06-CO2和环氧化合物在较温和条件下三元不对称交替共聚

06-CO2和环氧化合物在较温和条件下三元不对称交替共聚
06-CO2和环氧化合物在较温和条件下三元不对称交替共聚

Asymmetric Alternating Copolymerization and Terpolymerization of

Epoxides with Carbon Dioxide at Mild Conditions

Lei Shi,Xiao-Bing Lu,*Rong Zhang,Xiao-Jun Peng,*Chun-Qing Zhang,

Jian-Feng Li,and Xue-Ming Peng

State Key Laboratory of Fine Chemicals,Dalian Uni V ersity of Technology,Dalian116012,P.R.China

Recei V ed February8,2006;Re V ised Manuscript Recei V ed June20,2006

ABSTRACT:Asymmetric alternating copolymerization of CO2and cyclohexene oxide(CHO)proceeds effectively

under mild temperature and pressure for yielding isotactic-enriched poly(cyclohexene carbonate)(PCHC)with a

narrow molecular distribution,by using a binary catalyst system of a chiral tetradentate Schiff-base cobalt complex

(SalenCoX)in conjunction with a bulky ionic organic ammonium salt such as bis(triphenylphosphine)iminium

chloride(PPNCl).An increase in the temperature between25and80°C results in a dramatic increase in activity

and a slight decrease in enantioselectivty,but the variation of temperature does not lead to an observable decrease

in selectivity for PCHC formation.The binary catalyst system is also very effective in the terpolymerization of

CO2with CHO and propylene oxide(PO)to selectively provide polycarbonates with a narrow polydispersity

(M w/M n ratio)of1.24and>99%carbonate linkages.The resulting terpolymer has only one glass transition

temperature(T g)and one thermolysis peak.The unprecedented results are tentatively assumed that an alternating

nature of the two different carbonate units predominantly exists in the resulting polycarbonate.Furthermore,the

T g of the PO/CHO/CO2terpolymer can be easily adjusted by controlling the proportion of cyclohexene carbonate

linkages and propylene carbonate linkages.

Introduction

Conversion of carbon dioxide(CO2)to desirable,economi-

cally competitive products has received much attention because

CO2is naturally abundant,relatively nontoxic,and inexpensive

and is also the major greenhouse gas.1One of the most

promising green reactions in this area is the alternating co-

polymerization of CO2and epoxides to generate biodegradable

polycarbonates(Scheme1),2which was first reported by Inoue

et al.in the late1960s.3This process represents an environ-mentally benign approach compared to the alternative route of condensation polymerization involving the use of toxic phos-gene.4In recent decades,numerous catalyst systems,including heterogeneous catalysts mainly based on diethylzinc combined with a modifier having at least two labile hydrogen atoms,5and homogeneous catalysts associated with discrete zinc-based complexes,6magnesium,7aluminum,8manganese,9cobalt,10 chromium,11and rare-earth metals,12have been developed for this transformation.Prominent among these are single-site homogeneous catalysts being the most efficient for CO2/ epoxides copolymerization and in some cases approach to the regio-and/or stereoselective polymerization.10

Although the advances have been significant,the industrial utilization of the CO2/epoxides copolymers is extremely small, predominately due to their limitations on thermal and mechanical properties.As a result,the adjustment of the glass transition temperature(T g)of the polycarbonates is necessary in order to be suitable as structural materials in various fields.Some scientists attempted to achieve this goal by the terpolymerization of aliphatic epoxides such as propylene oxide(PO)and alicyclic epoxides such as cyclohexene oxide(CHO)and CO2,but only limited success was obtained.13The main problem is that the great difference in reactivity of CHO and PO during the terpolymerization of epoxides with CO2leads to the difficulty in controlling the composition and the alternating nature of the resulting copolymer.Indeed,in sharp contrast to the co-polymerization of CO2with aliphatic epoxides,the copolymer-ization of CO2with alicyclic epoxides has great selectivity for polycarbonates formation even at elevated temperature due to alicyclic epoxides to the increased strain in forming the five-membered carbonate ring imposed by the conformation of the alicyclic group.14Interestingly,some efficient catalyst systems associated with discrete zinc-based complexes for CO2/CHO copolymerization have been reported that offer significant advantages over traditional heterogeneous catalysts,but they are much less effective when aliphatic epoxides are empolyed as substrates.6,13a

The desymmetrization of meso-molecules with chiral catalysts or reagents is regarded as valuable strategy for the synthesis of enantiomerically enriched products.15Because the ring opening of a meso-epoxide proceeds with inversion at one of the two chiral centers,a successful asymmetric ring opening by a chiral catalyst can give optically active polycarbonates with an(R,R)-or(S,S)-trans-1,2-diol unit.On the basis of this idea,Nozaki and co-workers first reported the asymmetric synthesis catalyzed by Et2Zn-chiral amino alcohol to produce optically active poly-[cyclohexene oxide-alt-CO2]of~70%ee,16and then the Coates group reported the use of a well-defined chiral Zn-imine oxazoline complex as catalyst for this reaction,which showed similar enantioselectivity but higher activity and controlled molecular weight.17Recently,our group reported that a chiral SalcyCo(III)complex in conjunction with a quaternary am-

*Corresponding author:Fax0086-411-83633080;e-mail lxb-1999@ https://www.360docs.net/doc/3d9997269.html,.Scheme1.Alternating Structure of the PO/CHO/CO2

Terpolymer

5679

Macromolecules2006,39,5679-5685

10.1021/ma060290p CCC:$33.50?2006American Chemical Society

Published on Web07/22/2006

monium halide exhibited unprecedented activity for the asym-metric alternating copolymerization of CO2with racemic PO (rac-PO)and increased stereochemistry control(~95%head-to-tail linkage)of the product poly(propylene carbonate)(PPC), even at0.2MPa CO2pressure.10b Prior to our work,Coates et al.have reported the use of chiral cobalt complexes alone as catalyst for this coupling at high CO2pressure,and~80%head-to-tail linkage was observed in the resulted polymer.10a Of importance,they further discovered the synthesis of syndio-enriched PPC generated from rac-PO/CO2with catalyst rac-SalcyCoBr.18These unprecedented results stimulated Coates and our group independently to apply these catalyst systems to the copolymerization of CO2with alicyclic epoxides such as CHO, with a focus on maximization of catalyst activity and stereo-chemistry control of polycarbonates.19

Herein,we report the asymmetric alternating copolymeriza-tion of CHO and CO2with binary chiral electrophile-nucleo-phile catalyst system and also further explore the terpolymer-ization of CHO,PO,and CO2for synthesizing novel poly-carbonates materials with various glass transition temperatures, in which different carbonate units predominantly exhibit alternating structure with each other(Scheme1). Experimental Section

Materials.All manipulations involving air-and/or water-sensitive compounds were carried out using standard Schlenk techniques under dry nitrogen.Propylene oxide was refluxed over a mixture of KOH/CaH2and fractionally distilled under a nitrogen atmosphere prior to use.Cyclohexene oxide was purchased from Acros company and distilled under reduced pressure over CaH2. Carbon dioxide(99.995%)was purchased from Dalian Institute of Speical Gases and used as received.Tetrahydrofuran,toluene,and hexane were distilled under nitrogen from sodium/benzophenone. Methylene chloride and chloroform were distilled from calcium hydride under nitrogen.Bis(triphenylphosphine)iminium chloride (PPNCl)was purchased from Aldrich Chemicals Co.and recrystal-lized from dichloromethane/ether.PPNN3was synthesized accord-ing to the literature method.20Various chiral tetradentate Schiff-base ligands were easily synthesized by the condensation of salicylaldehydes with chiral1,2-diamines in ethyl alcohol and are in agreement with the literature characterization.21The method for synthesizing(1R,2R)-N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II)[(1R,2R)SalcyCo(II)](reported by Jacobsen’s group)was also applied to synthesize other tetradentate Schiff-base cobalt(II)complexes.22The characterizations of the chiral cobalt complexes are described in the Supporting Information. Analyses.1H and13C NMR spectra were recorded on a Varian INOVA-400MHz type(1H,400MHz)and a Bruker500MHz type (13C,125MHz)spectrometer,respectively.Their peak frequencies were referenced vs an internal standard(TMS)shift at0ppm for 1H NMR and against the solvent,chloroform-d,at77.0ppm for 13C NMR,respectively.Molecular weights and molecular weight distributions of polymers were determined with a PL-GPC220high-temperature chromatograph(Polymer Laboratories Ltd.)equipped with the HP1100series pump from Agilent Technologies.The GPC columns were eluted with tetrahydrofuran at35°C at1.00 mL/min.The sample concentration was about0.1%,and the injection volume was100μL.The curve was calibrated using monodisperse polystyrene standards covering the molecular weight range from580to460000Da.A Micromass Q-Tof(Micromass, Wythenshawe,UK)mass spectrometer equipped with an orthogonal electrospray source(Z-spray)[electrospray ionization mass spec-trometry(ESI-MS)]was operated in positive and negative ion mode. ESI-MS spectra of the cobalt complexes in positive ion mode were referenced against the sample of(m/z)+)574.3182(capillary) 2000V,sample cone)20V),and those in negative ion mode were referenced against the sample of(m/z)-)193.0898(capillary )2000V,sample cone)30V).Differential scanning calorimetry (DSC)analyses of all resulted polymers was performed on a NETZSCH DSC204,with a heating rate of10K/min from0to 150°C.Thermogravimetric analyses(TGA)of all resulted polymers were measured on a Mettler-Toledo TGA/SDTA851e,with a heating rate of10K/min from ambient temperature to450°C. Representative Procedure for the Copolymerization of CO2 with Cyclohexene Oxide.To a stirred mixture of complex1a (0.0754g,0.1mmol,1equiv)was dissolved in cyclohexene oxide (100mmol,1000equiv)to form a red-brown solution,and then PPNCl(0.1mmol,1equiv)was added into it in a nitrogen atmosphere.The mixture solution was stirred about30min and then charged into a predried75mL autoclave equipped with a magnetic stirrer under a CO2atmosphere.The autoclave was put into a bath of25°C and then pressurized to the appropriate pressure with CO2.After the allotted reaction time,a small amount of the resultant polymerization mixture was removed from the autoclave for1H NMR analysis to quantitatively give the selectivity of polycarbonates to cyclic carbonate as well as carbonate linkages and also used for GPC analysis.The crude polymer was dissolved in a10mL CHCl3/MeOH(5/1,v/v)mixture with0.5%HCl solution and precipitated from methanol or diethyl ether.This process was repeated3-5times to completely remove the catalyst,and white polymer was obtained by vacuum-drying.

Terpolymerization of CO2with Propylene Oxide and Cyclo-hexene Oxide.To a stirred mixture of complex1b(0.0786g,0.1 mmol,1equiv)was dissolved in the mixture solution composed of50mmol of cyclohexene oxide(~50mol%)and50mmol of propylene oxide(~50mol%)to form a red-brown solution,and then PPNCl(0.1mmol,1equiv)was added into it in a nitrogen atmosphere.The mixture solution was stirred about30min and then charged into a predried75mL autoclave equipped with a magnetic stirrer under a CO2atmosphere.The autoclave was put into a bath of25°C and then pressurized to the appropriate pressure with CO2.Other procedures are the same as the copolymerization of CO2with cyclohexene oxide.

Hydrolysis of Poly(cyclohexene carbonate)and Determination of Enantiomeric Purity of Cyclohexanediol.The hydrolysis of poly(cyclohexene carbonate)was applied as previously described by Nozaki et al.,and an almost quantitative yield was obtained for cyclohexanediol.16a The enantiomeric excess of the resulted cyclo-hexane diol was determind by GC analysis with a chiral column (GC column,2,6-dibutyl-3-butyryl- -Cyclodex,30m×0.25mm id×0.25μm film;injecton temperature)250°C;detection temperature)250°C;oven temperature(programmed):100-125°C,1°C/min,hold10min;then125-140°C,10°C/min,hold 5min,t[(S,S)-PCHC])34.6min,t[(R,R)-PCHC])35.0min). Results and Discussion

Asymmetric Alternating Copolymerization of Cyclohexene Oxide(CHO)and CO2.Although the asymmetric alternating copolymerization of CHO and CO2has been demonstrated first by Nozaki using organozinc-chiral amino alcoholate catalysts for several years,only zinc has been the metal of choice for designing discrete chiral catalysts for this process.16,17Stimulated by our success with binary chiral electrophile-nucleophile cobalt-based catalyst systems for the asymmetric alternating copolymerization of aliphatic epoxides and CO2,10b we likewise apply these systems to the asymmetric copolymerization of alicyclic CHO and CO2.We were gratified to discover that the binary system of the complex(1R,2R)-1a as an electrophile (Figure1)in conjunction with bis(triphenylphosphine)iminium chloride(PPNCl)as a nucleophile could operate very efficiently at ambient temperature and1.5MPa CO2pressure for CHO/ CO2copolymerization to provide isotactic(S,S)-enriched poly-carbonates with a narrow polydispersity(M w/M n ratio)of1.23. Indeed,only limited catalysts exhibit certain activities for CHO/ CO2copolymerization at room temperature and relatively low CO2pressure,probably due to the more sterically hindered,less

5680Shi et al.Macromolecules,Vol.39,No.17,2006

reactive CHO monomer.6e,17The completely alternating nature (>99%carbonate linkages)of the resulting polymer was reflected in the presence of the methane proton peak in

cyclohexene carbonate unit at δ)4.65ppm and the absence of that in the reparting oxy(1,2-cyclohexene)unit (ether linkage)at δ)3.45ppm (Figure 2).Figure 3shows the carbonyl region of 13C NMR spectra of (A)the copolymer obtained with the binary racemic 1a /PPNCl catalyst system and (B)the copolymer of 38%ee obtained with the binary (R,R )-1a /PPNCl system.As illustrated,the signals are not identical with each other,indicating the difference in tacticity.23More recently,the Coates group has reported that racemic or chiral SalenCoX (X )Cl,Br,I,pentafluorobenzoate (ObzF 5))alone as catalysts are active for the copolymerization of CHO and CO 2at a high pressure of up to 54.4atm (~5.5MPa),yielding syndiotactic enriched poly(cyclohexene carbonate)(PCHC).19b In addition,the co-polymerization reaction at low CO 2pressure generally resulted in a loss of syndiospecificity and a significant decrease of catalyst activity,but the use of most sterically bulk chiral SalenCoX complexes surprisingly produced isotactic-enriched PCHC with 65%m -centered tetrads.Interestingly,the addition of PPNCl to the SalenCoX complexes catalyzed CHO/CO 2copolymerization also resulted in the loss of syndiospecificity.However,for the (1R,2R )-(Salen-1)CoObzF 5/PPNCl system,the authors did not determine the enantiomeric purity of cyclo-hexanediol originating from the hydrolysis of PCHC,which is dependent on the tacticity of PCHC.We tentatively assume that SalenCoX complexes alone as catalyst involve a copolymer-ization mechanism with initiation occurring by a bimetallic process and propagation operating by a monometallic mode,as similar to SalenCrX systems proposed by Darensbourg and co-

workers.11b,c For binary electrophile -nucleophile systems,such as the (R,R )-1a /PPNCl catalyst system,both initiation and propagation operate only a monometallic process.The difference in the initiation process may significantly influence the tacticity of PCHC.On the other hand,the use of chiral cobalt complexes should benefit for the formation of isotactic-enriched PCHC.However,it is difficult to understand why racemic SalenCoX complexes alone are higher syndiospecifity catalyst than their corresponding chiral complexes.19b

The enantioselectivity of the resulting polycarbonates was evaluated by the procedure reported by Nozaki et al.16and based on the enantiomeric excess (ee)of the cyclohexane-1,2-diol produced from the hydrolysis of PCHC.After hydrolysis of the PCHC with aqueous NaOH,the enantiomeric excess of the resulting cyclohexane-1,2-diol was measured by chiral GC to be only 38%with an S ,S configuration,which value is much less than that of PCHC (~70%)obtained by the use of the reported organozinc -chiral amino alcoholate or hybrid imine -oxazoline zinc-based catalysts.16,17Entries 1-4in Table 1show the strong influence of reaction temperature on rate.An increase in the temperature between 25and 80°C results in a dramatic increase in activity,but the variation of temperature does not lead to an observable decrease in selectivity for PCHC forma-tion.For example,a change in the reaction temperature from 25to 80°C resulted in TOF from 91h -1rapidly increasing to 925h -1and polymer enantioselectivity from 38%ee decreasing to 28%ee,respectively.Similar to the CO 2/PO copolymerization with the binary catalyst system,a decrease in the CO 2pressure from 1.5to 0.6MPa during the CO 2/CHO copolymerization does not cause an observable decrease in rate,enantioselectivity,and selectivity for PCHC formation (entry 5).However,increasing the CO 2pressure from 1.5to 5.2MPa led to a dramatic loss in catalyst activity.Indeed,in the system of

Figure 1.Tetradentate Schiff-base cobalt complexes with varying chiral diamine backbones.

Figure 2.1H NMR spectrum of poly(cyclohexene carbonate).

Figure 3.Carbonyl region of 13C NMR of (A)the copolymer obtained with the binary racemic 1a /PPNCl catalyst system and (B)the copolymer obtained with the binary (R,R )-1a /PPNCl system.

Macromolecules,Vol.39,No.17,2006Polymerization of Epoxides with CO 25681

SalenCrX/PPNCl or tricyclohexylphosphine-catalyzed CO 2/CHO copolymerization,Darensboug et al.have observed a similar pressure dependence,which was simply attributed to a dilution effect of excess CO 2into the liquid phase where catalyst and epoxide reside.24Surprisingly,the increase in the CO 2pressure also led to an obvious decrease in enantioselectivity of PCHC (Table 1,entry 6,and Supporting Information,Figure 1),which is very different from some SalenCoX complexes alone as catalyst for the synthesis of syndiotactic-enriched PCHC,19b but the reason is not clear.

With PPNCl as cocatalyst,several SalenCo(III)X complexes with varying chiral diamine backbones or axial X group (Figure 1)were investigated as catalyst for CO 2/CHO copolymerization (entries 8-10).For the same axial X group,changing the Salen ligand framework to noncyclic (1R,2R )-diphenyldiamine back-bone had no observable effect on catalyst activity and polymer enantioselectivity,but changing to (R )-propyldiamine backbones resulted in a significant decreases in polymer enantioselectivity.With the (1R,2R )-cyclohexyl backbone,substitution of dinitro-phenoxy for trichloroacetate on the axial X group had little effect on catalyst activity and polymer enantioselectivity (entry 7).Terpolymerization of CO 2with Propylene Oxide (PO)and Cyclohexene Oxide (CHO).In contrast to the brittle behavior of PCHC,PPC has an excellent elongation property,but relatively low glass transition temperature (35-45°C)of this polymer limits its use as structural materials in various fields.As a result,some attention was paid to the terpolymerization of PO,CHO,and CO 2for adjusting the glass transition temperature (T g )of the polycarbonates.13Unfortunately,the great difference in reactivity of CHO and PO during the terpolymer-ization of epoxides with CO 2in the zinc-based catalyst systems leads to the difficulty in controlling the composition and the alternating nature of the resulting copolymer.For example,bis 2,6-difluorophenoxide dimeric complexes of zinc have been reported as catalyst for the terpolymerization of PO (50mol %)and CHO (50mol %)with CO 2at 55°C and 600-700psi pressure,but the resulting polymer had 84.76mol %cyclohex-ene carbonate linkages,only 11.90%propylene carbonate linkages,and 3.34mol %propylene ether linkages,with concomitant production of cyclic propylene carbonate.13a On the basis of our success in the use of binary electrophile -nucleophile cobalt-based catalyst systems for the alternating copolymerization of both PO and CHO with CO 2at mild

conditions,we became interested in the possibility of exploring the binary catalyst system for the terpolymerization of CO 2with PO and CHO.We were delighted to find that the binary system of the complex 1a and PPNCl could operate very efficiently at 25°C and 1.5MPa CO 2pressure for the terpolymerization of CO 2with PO (50mol %)and CHO (50mol %)to selectively provide polycarbonates with a narrow polydispersity (M w /M n ratio)of 1.24,in the 1H NMR of which one (δ)4.99ppm)of the two peaks was attributed from CH in propylene carbonate unit and the other (δ)4.65ppm)from CH in cyclohexene carbonate unit (Figure 4).The completely alternating structure (>99%carbonate linkages)was verified by no observable signal assignable to the reparting oxy(1,2-cyclohexene)or oxy(1,2-propylene)unit (δ)3.4-3.5ppm,ether linkage)in the 1H NMR spectrum of the resulting terpolymer.

Interestingly,the multiple splits of the peak at 4.65ppm in PCHC and 4.19ppm in PPC were hardly observed in the 1H NMR of the resulting terpolymer but obviously appeared in the 1H NMR of the blend of PPC and PCHC (Figure 5).Notably,after ~50%conversion of all epoxides,the resulting poly-carbonate has about 60mol %propylene carbonate linkages and 40mol %cyclohexene carbonate linkages,though the rate of the PO/CO 2copolymerization in the presence of the binary 1b /PPNCl system is about 6times that of the CHO/CO 2copolymerization at the same reaction condition (Table 2).The

Table 1.Asymmetric Alternating Copolymerization of CO 2with Cyclohexene Oxide

a

entry catal cocatal temp (°C)pressure (MPa)

time (h)TOF b (h -1)

M n c ×10-3

PDI c (M w /M n )

RR :SS d 11a PPNCl 25 1.5 5.08920.2 1.2331:6921a PPNCl 40 1.5 2.028621.9 1.1833:3731a PPNCl 60 2.50.868717.9 1.2934:6641a PPNCl 80 2.50.592511.4 1.3036:6451a PPNCl 250.6 5.09120.6 1.1731:6961a PPNCl 25 5.2 5.05911.3 1.2236:6471a PPNN 325 1.5 5.09418.7 1.2531:6981b PPNCl 25 1.5 5.08321.2 1.2231:6992a PPNCl 25 1.5 5.08117.9 1.2332:6810

3a

PPNCl

25

1.5

5.0

67

11.8

1.18

43:57

a

The reaction was performed in neat CHO (100mmol;catalyst/cocatalyst/CHO )1/1/1000,molar ratio)in 75mL autoclave.b Turnover frequency of CHO to PCHC.c Determined by GPC against polystyrene standards.d Measured by hydrolyzing the polymer and analyzing the resulting diol by chiral

GC.

Figure 4.1H NMR spectrum of the PO/CHO/CO 2terpolymer.

5682Shi et al.Macromolecules,Vol.39,No.17,2006

unprecedented results have led us to tentatively assume that an alternating nature of the two different carbonate units predomi-nantly exists in the resulting polycarbonate (Scheme 1).This assumption was further supported by differential scanning calorimetry analysis (DSC)and thermogravimetry (TG)analyses of the terpolymer.The DSC thermogram is given in Figure 6.This thermogram clearly shows only one T g of 68.8°C.On the contrary,the thermogram of the PCHC/PPC blend shows two baseline shifts (Figure 7),one T g at 41.6°C (attributable to the

PPC)and the other T g at 117.1°C (attributable to the PCHC).The thermolysis curve of the terpolymer indicates a narrow range 276-300°C of 10%-90%thermal decomposition and only one thermolysis peak at 290°C,compared to a relatively broad range 262-313°C,and two thermolysis peaks at 285and 305°C for the PCHC/PPC blend (Figures 8and 9).For confirming the alternating nature of the resulting terpolymer,we also performed electrospray ionization mass spectrometry (ESI-MS)for investigating the mode of polymer chain growth.Unfortunately,no signal concerning polymer chain growth was observed in the mass spectra of the positive or negative mode,predominately because of the very low correspondence of growth polymer with chlorine as end group.Therefore,we have to choose 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD,a sterically hindered strong organic bases)to substitute for PPNCl as a cocatalyst consistent with 1b for the terpolymer-ization of CHO/PO/CO 2.In the ESI-Q-TOF mass spectra in positive ion mode,we observe the strong signals of 314,354,456,558,598,and 700,which are attributed to the species of [(H ++MTBD +PO)+PC],[(H ++MTBD +PO)+CHC],[(H ++MTBD +PO)+PC +CHC]or [(H ++MTBD +PO)+CHC +PC],[(H ++MTBD +PO)+2PC +CHC],[(H ++MTBD +PO)+PC +2CHC],and [(H ++MTBD +PO)+2(PC +CHC)],respectively (see Supporting Information,Figure 2).This result clearly indicates that the terpolymer is not poly(PO-alt -CO 2)-block -(CHO-alt -CO 2).Of course,we also cannot affirm that the two different carbonate units are arranged in an alternating fashion or incorporated in a random fashion.However,if agree with the latter assumption,it is difficult to understand why the rate of the PO/CO 2copolymerization in the presence of the binary 1b /PPNCl system is about 6

times

Figure 5.1H NMR spectra of (A)the PO/CHO/CO 2terpolymer,(B)the blend of PPC and PCHC,(C)PPC,and (D)

PCHC.

Figure 6.DSC thermogram of the PO/CHO/CO 2terpolymer containing 60mol %propylene carbonate linkages and 40mol %cyclohexene carbonate

linkages.

Figure 7.DSC thermograms of (A)the blend of PPC and PCHC and the PO/CHO/CO 2terpolymer (B)containing 30mol %and (C)60mol %cyclohexene carbonate linkages,respectively.

Macromolecules,Vol.39,No.17,2006Polymerization of Epoxides with CO 25683

that of the CHO/CO 2copolymerization at the same reaction condition,while the polycarbonate resulting from the PO/CHO/CO 2terpolymerization (PO/CHO,1/1molar ratio)has about 60mol %propylene carbonate linkages and 40mol %cyclohexene carbonate linkages,after ~50%conversion of all epoxides in the system (Table 2).Therefore,we tentatively assume that the two units,(PO-alt -CO 2)and (CHO-alt -CO 2),are predominately incorporated in alternating mode,but the alternating nature is not perfect.In other words,the content of the (PO-alt -CO 2)-alt -(CHO-alt -CO 2)unit is significantly higher than that of the dimer of (PO-alt -CO 2)or (CHO-alt -CO 2).The unprecedented alternating nature of cyclohexene carbon-ate linkages and propylene carbonate linkages in the terpolymer is probably attributed to four factors:(1)The relatively high basicity and coordination ability of CHO inhibit the reactivity of PO during the coordination polymerization.(2)The relatively low reactivity and the steric hindrance of CHO retard the formation of the homopolymerization unit of cyclohexene carbonate linkages.(3)The dissociation of the propagating carboxylate from the metal center is much faster process than

propagation,and the free propagating carboxylate can also act as a nucleophile for attacking a cobalt-coordinated epoxide during the terpolymerization.In a previous paper,19a we found the number of polycarbonate chains is independent of the initial cobalt complex concentration but is only in consistent with the PPNCl concentration.The result that the narrow molecular weight distribution was observed in the resulting polymer obtained from the catalyst system with high molar ratio of PPNCl to the cobalt complex suggests the reversible chain transfer of the propagating species during the reaction.The further in-situ infrared spectra show that free CO 2in the copolymerization process helps to stabilize the propagating carboxylate against decomposition to CO 2and long-chain alkoxide,which easily degrades into cyclic PC.This assumption is in sharp contrast to the suggestion of the Riger group based on a DFT theoretical calculation,in which they proposed that the formation of cyclic carbonate from the polymer chain in the catalyst system of chromium(III)or aluminum(III)metal -Salen complexes would involve attack of a free propagating

Table 2.Polymerization of CO 2with Various Epoxides Catalyzing by the Binary 1b/PPNCl System a

entry epoxide epoxide/catal (mol/mol)

time (h)TOF b (h -1)

M n c ×10-3

PDI c (M w /M n )

T g d (°C)T 50e (°C)1PO 2000 1.553030.9 1.2040.52572CHO 1000 4.08516.6 1.25117.33123f PO/CHO 1000 4.0

129

24.4

1.24

68.8

2894g

PPC/PCHC

blend

41.6,117.1

295

a

The reaction was performed in neat epoxide (1b /PPNCl )1/1,molar ratio)at 25°C and 1.5MPa CO 2pressure in a 75mL autoclave.b Turnover frequency of epoxides to polycarbonates.c Determined by GPC against polystyrene standards.d Glass transition temperature determined by DSC.e The temperature at polymer decomposition of 50%measured by TGA.f 1b /PPNCl/CHO /PO )1/1/500/500,molar ratio.g The blend of PPC (M n )45000,PDI )1.30,T g )42.1°C)and PCHC (M n )16600,PDI )1.25,T g )117.3°C)(propylene carbonate linkages/cyclohexene carbonate linkages )1/1,molar

ratio).

Figure 8.Thermolysis curve of the PO/CHO/CO 2terpolymer contain-ing 60mol %propylene carbonate linkages and 40mol %cyclohexene carbonate

linkages.

Figure 9.Thermolysis curve of the blend of PPC and PCHC (propylene carbonate linkages/cyclohexene carbonate linkages )1/1,molar ratio).

5684Shi et al.Macromolecules,Vol.39,No.17,2006

carboxylate rather than an alkoxide at the last unit of the growing chain.11f(4)More importantly,the dissociation of the propagat-ing carboxylate with propylene carbonate linkage as end unit from the metal center is much easier than that with cyclohexene carbonate linkage as end unit.If not,the homochain CHC sequence rather than the alternating sequence of PC and CHC will predominantly exist in the PO/CHO/CO2terpolymer.

Of importance,the T g of the PO/CHO/CO2terpolymer can be easily adjusted between50and100°C by controlling the proportion of cyclohexene carbonate linkages and propylene carbonate linkages in the terpolymer.For example,a change in the content of cyclohexene carbonate linkages in the terpolymer from30mol%increasing to60mol%results in the T g from 59.6°C significantly increasing to80.5°C(Figure7). Conclusion

We have demonstrated that a chiral tetradentate Schiff-base cobalt complex in conjunction with a bulky ionic organic ammonium salt is a highly efficient catalyst for the asymmetric alternating copolymerization of CO2with cyclohexene oxide at mild temperature and pressure to afford isotactic-enriched polycarbonates with a narrow molecular distribution.Increasing the CO2pressure from1.5to5.2MPa led to a dramatic loss in catalyst activity and an obvious decrease in enantioselectivity of PCHC.Also,the binary catalyst system was proved to be very effective in the terpolymerization of CHO,PO,and CO2. Of importance,the resulting terpolymer has only one glass transition temperature(T g)and one thermolysis peak.We tentatively assume that an alternating nature of the two different carbonate units predominantly exists in the resulting polycar-bonate.Further investigations on confirming the alternating nature of the two different carbonate units and how to precisely control the terpolymerization process are in progress.Addition-ally,the T g of the PO/CHO/CO2terpolymer can be easily adjusted between50and100°C by controlling the proportion of cyclohexene carbonate linkages and propylene carbonate linkages in the terpolymer.

Acknowledgment.Gratitude is expressed to the National Natural Science Foundation of China(NSFC)program(Grant 20574008),the Key Project on Science and Technology(Grant 105051,Ministry of Education of China),and the Specialized Research Fund for the Doctoral Program of Higher Education (SREDP)(Grant20050141017)for financial support. Supporting Information Available:General experimental procedures of the cobalt complexes and ESI-Q-TOF mass spectrum of the PO/CHO/CO2terpolymer.This material is available free of charge via the Internet at https://www.360docs.net/doc/3d9997269.html,.

References and Notes

(1)(a)Behr,A.Angew.Chem.1988,100,681-698.(b)Leitner,W.

Coord.Chem.Re V.1996,153,257-284.(c)Yin,X.L.;Moss,J.R.

Coord.Chem.Re V.1999,181,27-59.(d)Walther,D.;Ruben,M.;

Rau,S.Coord.Chem.Re V.1999,182,67-100.(e)Beckman,E.J.

Science1999,283,946-947.

(2)For recent reviews on CO2/epoxides copolymerization,see:(a)Coates,

G.W.;Moore,D.R.Angew.Chem.,Int.Ed.2004,43,6618-6639.

(b)Darensbourg,D.J.;Mackiewicz,R.M.;Phelps,A.L.;Billodeaus,

D.R.Acc.Chem.Res.2004,37,836-844.(c)Sugimoto,H.;Inoue,

S.J.Polym.Sci.,Part A:Polym.Chem.2004,42,5561-5573.(d) Kuran,W.Prog.Polym.Sci.1998,23,919-992.(e)Darensbourg,

D.J.;Holtcamp,M.W.Coord.Chem.Re V.1996,153,155-174.

(3)(a)Inoue,S.;Koinuma,H.;Tsuruta,T.J.Polym.Sci.,Polym.Lett.

1969,7,287-292.(b)Inoue,S.;Koinuma,H.;Tsuruta,T.Makromol.

Chem.1969,130,210-220.

(4)Wilks,E.S.Industrial Polymers Handbook;Wiley-VCH:Weinheim,

2001;pp291-304.

(5)(a)Chen,X.H.;Shen,Z.Q.;Zhang,Y.F.Macromolecules1991,24,

5305-5308.(b)Darensbourg,D.J.;Holtcamp,M.W.Macromolecules 1995,28,7577-7579.(c)Hsu,T.J.;Tan,C.S.Macromolecules1997, 30,3147-3150.(d)Ree,M.;Bae,J.Y.;Jung,J.H.;Shin,T.J.J.

Polym.Sci.,Part A:Polym.Chem.1999,37,1863-1876.(e)Liu,B.

Y.;Zhao,X.J.;Wang,X.H.;Wang,F.S.J.Polym.Sci.,Part A: Polym.Chem.2001,39,2751-2754.(f)Quan,Z.;Wang,X.H.;Zhao, X.J.;Wang,F.S.Polymer2003,44,5605-5610.(g)Darensbourg,

D.J.;Lewis,S.J.;Rodgers,J.L.;Yarbrough,J.C.Inorg.Chem.

2003,42,581-589.(h)Eberhardt,R.;Allmendinger,M.;Zintl,M.;

Troll,C.;Luinstra,G.A.;Riger,B.Macromol.Chem.Phys.2004, 205,42-47.

(6)(a)Super,M.;Berluche,E.;Costello,C.;Beckman,E.Macromolecules

1997,30,368-372.(b)Cheng,M.;Lobkovsky,E.B.;Coates,G.W.

J.Am.Chem.Soc.1998,120,11018-11019.(c)Sa?rbu,T.;Beckman,

E.J.Macromolecules1999,32,6904-6912.(d)Cheng,M.;Moore,

D.R.;Reczek,J.J.;Chamberlain,B.M.;Lobkovsky,

E.B.;Coates,

G.W.J.Am.Chem.Soc.2001,123,8738-8749.(e)Moore,D.R.;

Cheng,M.;Lobkovsky,E.B.;Coates,G.W.Angew.Chem.,Int.Ed.

2002,41,2599-2602.(f)Lee,B.Y.;Kwon,H.Y.;Lee,S.Y.;Na, S.J.;Han,S.-i.;Yun,H.;Lee,H.;Park,Y.-W.J.Am.Chem.Soc.

2005,127,3031-3037.(g)Kro¨ger,M.;Folli,C.;Walter,O.;Do¨ring, M.Ad V.Synth.Catal.2005,347,1325-1328.(h)Xiao,Y.;Wang, Z.;Ding,K.Chem.s Eur.J.2005,11,3668-3678.

(7)Xiao,Y.;Wang,Z.;Ding,K.Macromolecules2006,39,128-137.

(8)(a)Aida,T.;Inoue,S.J.Am.Chem.Soc.1983,105,1304-1309.(b)

Aida,T.;Ishikawa,M.;Inoue,S.Macromolecules1986,19,8-13.

(c)Aida,T.;Inoue,S.Acc.Chem.Res.1996,29,39-48.(d)

Darensbourg,D.J.;Billodeaux,D.R.Inorg.Chem.2005,44,1433-1442.

(9)Sugimoto,H.;Ohshima,H.;Inoue,S.J.Polym.Sci.,Part A:Polym.

Chem.2003,41,3549-3555.

(10)(a)Qin,Z.;Thomas,C.M.;Lee,S.;Coates,G.W.Angew.Chem.,

Int.Ed.2003,42,5484-5487.(b)Lu,X.B.;Wang,Y.Angew.Chem., Int.Ed.2004,43,3574-3577.(c)Paddock,R.L.;Nguyen,S.T.

Macromolecules2005,38,6251-6253.

(11)(a)Mang,S.;Cooper,A.I.;Colclough,M.E.;Chauhan,N.;Holmes,

A.B.Macromolecules2000,33,303-308.(b)Darensbourg,D.J.;

Yarbrough,J.C.J.Am.Chem.Soc.2002,124,6335-6342.(c) Darensbourg,D.J.;Yarbrough,J.C.;Ortiz,C.;Fang,C.C.J.Am.

Chem.Soc.2003,125,7586-7591.(d)Eberhardt,R.;Allmendinger, M.;Rieger,B.Macromol.Rapid Commun.2003,24,194-196.(e) Darensbourg,D.J.;Mackiewicz,R.M.;Rodgers,J.L.;Fang,C.C.;

Billodeaux,D.R.;Reibenspies,J.H.Inorg.Chem.2004,43,6024-6034.(f)Luinstra,G.A.;Hass,G.R.;Molnar,F.;Bernhart,V.;

Eberhardt,R.;Rieger,B.Chem.s Eur.J.2005,11,6298-6314.(g) Darensbourg,D.J.;Mackiewicz,R.M.J.Am.Chem.Soc.2005,127, 14026-14038.

(12)Cui,D.;Nishiura,M.;Hou,Z.Macromolecules2005,38,4089-4095.

(13)(a)Darensbourg,D.J.;Wildeson,J.R.;Yarbrough,J.C.;Reibenspies,

J.H.J.Am.Chem.Soc.2000,122,12487-12496.(b)Quan,Z.;Min, J.;Zhou,Q.;Xie,D.;Liu,J.;Wang,X.;Zhao,X.;Wang,F.Macromol.

Symp.2003,195,281-286.

(14)Darensbourg,D.J.;Phelps,A.L.Inorg.Chem.2005,44,4622-4629.

(15)Willis,M.C.J.Chem.Soc.,Perkin Trans.11999,1765-1784.

(16)(a)Nozaki,K.;Nakano,K.;Hiyama,T.J.Am.Chem.Soc.1999,121,

11008-11009.(b)Nakano,K.;Nozaki,K.;Hiyama,T.J.Am.Chem.

Soc.2003,125,5501-5510.(c)Nakano,K.;Hiyama,T.;Nozaki,K.

https://www.360docs.net/doc/3d9997269.html,mun.2005,1871-1873.

(17)Cheng,M.;Darling,N.A.;Lobkovsky,E.B.;Coates,G.W.Chem.

Commun.2000,2007-2008.

(18)Cohen,C.T.;Chu,T.;Coates,G.W.J.Am.Chem.Soc.2005,127,

10869-10878.

(19)(a)Lu,X.B.;Shi,L.;Wang,Y.M.;Zhang,R.;Zhang,Y.J.;Peng,

X.J.;Zhang,Z.C.;Li,B.J.Am.Chem.Soc.2006,128,1664-1674.

(b)Cohen,C.T.;Thomas,C.M.;Peretti,K.L.;Lobkovsky,E.B.;

Coates,G.W.Dalton Trans.2006,237-249.

(20)Demadis,K.D.;Meyer,T.J.;White,P.S.Inorg.Chem.1998,37,

3610-3619.

(21)(a)Zhang,W.;Jacobsen,https://www.360docs.net/doc/3d9997269.html,.Chem.1991,56,2296-2298.

(b)Pospisil,P.J.;Carsten,D.H.;Jacobsen,E.N.Chem.s Eur.J.

1996,2,974-980.

(22)Schaus,S.E.;Brandes,B.D.;Larrow,J.F.;Tokunaga,M.;Hansen,

K.B.;Gould,A.E.;Furrow,M.E.;Jacobsen,E.N.J.Am.Chem.

Soc.2002,124,1307-1315.

(23)Nakano,K.;Nozaki,K.;Hiyama,T.Macromolecules2001,34,6325-

6332.

(24)Darensbourg,D.J.;Mackiewicz,R.M.;Billodeaux,https://www.360docs.net/doc/3d9997269.html,ano-

metallics2005,24,144-148.

MA060290P

Macromolecules,Vol.39,No.17,2006Polymerization of Epoxides with CO25685

安徽省高一化学下学期期末考试试题

安徽省舒城干汊河中学2016-2017学年第二学期期末考试 高一年级化学试卷 满分:100分时间:90分钟 考生注意:1.请将答案填写在答题卷上,填写在试卷上不得分 2.可能用到的相对原子质量 H 1 C 12 O 16 N14 一、选择题(每小题只有1个选项符合题意,每小题3分,共48分) 1.下列物质的分类正确的是 A.共价化合物——硫酸、纯碱、水 B.分散系——空气、水玻璃、盐酸 C.非电解质——液氯、乙醇、NH3 D.强氧化剂——盐酸、硫酸、硝酸 2.实验室配制1 mol·L-1盐酸250 mL,下列不需用的仪器是 A.250 mL容量瓶B.托盘天平 C.胶头滴管D.烧杯 3.下列与化学概念有关的说法正确的是 A.化合反应均为氧化还原反应 B.金属氧化物均为碱性氧化物 C.催化剂能改变可逆反应达到平衡的时间 D.石油是混合物,其分馏产品汽油为纯净物 4.下列实验装置不能达到实验目的的是 5.下列说法正确的是 ①标准状况下,6.02×1023个分子所占的体积约是22.4 L ②0.5 mol H2所占体积为11.2 L ③标准状况下,1 mol H2O的体积为22.4 L ④标准状况下,28 g CO与N2的混合气体的体积约为22.4 L ⑤各种气体的气体摩尔体积都约为22.4 L·mol-1⑥标准状况下,体积相同的气体的分子数相同 A.①③⑤B.④⑥ C.③④⑥D.①④⑥ 6.短周期元素X、Y、Z、W的原子序数依次增大,X原子的最外层电子数是其内层电子总数的3倍,Y原子的最外层只有2个电子,Z单质可制成半导体材料,W与X属于同一主族。下列叙述正确的是 A.元素X的简单气态氢化物的热稳定性比W的强

化学必修2有机物总结

专题一:第三单元 一,同素异形(一定为单质) 1,碳元素(金刚石、石墨) 氧元素(O2、O3) 磷元素(白磷、红磷) 2,同素异形体之间的转换——为化学变化 二,同分异构(一定为化合物或有机物) 分子式相同,分子结构不同,性质也不同 1,C4H10(正丁烷、异丁烷) 2,C2H6(乙醇、二甲醚) 甲烷燃烧 CH4+2O2→CO2+2H2O(条件为点燃) 甲烷隔绝空气高温分解 甲烷分解很复杂,以下是最终分解。CH4→C+2H2(条件为高温高压,催化剂)甲烷和氯气发生取代反应 CH4+Cl2→CH3Cl+HCl CH3Cl+Cl2→CH2Cl2+HCl CH2Cl2+Cl2→CHCl3+HCl CHCl3+Cl2→CCl4+HCl (条件都为光照。) 实验室制甲烷 CH3COONa+NaOH→Na2CO3+CH4(条件是CaO 加热) 乙烯燃烧 CH2=CH2+3O2→2CO2+2H2O(条件为点燃) 乙烯和溴水 CH2=CH2+Br2→CH2Br-CH2Br 乙烯和水 CH2=CH2+H20→CH3CH2OH (条件为催化剂) 乙烯和氯化氢 CH2=CH2+HCl→CH3-CH2Cl 乙烯和氢气 CH2=CH2+H2→CH3-CH3 (条件为催化剂) 乙烯聚合 nCH2=CH2→-[-CH2-CH2-]n- (条件为催化剂) 氯乙烯聚合 nCH2=CHCl→-[-CH2-CHCl-]n- (条件为催化剂) 实验室制乙烯 CH3CH2OH→CH2=CH2↑+H2O (条件为加热,浓H2SO4) 乙炔燃烧 C2H2+3O2→2CO2+H2O (条件为点燃) 乙炔和溴水 C2H2+2Br2→C2H2Br4 乙炔和氯化氢 两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2 乙炔和氢气 两步反应:C2H2+H2→C2H4→C2H2+2H2→C2H6 (条件为催化剂) 实验室制乙炔 CaC2+2H2O→Ca(OH)2+C2H2↑

高一化学必修二第三章有机化合物知识点总结

第三章有机化合物知识点总结绝大多数含碳的化合物称为有机化合物,简称有机物。像CO、CO2、碳酸、碳酸盐、金属碳化物等少数化合物,它们属于无机化合物。 一、烃 1、烃的定义:仅含碳和氢两种元素的有机物称为碳氢化合物,也称为烃。 2、甲烷、乙烯和苯的性质比较:

乙烯 1.氧化反应 I .燃烧 C 2H 4+3O 2??→ ?点燃 2CO 2+2H 2O (火焰明亮,伴有黑烟) II .能被酸性KMnO 4溶液氧化为CO 2,使酸性KMnO 4溶液褪色。 2.加成反应 CH 2=CH 2+Br 2?→?CH 2Br -CH 2Br (能使溴水或溴的四氯化碳溶液褪色) 在一定条件下,乙烯还可以与H 2、Cl 2、HCl 、H 2O 等发生加成反应 CH 2=CH 2+H 2 催化剂 △ CH 3CH 3 CH 2=CH 2+HCl 催化剂 △ CH 3CH 2Cl (氯乙烷:一氯乙烷的简称) CH 2=CH 2+H 2O 高温高压 催化剂 CH 3CH 2OH (工业制乙醇) 3.加聚反应 nCH 2=CH 2 催化剂 △ (聚乙烯) 注意:①乙烯能使酸性KMnO 4溶液、溴水或溴的四氯化碳溶液褪色。常利用该反应鉴 别烷烃和烯烃,如鉴别甲烷和乙烯。②常用溴水或溴的四氯化碳溶液来除去烷烃中的烯烃,但是不能用酸性KMnO 4溶液,因为会有二氧化碳生成引入新的杂质。 苯 难氧化 易取代 难加成 1.不能使酸性高锰酸钾褪色,也不能是溴水发生化学反应褪色,说明苯的化学性质比较稳定。但可以通过萃取作用使溴水颜色变浅,液体分层,上层呈橙红色。 2.氧化反应(燃烧) 2C 6H 6+15O 2??→ ?点燃 12CO 2+6H 2O (现象:火焰明亮,伴有浓烟,说明含碳量高) 3.取代反应 (1)苯的溴代: (溴苯)+ Br 2 FeBr 3 +HBr (只发生单取代反应,取代一个H ) ①反应条件:液溴(纯溴);FeBr 3、FeCl 3或铁单质做催化剂 ②反应物必须是液溴,不能是溴水。(溴水则萃取,不发生化学反应) ③溴苯是一种 无 色 油 状液体,密度比水 大 , 难 溶于水 ④溴苯中溶解了溴时显褐色,用氢氧化钠溶液除去溴,操作方法为分液。 (2)苯的硝化: + HO -NO 2 浓H 2SO 455℃~60℃ -NO 2 + H 2O ①反应条件:加热(水浴加热)、浓硫酸(作用:催化剂、吸水剂) ②浓硫酸和浓硝酸的混合:将浓硫酸沿烧杯内壁慢慢倒入浓硝酸中,边加边搅拌 ③硝基苯是一种 无 色 油 状液体,有 苦杏仁 气味, 有 毒,密度比水 大 ,难 溶于水。 ④硝基苯中溶解了硝酸时显黄色,用氢氧化钠溶液除去硝酸,操作方法为分液。 (3)加成反应(苯具有不饱和性,在一定条件下能和氢气发生加成反应) + 3H 2 Ni (一个苯环,加成消耗3个H 2,生成环己烷) 4概念 同系物 同分异构体 同素异形体 同位素 定义 结构相似,在分子组成 上相差一个或若干个CH 2原子团的物质 分子式相同而结构式不同的化合物的互称 由同种元素组成的不同单质的互称 质子数相同而中子数不同的同一元素的不同原子的互称 分子式 不同 相同 元素符号表示相同,分子式可不同 ——

高一化学下学期期末考试题及答案

渭南高级中学高一年级第二学期期末考试 化学试题 时间:90分钟满分:100分 可能用到的相对原子质量:H :1 Cu :64 O :16 第Ⅰ卷(选择题,共54分) 一、单项选择题(共18小题,每题3分,共54分) 1.中国科学技术名词审定委员会已确定第116号元素L v的名称为鉝.关于 L v的叙述错误的是() A.原子序数116 B.中子数177 C.核外电子数116 D.相对原子质量293 2.下列过程中,只破坏共价键的是() A.酒精溶于水 B.HC l溶于水得盐酸 C.将N a2SO4熔融呈液态 D.从NH4HCO3中闻到了刺激性气味 3.对滴有酚酞试液的下列溶液,操作后溶液颜色变深的是() A.明矾溶液加热 B.小苏打溶液中加入少量N a C l固体 C.氨水中加入少量NH4C l固体 D.CH3COON a溶液加热 4.活化分子是衡量化学反应速率快慢的重要依据,下列说法中不正确的是() A.增大压强,可使活化分子数增多,反应速率加快 B.增大反应物的浓度,可使单位体积内活化分子数增多,反应速率加快 C.能够发生有效碰撞的分子一定是活化分子 D.升高温度,使单位体积内活化分子百分数大大增加 5.已知:△G=△H-T△S,△H为焓变,T为热力学温度,△S为熵变,当△G <0时反应能自发进行,△G>0时反应不能自发进行,据此,下列吸热反应中,在高温下不能自发进行的是() A.CO(g)═C(s)+O2(g) B.2N2O5(g)═4NO2(g)+O2(g) C.(NH4)2CO3(s)═NH4HCO3(s)+NH3(g) D.M g CO3(s)═M g O(s)+CO2(g) 6.下列说法正确的是: A.氨水能导电,所以NH3为电解质 B.室温下,水的电离平衡常数为1.0×10-14mol2·L-2 C. 相同温度下,等浓度的(NH4)2CO3和(NH4)2F e(SO4)2中的c(NH4+)后者大 D.硫化氢的电子式为 7.常温时,等体积等物质的量浓度的下列物质的溶液中,水的电离程度由大到小顺序排列正确的是() ①N a2CO3②N a HSO4③CH3COOH④N a HCO3. A.①>②>③>④ B.①>④>③>② C.②>①>③>④ D.②>③>④>① 8.在25℃时,用蒸馏水稀释1mol/L氨水至0.01mol/L,随溶液的稀释,下列各项中始终保持增大趋势的是()

最新整理高中化学必修二有机化合物知识点总结学习资料

绝大多数含碳的化合物称为有机化合物,简称有机物。像CO、CO2、碳酸、碳酸盐等少数化合物,由于它们的组成和性质跟无机化合物相似,因而一向把它们作为无机化合物。 有机物主要化学性质 烷烃: 甲烷 ①氧化反应(燃烧) CH4+2O2――→CO2+2H2O(淡蓝色火焰,无黑烟) ②取代反应(注意光是反应发生的主要原因,产物有5种) CH4+Cl2―→CH3Cl+HCl CH3Cl +Cl2―→CH2Cl2+HCl CH2Cl2+Cl2―→CHCl3+HCl CHCl3+Cl2―→CCl4+HCl 在光照条件下甲烷还可以跟溴蒸气发生取代反应, 甲烷不能使酸性KMnO4溶液、溴水或溴的四氯化碳溶液褪色。 烯烃: 乙烯 ①氧化反应(ⅰ)燃烧 C2H4+3O2――→2CO2+2H2O(火焰明亮,有黑烟) (ⅱ)被酸性KMnO4溶液氧化,能使酸性KMnO4溶液褪色。 ②加成反应

CH2=CH2+Br2-→CH2Br-CH2Br(能使溴水或溴的四氯化碳溶液褪色)在一定条件下,乙烯还可以与H2、Cl2、HCl、H2O等发生加成反应 CH2=CH2+H2――→CH3CH3 CH2=CH2+HCl-→CH3CH2Cl(氯乙烷) CH2=CH2+H2O――→CH3CH2OH(制乙醇) ③加聚反应 nCH2=CH2――→-CH2-CH2-n(聚乙烯) 乙烯能使酸性KMnO4溶液、溴水或溴的四氯化碳溶液褪色。常利用该反应鉴别烷烃和烯烃, 如鉴别甲烷和乙烯。 苯 ①氧化反应(燃烧) 2C6H6+15O2―→12CO2+6H2O(火焰明亮,有浓烟) ②取代反应 苯环上的氢原子被溴原子、硝基取代。 +Br2――→+HBr +HNO3――→+H2O ③加成反应 +3H2――→ 苯不能使酸性KMnO4溶液、溴水或溴的四氯化碳溶液褪色。 、同系物、同分异构体、同素异形体、同位素比较。 概念同系物同分异构体同素异形体同位素 定义结构相似,在分子组成上 相差一个或若干个CH2原 子团的物质 分子式相同而结 构式不同的化合 物的互称 由同种元素组成的不 同单质的互称 质子数相同而中子数不 同的同一元素的不同原 子的互称 分子式不同相同元素符号表示相同,分 子式可不同 —— 结构相似不同不同—— 研究对象化合物化合物单质原子 6、烷烃的命名: (1)普通命名法:把烷烃泛称为“某烷”,某是指烷烃中碳原子的数目。1-10用甲,乙,丙,丁,戊,已,庚,辛,壬,癸;11起汉文数字表示。区别同分异构体,用“正”,“异”,“新”。 正丁烷,异丁烷;正戊烷,异戊烷,新戊烷。 (2)系统命名法: ①命名步骤:(1)找主链-最长的碳链(确定母体名称);(2)编号-靠近支链(小、多)的一端; (3)写名称-先简后繁,相同基请合并. ②名称组成:取代基位置-取代基名称母体名称 ③阿拉伯数字表示取代基位置,汉字数字表示相同取代基的个数 CH3-CH-CH2-CH3 CH3-CH-CH-CH3

高一化学必修二知识点总结有机化合物

高一化学必修二知识点总结:有机化合物 高一化学必修二知识点总结:有机化合物 人教版高一化学必修二知识总结,第三章有机化合物,绝大多数含碳的化合物称为有机化合物,简称有机物。像CO、CO2、碳酸、碳酸盐等少数化合物,由于它们的组成和性质跟无机化合物相似,因而把它们作为无机化合物。有机化合物可以分为烃和烃的衍生物。下面依据考纲,总结知识。考纲要求(1)了解有机化合物中碳的成键特征。了解有机化合物的同分异构现象。(2)了解甲烷、乙烯、苯等有机化合物的主要性质。(3)了解乙烯、氯乙烯、苯的衍生物等在化工生产中的重要作用。(4)了解乙醇、乙酸的组成和主要性质及重要应用。(5)了解上述有机化合物发生反应的类型。(6)了解糖类、油脂、蛋白质的组成和主要性质及重要应用。第一节最简单的有机化合物――甲烷第二节来自石油和煤中的两种基本化工原料甲烷、乙烯、苯都属于烃,故将两节合并讨论。 1、烃的定义:仅含碳和氢两种元素的有机物称为碳氢化合物,也称为烃。 2、烃的分类烃的分类 3、甲烷、乙烯和苯的性质比较甲烷、乙烯和苯的物理性质甲烷、乙烯和苯的化学性质 4、四同比较:同系物、同分异构体、同素异形体、同位素。四同比较 5、烷烃的命名(1)普通命名法把烷烃泛称为“某烷”,某是指烷烃中碳原子的数目。1-10用甲,乙,丙,丁,戊,已,庚,辛,壬,癸表示。11起汉文数字表示。区别同分异构体,用“正”,“异”,“新”。如丁烷有正丁烷,异丁烷;戊烷有正戊烷,异戊烷和新戊烷。(2)系统命名法①命名步骤:a、找主链:最长的碳链(确定母体名称); b、编号位:靠近支链(小、多)的一端; c、写名称:不同基先简后繁,相同基请合并;②名称组成:取代基位置-取代基名称母体名称;③阿拉伯数字表示取代基位置,汉字数字表示相同取代基的个数; 2,3-二甲基丁烷 2,3-二甲基丁烷 2-甲基丁烷 2-甲基丁烷 6、比较同类烃的沸点①一看:碳原子数多沸点高。②碳原子数相同,二看:支链多沸点低。常温下,碳原子数1-4的烃都为气体。 第三节生活中两种常见的有机物 1、乙醇和乙酸比较乙醇与乙酸的

高一化学下学期期末考试试题新人教版新版

2019高一年级下学期期末考试 化学试卷 时间:90分钟总分:100分 一、选择题(,每题3分,共54分)。 1.下列离子中,电子数大于质子数,且质子数大于中子数的是 A.OH- B.Mg2+C.OD- D.D3O+ 2.将下列各种液体分别与溴水混合并振荡,静置后混合液分成两层,下层几乎呈无色的是A.氯仿B.苯C.酒精D.KI 溶液3.下列变化全部属于化学变化的是 A.石油裂解,煤的气化B.煤的干馏,石油分馏 C.金属导电,熔融氯化钠导电D.金属的焰色反应,浓硫酸吸水4.下列有关化学用语使用正确的是 ①甲基的电子式;②Cl﹣的结构示意图:; ③乙烯的分子式:CH2=CH2 ④中子数为20的氯原子:Cl;⑤乙酸分子的比例模型:;⑥氯乙烷的结构式:A.④B.③④⑤C.④⑤⑥D.①③④⑤⑥5.试推测第82 号元素X 的单质及其化合物不可能具有的性质 A.X 的氧化物的水化物可能有两种B..单质是能导电的固体 C.单质不能与氢气直接化合D.X 是非金属元素

6.氧化还原反应及盐与酸或碱的复分解反应遵循“强制弱”的规律,个别反应不符合该规律.下列反应中属于个别反应的是 A.2Fe3++Cu=2Fe2++Cu2+ B.Cu2++H2S=CuS↓+2H+ C.Cl2+2I﹣=2Cl﹣+I2 D.Al3++3NH3?H2O=Al(OH)3↓+3NH4+ 7.下列分子中所有原子处于同一平面的是 A.环己烷B.苯乙烯(C6H5CH=CH2) C.丙烯(CH3CH=CH2)D.乙烷 8.氢气和氮气一定条件下反应生成氨气。已知H﹣H 键、N≡N、H﹣N 键能分别为为Q1、Q2、Q3kJ?mol﹣1.下列关系式中正确的是 A.3Q1+3Q2<2Q3B.Q1+Q2<Q3C.3Q1+Q2<6Q3 D.3Q1+Q2<2Q3 9.合成金刚石的新方法化学原理为:①Na+CO 2C(金刚石)+C(石墨)+Na2CO3(未配平);方法比人工首次制得金刚石的旧方法②C(石墨)=C(金刚石)容易得多.以下表述中正确的是 A.反应②中既有旧化学键的断裂又有新化学键的形成 B.新方法利用的是化学变化,旧方法利用的是物理变化 C.在反应①中每生成12g 金刚石需要消耗46g 金属钠 D.反应①和反应②中所得的金刚石都是还原产物

高中化学必修二有机部分复习题

必修二化学有机部分复习题 1.下列关于有机化合物的说法中,正确的是( ) A.含碳元素的化合物不一定是有机化合物 B.易溶于汽油、酒精、苯等有机溶剂的物质一定是有机化合物 C.所有的有机化合物都很容易燃烧 D.有机化合物有的不溶于水,有的可溶于水 2.下列说法中错误的是:() A.无机物和有机物在性质上的区别并不是绝对的 B.无机物和有机物在一定条件下可以相互转化 C.所有的有机物都可以从动植物的有机体中提取 D.有机物之间发生的化学反应比较复杂,而且速度较慢 3.有机物中的烃是() A.只含有碳 B.只含有碳与氢 C.含有碳与氢 D.燃烧后生成CO2与H2O 4.下列物质中属于有机物的是( ) ①乙醇②食盐③石墨④甲烷⑤蔗糖⑥水⑦一氧化碳⑧碳酸钙⑨乙酸A.①②④⑤⑨B.①④⑤⑨ C.①③④⑤⑦⑧⑨ D.①④⑤⑥5.以下关于甲烷的说法中错误的是( ) A.甲烷分子是由极性键构成的分子 B.甲烷分子具有正四面体结构 C.甲烷分子中四个C—H键是完全等价的键 D.甲烷分子中具有非极性键 6.下列物质在一定条件下,可与CH4发生取代反应的是( ) A.氧气 B.溴水 C.氯气 D.酸性KMnO4溶液 7.下列关于甲烷与Cl2的取代反应所得产物的说法正确的是( ) A.都是有机物 B.都不溶于水 C.有一种气态物质,其余均是液体 D.除一种外均是四面体结构 8.下图是CH4、CCl4、CH3Cl的分子球棍模型图。下列说法正确的是( )

A .CH 4、CCl 4和CH 3Cl 都是正四面体结构 B .CH 4、CCl 4都是正四面体结构 C .CH 4和CCl 4中的化学键完全相同 D .CH 4、CCl 4的结构相同,性质也相同 9.下列气体既可以用碱石灰干燥又可以用浓硫酸干燥的是( ) A .Cl 2 B .CH 4 C .NH 3 D .SO 2 10.1 mol CH 4和Cl 2发生取代反应,待反应完全后,测得四种有机取代物的物质的量相等,则消耗的Cl 2为( ) A .0.5 mol B .2 mol C .2.5 mol D .4 mol 11.氯仿(CHCl 3)可作麻醉剂,但常因保存不妥而被氧气氧化,产生剧毒物质光气(COCl 2),其化学反应方程式为2CHCl 3+O 2―→2HCl+2COCl 2,为了防止事故的发生,在使用前需检验氯仿是否变质,应选用的试剂是( ) A .氢氧化钠溶液 B .盐酸 C .硝酸银溶液 D .水 12.鉴别甲烷、一氧化碳和氢气3种无色气体的方法,是将它们( ) A .先后通入溴水和澄清石灰水 B .点燃后罩上涂有澄清石灰水的烧杯 C .点燃,先后罩上干燥的冷烧杯和涂有澄清石灰水的烧杯 D .点燃后罩上涂有澄清石灰水的烧杯,通入溴水 13.一定量的甲烷燃烧后得到CO 、CO 2及水蒸气,混合气共重49.6 g ,通过无水CaCl 2时,CaCl 2增重25.2 g ,则CO 2的质量为( ) A .12.5 g B .13.2 g C .19.7 g D .24.4 g 14.将标准状况下的11.2L 甲烷和22.4L 氧气混合点燃,恢复到原状况时气体的体积共 A .11.2L B .22.4L C .33.6L D .44.8L 15.下列反应属于取代反应的是( ) A .CHCl 3+Cl 2――→光CCl 4+HCl B .2HI +Cl 2===2HCl +I 2

醚和环氧化合物

第十章 醚和环氧化合物 1、通过本章的学习,掌握醚和环氧化合物的命名; 2、掌握醚和环氧化合物的结构特征;掌握醚和环氧化合物的物理性质; 3、掌握醚的化学性质;理解醚的波谱性质;理解醚和环氧化合物的制法; 4、了解乙醚、环氧乙烷的性质和用途; 5、了解冠醚的一般性质和在冶金中的应用。 一、醚的结构,分类和命名 1.结构 2.分类 3.命名 1) 简单醚在“醚”字前面写出两个烃基的名称。例如,乙醚、二苯醚等。 2) 混醚 是将小基排前大基排后;芳基在前烃基在后,称为某基某基醚。 例如: 1)结构复杂的醚用系统命名法命名。 例如: 环醚多用俗名 饱和醚简单醚 混和醚 不饱和醚芳香醚环醚 大环多醚(冠醚) CH 3CH 2OCH 2CH 3CH 3OCH 2CH 3 CH 3OCH 2CH = CH 2 CH 2=CHOCH=CH 2 OCH 3 O O O O O CH 3OCH 2CH = CH 2OCH 2CH 3 甲基烯丙基醚 苯乙醚 CH 3-CHOCH 2CH 2CH 2CH 2OH CH 3 异丙氧基丁醇 4 - -1-R O R' ° 109.5sp 3杂化

二、醚的物理性质 常温下,大多数醚为易挥发、易燃烧、有香味的液体。醚分子中因无羟基而不能在分子间生成氢键,因此醚的沸点比相应的醇低得多,与分子量相近的烷烃相当。常温下,甲醚、甲乙醚、环氧乙烷等为气体,大多数醚为液体。 醚分子中的碳氧键是极性键,氧原子采用sp 3杂化,其上有两对未共用电子对,两个碳氧键之间形成一定角度,故醚的偶极矩不为零,易于与水形成氢键,所以醚在水中的溶解度与相应的醇相当。甲醚、1,4-二氧六环、四氢呋喃等都可与水互溶,乙醚在水中的溶解度为每100g 水溶解约7克,其它低分子量的醚微溶于水,大多数醚不溶于水。 二、乙醚能溶于许多有机溶剂,本身也是一种良好的溶剂。乙醚有麻醉作用,极易着 火,与空气混合到一定比例能爆炸,所以使用乙醚时要十分小心。 三、醚的化学性质 醚是一类不活泼的化合物,对碱、氧化剂、还原剂都十分稳定。醚在常温下与金属Na 不起反应,可以用金属Na 来干燥。醚的稳定性仅次于烷烃。但其稳定性是相对的,由于醚键(C-O-C )的存在,它又可以发生一些特有的反应。 1. 烊盐的生成 醚的氧原子上有未共用电子对,能接受强酸中的H + 而生成烊盐。 烊盐是一种弱碱强酸盐,仅在浓酸中才稳定,遇水很快分解为原来的醚。利用此性质可以将醚从烷烃或卤代烃中分离出来。 醚还可以和路易斯酸(如BF 3、AlCl 3、RMgX )等生成烊盐。见P 299。 烊盐的生成使醚分子中C-O 键变弱,因此在酸性试剂作用下,醚链会断裂。 2.醚链的断裂 在较高温度下,强酸能使醚链断裂,使醚链断裂最有效的试剂是浓的氢碘酸(HI )。 R-O-R R-O-R + HCl + H 2SO 4 H R O R H + Cl + HSO 4 R O R R-O-R + BF 3 R O R B H H H

高一化学下学期期末试卷(含答案)

相对原子质量:H-1 C-12 i N-14 0-16 Na-23 Al-27 Cu-64 Zn-65 第I卷(选择题共48分) 选择题(本题包括16小题,每小题3分,共48分。每小题只有一个选项符合题意。) 1.2018年4月22日是第49个世界地球日。今年地球日活动周主题为“珍惜自然资源呵护美丽国土”。下列有关说法或做法正确的是 A.推广使用煤、石油、天然气,有利于缓解温室效应 B.普通锌锰于电池不含环境污染物,可以随意丢弃 C.在生产、流通和消费等过程中实行“减量化、再利用、资源化” D.将高耗能、高污染的企业迁至偏僻的农村地区,提高贫穷地区居民收入 2.有机化合物与人类的生活密切相关。下列叙述中正确的是 A.蚕丝和棉花的主要成分均是纤维素 B.糯米中的淀粉一经水解就酿成了酒 C.用加酶洗衣粉涤羊毛织品效果更好 D.乙醇和乙酸都是常用调味品的主要成分 3.轴烯是一类独特的星形环烃。下列有关三元轴烯( )与苯的关系说法错误的是 A.均含有碳碳双键 B.均为平面结构 C.互为同分异构体 D.均能发生加成反应 4.硒(Se)是人体必需的微量元素,具有抗氧化、增强免疫力等作用。下列说法错误的是 A. 与互为同位索 B. 与属于同种原子 C. 与核外电子排布相同 D. 与是硒元素的两种不同核素 5.除去下列物质中的杂质(括号内为杂质) ,所用试剂和分离方法均正确的是 混合物所用试剂分离方法 A 甲烷(乙烯) 酸性高锰酸钾洗气 B 苯(乙酸) 氢氧化钠溶液分液

C 氯气(HCl) 氢氧化钠溶液洗气 D 乙醇(水) 金属钠蒸馏 6.现欲用纯净的CaCO3与稀盐酸反应制取CO2,生成CO2的体积与时间的关系如下图所示。下列叙述正确的是 A. OE段化学反应速率最快 B. FG段收集的二氧化碳最多 C.由图像无法推断出该反应为放热反应 D.向溶液中加入氯化钠溶液,可以降低该反应的化学反应速率 7.下列有关元素周期表和元素周期律的叙述正确的是 A.原子序数为15的元素的最高化合价为+3 B.VIIA族元素是同周期中非金属性最强的元素 C.原子最外层电子数为2的元素一定位于IIA族 D.元素周期表中从第3列~12列中的元素均为副族元素 8.右图为氢氧燃料电池工作原理示意图。下列叙述错误的是 A.M处通人氢气,a极是电池的正极 B.该电池的总反应为2H2+O2=2H2O C.N处通入氧气,在b电极上发生还原反应 D.该电池产物为水,属于环境友好型的绿色电源 9.已知某反应中能量变化如右图所示,所得结论错误的是 A.该图像可以表示氯化铵与消石灰反应的能量变化 B.该反应过程中,一定有其他形式的能量转化成化学能 C.该反应过程中,形成新化学键释放的总能量小于断裂旧化学键吸收的总能量 D.因为生成物的总能量高于反应物的总能量,所以该反应一定需要加热才可进行 10.下列反应过程中,同时有离子键和共价键的断裂和形成的是 A.2H2+O2 2H2O B. NH3 +HCl=NH4Cl

高中化学必修二有机化合物知识点总结

高中化学必修二有机化合物知识点总结
绝大多数含碳的化合物称为有机化合物,简称有机物。像 CO、CO2、碳酸、碳酸盐等少数 化合物,由于它们的组成和性质跟无机化合物相似,因而一向把它们作为无机化合物。
有机物
主要化学性质 ①氧化反应(燃烧) CH4+2O2――→CO2+2H2O(淡蓝色火焰,无黑烟) ②取代反应 (注意光是反应发生的主要原因,产物有 5 种)
烷烃: 甲烷
CH4+Cl2―→CH3Cl+HCl CH2Cl2+Cl2―→CHCl3+HCl
CH3Cl +Cl2―→CH2Cl2+HCl CHCl3+Cl2―→CCl4+HCl
在光照条件下甲烷还可以跟溴蒸气发生取代反应, 甲烷不能使酸性 KMnO4 溶液、溴水或溴的四氯化碳溶液褪色。 ①氧化反应 (ⅰ)燃烧 烯烃: 乙烯 C2H4+3O2――→2CO2+2H2O(火焰明亮,有黑烟) (ⅱ)被酸性 KMnO4 溶液氧化,能使酸性 KMnO4 溶液褪色。 ②加成反应

CH2=CH2+Br2-→CH2Br-CH2Br(能使溴水或溴的四氯化碳溶液褪色) 在一定条件下,乙烯还可以与 H2、Cl2、HCl、H2O 等发生加成反应 CH2=CH2+H2――→CH3CH3 CH2=CH2+HCl-→CH3CH2Cl(氯乙烷) CH2=CH2+H2O――→CH3CH2OH(制乙醇) ③加聚反应 nCH2=CH2――→-CH2-CH2-n(聚乙烯) 乙烯能使酸性 KMnO4 溶液、溴水或溴的四氯化碳溶液褪色。常利用该反应鉴别烷烃和烯烃, 如鉴别甲烷和乙烯。 ①氧化反应(燃烧) 2C6H6+15O2―→12CO2+6H2O(火焰明亮,有浓烟) ②取代反应 苯环上的氢原子被溴原子、硝基取代。 苯 +Br2――→ +HNO3――→ ③加成反应 +3H2――→ 苯不能使酸性 KMnO4 溶液、溴水或溴的四氯化碳溶液褪色。 +HBr +H2O
、同系物、同分异构体、同素异形体、同位素比较。
概念 同系物 同分异构体 同素异形体 由同种元素组成的不 同单质的互称 元素符号表示相同, 分 子式可不同 不同 单质 同位素 质子数相同而中子数不 同的同一元素的不同原 子的互称 —— —— 原子 结构相似,在分子组成上 分子式相同而结 定义 相差一个或若干个 CH2 原 构式不同的化合 子团的物质 分子式 结构 研究对象 不同 相似 化合物 物的互称 相同 不同 化合物
6、烷烃的命名: (1)普通命名法:把烷烃泛称为“某烷”,某是指烷烃中碳原子的数目。1-10 用甲,乙, 丙,丁,戊,已,庚,辛,壬,癸;11 起汉文数字表示。区别同分异构体,用“正”,“异”, “新”。 正丁烷,异丁烷;正戊烷,异戊烷,新戊烷。 (2)系统命名法: ①命名步骤: (1)找主链-最长的碳链(确定母体名称); (2)编号-靠近支链 (小、 多) 的一端; (3)写名称-先简后繁,相同基请合并. ②名称组成:取代基位置-取代基名称母体名称 ③阿拉伯数字表示取代基位置,汉字数字表示相同取代基的个数 CH3-CH-CH2-CH3 CH3-CH-CH-CH3

高一化学下学期期末考试试题(1)

泉港一中2017-2018学年下学期期末考试 高一年级化学科试题 (考试时间:90分钟 总分100分) 可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Zn-65 Cu-64 Fe-56 Al-27 第Ⅰ卷 一、选择题(每题只有一个正确答案,每题2分,共46分) 1.下列过程前者属于物理变化,后者属于化学变化的是( ) A .煤的干馏、石油的裂化 B .石油的分馏、硫酸铜晶体遇浓硫酸失去结晶水 C .煤的液化、碘的升华 D .煤的气化、用浸泡过高锰酸钾溶液的硅藻土保鲜水果 2.下列说法错误的是( ) A .化学反应中一定有化学键断裂,同时也有化学键形成 B .含有共价键的化合物必是共价化合物 C .含有离子键的化合物必是离子化合物 D .金属元素和非金属元素形成的化合物不一定是离子化合物 3.下列物质中, 属于电解质的是( ) A. 浓硫酸 B. Al C. 蔗糖 D.HCl 4.化学科学需要借助化学专用语言描述,下列有关化学用语正确的是( ) A .羟基的电子式为: B .HClO 的结构式:H —Cl —O C .丙烷分子的比例模型: D . S 2- 的结构示意图: 5.下列大小比较全都正确的是( ) A .离子半径:Na +>Mg 2+>Al 3+>Cl — ;原子半径:Na>Mg>Al>Cl B .稳定性:HF>H 2O>NH 3>CH 4 ; 还原性: HF < H 2O < NH 3< CH 4 C .碱性:CsOH>KOH>Mg(OH)2>NaOH ; 金属性:Cs>K>Mg>Na D .酸性:HClO>H 2SO 4>H 2CO 3;非金属性Cl>S>C 6.下列烷烃在光照下与氯气反应,生成一种一氯代烃的是( ) 7.糖类、脂肪和蛋白质是维持人体生命活动所必需的三大营养物质,以下叙述正确的是( ) A .植物通过光合作用将CO 2转化成葡萄糖是太阳能转变成热能的过程 B .油脂属于酯类化合物,油脂的水解反应叫皂化反应 C .淀粉与纤维素互称为同分异构体 D .浓硝酸溅在皮肤上,使皮肤呈黄色是由于浓硝酸和蛋白质发生了颜色反应 8、能说明苯分子中碳碳键不是单、双键相间交替的事实是( ) ①苯不能使酸性KMnO 4溶液褪色 ②苯环中碳碳键均相同 ③苯的邻位二氯取代物只有一种 ④苯的对位二氯取代物只有一种 ⑤ 在一定条件下苯与H 2发生加成反应生成环己烷 :O :H ¨ ¨

怎样学好高中化学必修2中的有机部分

怎样学好高中化学必修2中的有机部分 1、各类有机物的通式、及主要化学性质:烷烃CnH2n+2 仅含C—C键与卤素等发生取代反应、热分解、不与高锰酸钾、溴水、强酸强碱反应;烯烃CnH2n 含C==C键与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应、加聚反应;炔烃CnH2n-2 含C≡C键与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应;苯(芳香烃)CnH2n-6与卤素等发生取代反应、与氢气等发生加成反应(甲苯、乙苯等苯的同系物可以与高锰酸钾发生氧化反应)卤代烃:CnH2n+1X 醇:CnH2n+1OH 或CnH2n+2O 有机化合物的性质,主要抓官能团的特性,比如,醇类中,醇羟基的性质:1.可以与金属钠等反应产生氢气,2.可以发生消去反应,注意,羟基邻位碳原子上必须要有氢原子,3.可以被氧气催化氧化,连有羟基的碳原子上必要有氢原子。4.与羧酸发生酯化反应。5.可以与氢卤素酸发生取代反应。6.醇分子之间可以发生取代反应生成醚。苯酚:遇到FeCl3溶液显紫色醛:CnH2nO 羧酸:CnH2nO2 酯:CnH2nO2 2、取代反应包括:卤代、硝化、卤代烃水解、酯的水解、酯化反应等; 3、最简式相同的有机物,不论以何种比例混合,只要混和物总质量一定,完全燃烧生成的CO2、H2O及耗O2的量是不变的。恒等于单一成分该质量时产生的CO2、H2O和耗O2量。 4、可使溴水褪色的物质如下,但褪色的原因各自不同:烯、炔等不饱和烃(加成褪色)、苯酚(取代褪色)、醛(发生氧化褪色)、有机溶剂[CCl4、氯仿、溴苯(密度大于水),烃、苯、苯的同系物、酯(密度小于水)]发生了萃取而褪色。较强的无机还原剂(如SO2、KI、FeSO4等)(氧化还原反应) 5.能使高锰酸钾酸性溶液褪色的物质有:(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物(2)含有羟基的化合物如醇和酚类物质(3)含有醛基的化合物(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2 6.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物7、能与NaOH溶液发生反应的有机物:(1)酚:(2)羧酸:(3)卤代烃(水溶液:水解;醇溶液:消去)(4)酯:(水解,不加热反应慢,加热反应快)(5)蛋白质(水解)8.能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐9、能发生银镜反应的有:醛、甲酸、甲酸某酯、葡萄糖、麦芽糖(也可同Cu(OH)2反应)。计算时的关系式一般为:—CHO ——2Ag 注意:当银氨溶液足量时,甲醛的氧化特殊:HCHO ——4Ag ↓ + H2CO3 反应式为:HCHO +4[Ag(N H3)2]OH = (NH4)2CO3 + 4Ag↓ + 6NH3 ↑+ 211.10、常温下为气体的有机物有:分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。H2O 11.浓H2SO4、加热条件下发生的反应有:苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解12、需水浴加热的反应有:(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解凡是在不高于100℃的条件下反应,均可用水浴加热。13、解推断题的特点是:抓住问题的突破口,即抓住特征条件(即特殊性质或特征反应),如苯酚与浓溴水的反应和显色反应,醛基的氧化反应等。但有机物的特征条件不多,因此还应抓住题给的关系条件和类别条件。关系条件能告诉有机物间的联系,如A氧化为B,B氧化为C,则A、B、C必为醇、醛,羧酸类;又如烯、醇、醛、酸、酯的有机物的衍变关系,能给你一个整体概念。14、烯烃加成烷取代,衍生物看官能团。去氢加氧叫氧化,去氧加氢叫还原。醇类氧化变酮醛,醛类氧化变羧酸。光照卤代在侧链,催化卤代在苯环。 高中化学必修2中第三章有机内容 有机化合物主要由氧元素、氢元素、碳元素组成。有机物是生命产生的物质基础。其特点主要有:多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,

大学-醚和环氧化合物习题和答案

醚和环氧化合物习题 (一) 写出分子式为C 5H 12O 的所有醚及环氧化合物,并命名之。 解: 甲基丁基醚 甲基仲丁基醚 甲基异丙基醚 甲基叔丁基醚 乙基丙基醚 乙基异丙基醚 (二) 完成下列反应式: (1) (2) (3) (4) (5) (6) CH 3O CH 2CH 2CH 2CH 3 CH 3O CHCH 2CH 3 CH 3 CH 3O CH 2CHCH 3 CH 3 CH 3 O C CH 3 CH 3 CH 3 CH 3CH 2O CH 2CH 2CH 3 CH 3CH 2O CHCH 3 3 Br + CH 3CH 2CHCH 3 O CHCH 2CH 3 3 CH 3CH 2I + C NaO H 2H 53 C O H C 2H 53CH 3CH 2 CH 3CH 2CHCH 2Br OH CH 2 CH O CH 3CH 2 O NH 2 H 2+Br O 3 Br C(CH 3)CH 2NH 2OH CH 2CH O HCl 3 CH 2OH CH Cl + CH 2CHO

(三) 在3,5-二氧杂环己醇 的稳定椅型构象中,羟基处在a 键的位 置,试解释之。 解:羟基处于a 键时,有利于形成具有五元环状结构的分子内氢键: 或 (四) 完成下列转变: (1) 解: (2) 解: (TM) (3) 解: O O OH O O O H OCH 3O CH 2OCH 3C OCH 3O CH 2OCH 33NaOH Na + C H OH CH 2OH Br OH O Ph 及 K 2Cr 2O 7H 2SO 4 OH O MgBr 2+ Mg THF OH Br ? C H CO H O Br 及CH 2CHCH 3 OH CH 3CHCH 3 OH CH 3CHCH 3 CH CH 2 O CH 3 24? CH 2=CHCH 333CH 2CHCH 3OH MgBr 2+ Mg THF CH CH 2 O CH 3

高一化学下学期期末试卷(有答案)

相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 S-32 Cl-35.5 Mn-55 Fe-56 一、选择题(共20小题每题只有一个正确答案,1至12题每题2分,13至20题每题3分,共48分) 1.化学是人类利用自然资源、丰富物质世界的重要科学依据。下列说法不正确的是() A.我国许多城市已经推广使用清洁燃料以减少环境污染,如压缩天然气(CNG)、液化石 油气(LPG),这两类燃料的主要成分均是烃类 B.海水淡化的方法主要有蒸馏法、电渗析法、离子交换法等 C.煤的综合利用的主要途径是通过煤的干馏、煤气化和煤液化而获得洁净的燃料和多种 化工原料 D.工业上利用金属活泼性不同,采用不同的冶炼方法冶炼金属,如电解法冶炼铝、热还 原法冶炼铁、热分解法冶炼铜 2.X、Y为短周期元素,X位于ⅠA族,X、Y可形成化合物X2Y。下列说法不正确的是() A.两元素形成的化合物中原子个数比可能为1∶1 B.X的原子半径一定大于Y的原子半径 C.X、Y的简单离子可能具有相同的电子层结构

D.X2Y可能是离子化合物,也可能是共价化合物 3.物质(t-BuNO)2在正庚烷溶剂中发生如下反应:(t-BuNO)2 2(t -BuNO) ΔH=+50.5 kJ?mol-1,Ea=90.4 kJ?mol-1。下列图象合理的是() 4.反应A(g)+B(g)→C(g) ΔH,分两步进行:①A(g)+B(g)→X(g) ΔH1,②X(g)→C(g) ΔH2,反应过程中能量变化如图所示,E1表示A(g )+B(g)→X(g)的活化能, 下列说法正确的是() A.ΔH1=ΔH-ΔH2>0 B.X是反应A(g)+B(g)→C(g)的催化剂 C.E2是反应②的活化能 D.ΔH=E1-E2 5.下列关于化学反应速率的说法中,正确的是() ①用铁片和稀硫酸反应制取氢气时,改用98%的浓硫酸可以加快产生氢气的速率②决定化学反应速率的主要因素是反应物的浓度. ③一定量的锌与过量的稀硫酸反应制取氢气,为减慢反应速率而又不影响生成H2的量,可向其中加入KNO3溶液。④汽车尾气中的NO 和CO反应转化为无害的N2和CO2,减小压强,反应速率减慢⑤增大压强,一定能加快化学反应速率⑥用锌与稀硫酸反应制H2时,滴加几滴硫酸铜溶液能加快反应速率⑦使用催化剂,使反应的活化能降低,反应速率加快⑧光是影响某些化学反应速率的外界条件

(word完整版)高一化学必修二有机物知识点总结,推荐文档

必修二有机物 一、有机物的概念 1、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外) 2、特性 ①种类多 ②大多难溶于水,易溶于有机溶剂 ③易分解,易燃烧 ④熔点低,难导电、大多是非电解质 ⑤反应慢,有副反应(故反应方程式中用“→”代替“=”) 二、甲烷 烃—碳氢化合物:仅有碳和氢两种元素组成(甲烷是分子组成最简单的烃)1、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气; 2、分子结构:CH4:以碳原子为中心,四个氢原子为顶点的正四面体(键角:109度28分); 3、化学性质: (1)、氧化性 CH 4+2O 2 ? ?→ ?点燃CO 2 +2H 2 O; CH 4 不能使酸性高锰酸甲褪色; (2)、取代反应 取代反应:有机化合物分子的某种原子(或原子团)被另一种原子(原子团)所取代的反应; CH 4+Cl 2 ? ?→ ?光照CH 3 Cl+HCl CH 3Cl+Cl 2 ? ?→ ?光照CH 2 Cl 2 + HCl CH 2Cl 2 +Cl 2 ? ?→ ?光照 CHCl 3 + HCl CHCl 3+Cl 2 ? ?→ ?光照 CCl 4 + HCl 4、同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质(所有的烷烃都是同系物); 5、同分异构体:化合物具有相同的分子式,但具有不同结构式(结构不同导致性质不同);烷烃的溶沸点比较:碳原子数不同时,碳原子数越多,溶沸点越高;碳原子数相同时,支链数越多熔沸点越低; 三、乙烯 1、乙烯的制法 工业制法:石油的裂解气(乙烯的产量是一个国家石油化工发展水平的标志之一); 2、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水; 3、结构:不饱和烃,分子中含碳碳双键,6个原子共平面,键角为120°;

相关文档
最新文档