f ,应对序列)(n x 先进 行 ,后进行 。 二、(10分)某系统的系统函数为 ) 3 1)(3()(--= z z z z H ,收敛域为33 1 <

相关文档
最新文档