001 型材截面选择的一点心得

001 型材截面选择的一点心得
001 型材截面选择的一点心得

做机械设计,80%的工作是结构设计;结构设计中,有很大一部分是焊接结构;提到焊接结构,就不能不说型材截面的选择。

新手做设计,不知道是该选角钢,工字钢,槽钢,H钢,圆管还是方管的时候,我建议你一律选方管了事。为什么这么说呢?且让我慢慢道来。

就我自己而言,是最喜欢用角钢的。角钢呢它有两个侧平面来定位,若与扁钢想比它的优势是在纵横两个方向的刚度是相等的,这个理由我觉得就足够了,另外它的翅膀是平的,且是开口截面,连接起什么东西来真是非常方便,做拉压杆是不二之选。工字钢呢,上下翅膀承弯矩,中间腹板抗剪切,分工明确,完美的悬臂梁截面!但是它无侧平面,并且腿是斜的,不好直接上螺栓,这太烦人了,再加上分析表明,同样截面积的H钢比工字钢的模量要大很多,所以它有被H钢代替的势头。槽钢比工字钢的优势,是它有一个侧平面,但是它跟角钢一样,截面是不对称的,这就有点不好,因为机械设计一个最大的秘诀就是对称,对称意味着受力上的均载,所以对称不仅仅是外形上的美观而已!下面说到圆管了,圆管是好,但是节点不好做,并且圆滚滚的,不好定位。但方管就不同了,它竟然有四个平面,并且跟圆管一样同属闭口截面,闭口截面较之开口截面一个最大的优势,就是扭转刚度非常高,也就是说,开口截面的一个最大弱点就是扭转刚度低。

那么为什么说开口截面的扭转刚度低?

你只要看看开口截面的剪力流分布状况就一清二楚了!

为什么开口截面的剪力流是那样分布的?

依据是切应力互等定律!

切应力互等定律是哪儿来的?

是从静力学公理推出来的!

静力学公理是哪儿来的?

来自平衡假说!

但方管唯一的缺陷也因它是闭口截面,做连接时不方便。除此之外,它比前述所有型材都优越!所以不管三七二十一,选方管再错也错不远!

我们在上面谈的只是截面,没谈节点,因为节点的设计有点复杂,鄙人还没有什么心得,无从谈起,只谈距离节点很远的杆件中部截面,中部截面的受力很明确,为什么受力很明确,因为这是大科学家已经证明了的。

从材料力学的观点看,截面受力无非“拉压剪扭弯”五种。先说拉杆,拉杆只要力线过形心,就没什么可说的了,偏心拉杆要产生弯曲应力,这可不是闹着玩的,所以凡是桁架节点,你仔细留意一下,各个杆件的形心都是交于一点的。

再说压杆,说压杆,它竟然联系到“扭”和“弯”,这是非常奇妙复杂的事情。压杆可不是简单的跟拉杆相反,因为它有屈曲的问题,为什么会屈曲失稳?这完全跟材料的强度无关,那它跟什么有关?跟力的“方向”有关,我个人认为,力的三要素之中,最重要的就是“方向”这一要素。力的作用面,大小你可以差点,但方向绝对不可弄差了,因为它会导致受力性质的变化。比方说,压杆压杆,它受的是轴向力是吧?但力的方向稍微有一点偏离形心,它就变成了一根梁,就产生了弯曲应力,所有的应力里面,就数弯曲应力最厉害,因为它会随着尺寸被放大!那么,影响压杆稳定的因素是什么?它竟然是截面的弯曲惯性矩!所以

当你看到压杆时,你把它当做一根梁,准没错。

说到这儿,发现扭转和纯弯曲也没啥说的了,只能说一点,就是工字钢受力时,受压的那个翅膀,也是一根压杆,它也有屈曲的问题。薄壁管受压或受扭转时,它也有屈曲的问题,屈曲问题归根结底都是稳定问题,而稳定问题就是微分方程解的问题,微分方程属于数学分析,数学分析的基础是连续统,连续统的精髓是开区间(0,1),此区间的谜团是其中“既无最大值也无最小值”,这个性质让人费解!所以对于稳定问题敝人也只是略知概念而已。

下笔之前,雄心勃勃,及至写到后来,感觉笔下艰涩,不禁喟叹余学力之不足,只好用些笔法来藏拙,但其中破绽,行家看来一目了然,所以敝人写完这篇帖子后,很想把它删除了事,并且已经删除了对于焊接桁架节点为什么可以当铰接计算的理解。当我欲删之时,忽然记起古龙曾说过,“歌女的歌,舞者的舞,剑客的剑,文人的笔,英雄的斗志,都是这样子的,只要是不死,就不能放弃”。我想,机械设计师的思想,何尝不是这样?只要是不死,他就不会停止思考,哪里会有完美的那一天?所以我还是贴上了,顺便就教于方家。

如何正确选择导线截面

如何正确选择导线截面 一、按允许载流量选择 I AL >I CA 其中I CA 为线路的计算电流,I AL 导线的允许载流量。 对I AL 的选择: 1、对降压变压器的高压侧导线,取一次侧额定值; 2、电容器线的引入线,因有涌流的情况,选择1.35倍; 对中性线的选择: 1、一般要求:S 0>S Φ; 2、对三次谐波电流突出的线路,S 0﹥﹦S Φ 对保护线的选择: GB50054-1995规定,S Φ<=16MM 2,S PE ﹦16 MM 2 16MM 2<=S Φ<=35MM 2,S PE ﹥16 MM 2 S Φ﹥=16MM 2,S PE ﹦0.5* S Φ 二、按允许电压损失选择导线和截面 步骤为: 1、取导线或电缆的电抗平均值,6-10KV 架空线取0.35Ω/KM,35KV 以上取0.4Ω/KM;低压线路取0.3Ω/KM,穿管及电缆线路取0.08Ω/KM 。求出无功负荷在电抗上引起的电压损失。 △U X =21 010n i i i x q l U n =∑

2、根据△U R=△U AL-△U X= 5-△U X 计算出当前负荷在线路上的有功电压损 失。 由21010n R i i i r U p l U n ==∑,推出1 210% n i i i N R p l S rU U ==∑求出导线的截面积。 其中: r 为导线的电导率,铜取0.053KM /ΩMM 2,铝取0.0320.053KM /ΩMM 2. 3、根据算出的截面积S ,查出r0和x0,即单位长度的导线的电阻和电抗值。计算线路的电压损失,与允许电压损失进行比较,看是否满足要求。 例:某厂从总降压变压器架设一条10KV 的架空线向车间1和车间2供电,各车间负荷及长度如图。已知导线采用铝绞线,全长截面相同,线间几何距离为1M ,允许电压损失为5%,环境温度为25度,按允许电压损失选择电线截面并校验。 0 3KM 1 1.5KM 2 800+J560 500+J200 KVA KVA 解:1、根据允许电压损失选择导线截面积

高压电缆截面选择计算书

技术资料 电缆截面选择计算 计算:黄永青 2005年7月28日 1.计算条件 A.环境温度:40℃。 B.敷设方式: ●穿金属管敷设; ●金属桥架敷设; ●地沟敷设; ●穿塑料管敷设。 C.使用导线:铜导体电力电缆 ●6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 ●380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 2.1导线的载流量 1)载流量的校正 A.温度校正

K1=√(θn-θa)/(θn-θc) 式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正 国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2=0.7 3)载流量的校正系数 K=K1×K2 2.2电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表

表2 0.6/1kV PVC绝缘电力电缆载流量表 表3 0.6/1kV XLPE绝缘电力电缆载流量表

2.3短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 ●配电线路的短路保护协调 S≥I×√t/K 式中:S:电缆截面,mm2; I:短路电流有效值(均方根值),A; t:短路电流持续作用时间,秒。 K:PVC绝缘电缆K=115;XLPE绝缘电缆K=143 ●380V电动机回路短路保护协调 电缆的允许电流大于线路短路保护熔断器熔体额定电流的40%。

输电导线截面的选择

输电导线截面的选择 本节课主要讲述选择导线截面的一般原则、选择条件。按长时允许电流选择导线截面;按允许电压损失选择导线截面;按经济电流密度选择导线截面;按机械强度选择导线截面;按短路时的热稳定条件选择导线截面及按启动条件校验导线截面等知识。 一、输电导线型号的选择 选择依据:输电导线所处的电压等级和适用场所。 二、选择导线截面的条件 1.选择导线截面的一般原则。 1)按长时允许电流选择。 2)按允许电压损失选择。 3)按经济电流密度选择。 4)按机械强度选择。 5)按短路时的热稳定性的条件选择。 2.各种导线截面的选择条件。 1)高压架空线路 不必考虑短路时的热稳定性。 2)高压电缆 不考虑机械强度。 必须考虑短路时的热稳定性。 3)低压导线和电缆 对裸导线不校验短路时的热稳定性。 但对于干线电缆,不必校验其机械强度。 在选择各种导线的截面时,应在其诸多的选择条件中,确定一个有可能选择出最大截面的条件。首先选其截面,其后在按其条件校验,这样可使选择计算简便,避免返工。 三、按长时允许电流选择导线截面 K so I p ≥I ca 0Q Q Q Q K p p SO --= 或查表7-13 查表7-12 wn N N de ca U P K I ?cos 3103 ?∑= 四、按允许电压损失选择导线截面 1.电压损失的计算 电压损失是线路始、未两端电压的算术差值。 1)线路的电压损失计算 (1)线路负荷电压损失的计算(图7-14) 相电压损失 ??sin cos IX IR U +=? 三相对称线路线电压损失:)sin cos (3??X R I U w +=?△U w =)sin x cos r (IL 300?+? N w U QX PR U QX PR U +≈+=? N w U PR IR U ==??cos 3 )(Pr 00Qx U L U N w +=? 忽略电抗时:

导线及截面选择OK

220kV及以下架空送电线路导线及截面选择 2010年1月修编

第一篇导线分类 对导线材料的要求: a、导电率高,以利于减少能损和电压降; b、耐热性能高,以提高输送容量;(正常情况下:铝70℃、铝合金150℃); c、机械强度高,弹性系数E大,有一定柔软性,易弯曲; d、有良好的抗疲劳性,耐震性能好; e、耐磨蚀性好,使用寿命长; f、重量轻,耐磨; g、价格低廉。 常用导线材料的性能比较: 可以看出: a、铜是导电性能最好,机械强度高,耐蚀性能强的一种导线材料,但其重量大,价昂,一般不用于架空送电线。 b、铝的导电率稍差,重量轻,耐腐蚀,资源丰富,价格低廉,但缺点是抗拉强度低。

c、铝镁合金与铝的性能相近,但价格较高。 d、钢的导电性能最差,但机械强度很高,价格低,主要用来制作钢绞线、铝包钢地线。 根据以上分析,在送电线路中最常用的是一种复合材料的导线,即钢芯铝绞线。它在电气性能、机械强度和经济价格上都占有明显的优势。其构造是芯线为钢绞线,外层为铝绞线。 导线的结构和种类 导线从结构上看,有单股和多股之分。一般只有铁和铜的小截面才有单股。 1983年制定(以前标准为GB1179-74)与IEC的规定一致。 a、表示方法: LJ-150 铝绞线 LGJ-300/50 钢芯铝绞线 LGJF-300/50 防腐型钢芯铝绞线 b、规格及技术规数据见GB 1179-83 表2, 16种 表4, 51种 c、材料 铝股——用绳度标高的电工铝 GB3955-83 钢芯——镀锌钢绞线GB3428——82 防腐涂料——呈中性,滴点不应低于110℃

d、最外层绞向:右向 e、工艺质量 绞合应均匀,紧密; 焊接:铝股7股以下不允许有接头 7股以上允许,两接头间不可小于15m。 钢丝不允许接头 f、成品交货:长度允许偏差±5% 每一合同中的短线(不小于1/3制造长度)允许有5% g、厂家: 沈阳电缆厂新疆电缆厂 杭州电缆厂德旧电缆厂 江苏远东电缆厂武汉电缆厂 上海电缆厂昆明电缆厂 ACSR/AS) a、结构:是一种钢芯铝绞线,但其钢芯不是用镀锌钢丝绞合的,而是用铝包钢丝绞合的。铝包钢是在一种高强钢丝的外面,挤包上铝的覆盖层。 b、表示方法:与钢芯铝绞线相同。如LGJ-400/50 c、与钢芯铝交线的比较:

3导线的种类和截面的选择

第四章低压绝缘布线 三、导线的种类和截面的选择 1、导线种类 室内配线均采用绝缘导线 按股数分:单股按材料分:铜线 铝线 橡皮绝缘线 按绝缘材料分: 聚氯乙烯塑料线 表格3—1

一般情况:干燥房屋,采用塑料线 潮湿地方,采用橡皮绝缘线 有电动机的房屋,采用橡皮绝缘线,靠近地面宜用塑料管。 2、导线截面的选择 选择的原则:同时满足允许载流量(发热条件),机械强度、允许电压损失等条件。 一般是先按其中一个条件选择,再以其它几个条件校验,选出截面最大的一个即可。其值不应低于下面表格3—2所列数值。 例如:Ⅰ、线路短,负载电流大,可先按允许载流量(发热条件)选择。 Ⅱ、线路长,可先按允许电压损失条件选择 Ⅲ、负载小,线路又不长,可先按机械强度条件选择 Ⅳ、动力线路可先按允许载流量(发热条件)选择,因为这样选出的截面最大。 注意: ①允许载流量(发热条件):表3—3~3—5列出了不同敷设时的要求。 ②机械强度要求:导线截面不应小于表格3—2中的数值。 ③允许电压损失:自配电变压器二次侧出口至线路末端(不包括接户线)的允 许电压降不应大于额定电压(220、380V)的的5%(农村的7%) 表格3—2

表格3—3 注:

★导线线芯最高允许的工作温度:+650C ★周围环境温度:+250C 表格3—4 注意: ★导线线芯最高允许的工作温度:+650C ★周围环境温度:+250C

表格3—5 注意: ★导线线芯最高允许的工作温度:+650C ★周围环境温度:+250C

(1) 220V 照明线路 ① 照明线路(包括接户线和进户线)应使用额定电压不低于250V 的绝缘线 ② 导线截面按机械强度和允许载流量(即发热条件)进行选择。(负荷小: 按机械强度选择;负荷大:按允许载流量进行选择) 例题: 某用户有一条供给10间房用电的220V 照明线路,每间房内平均有40W 灯泡两个,做饭用30W 的吹风机5台,电风扇共5台(每台50W ),电视机共4台(每台60W ),院内还有100W 公用照明灯泡一个。线路采用铝 芯塑料线明线敷设,环境温度250,试选择导线截面。 解:按全部负荷计算工作电流 A U p I i 7220 1540 22010046055053010240==+?+?+?+??= = ∑工 查表3--3:1.5mm 2铝芯塑料线 I 允=18A 且 I 工﹤I 允 查表3—2 满足机械强度的要求 故选用1.5mm 2 线聚氯乙烯铝芯塑料线。 (2) 380/220V 动力线路 ① 动力线路应使用额定电压不低于500V 的绝缘线 ② 导线截面先按允许载流量(发热条件)进行选择,然后按机械强度和允 许电压损失进行校验。 ③ 对380V 的电动机可用下面表格3—6估算。 表格3—6

如何选择导线的截面

如何选择导线的截面先要看你功耗有多大,先计算出它需要通过的最大电流,I=P/U,知道电流之后从而选择导线的截面积。导线截面积的选择 一、一般铜线安全计算方法是: 2.5 4 6 10 16 25 平方毫米铜电源线的安全载流量--28 平方毫米铜电源线的安全载流量--35 平方毫米铜电源线的安全载流量--48 平方毫米铜电源线的安全载流量--65 平方毫米铜电源线的安全载流量--91 平方毫米铜电源线的安全载流量--120 A 2.5mm2——28A——6KW 4mm2——35A——7KW 6mm2——48A—— 10mm2——65A 16mm2——91A 25mm2——120A 二、如果铜线电流小于28A,按每平方毫米10A 来取肯定安全。如果铜线电流大于120A,按每平方毫米5A 来取。这只能作为估算,不是很准确。三、下面是铜线在不同温度下的线径和所能承受的最大电流表格: 线径(大约值)(mm2)2.5 4.0 6.0 8.0 14 22 30 38 50 60 70 80 100 60 20 25 30 40 55 70 85 95 110 125 145165 195 铜线温度(摄氏度)75 85 电流(A)20 25 25 30 35 40 50 55 65 70 85 95 100 100 115 125 130 145 150 165175 190 200 215 230 250 90 25 30 40 55 75 95 110 130 150 170 195 225 260 四、导线线径一般按如下公式计算: 铜线: S= IL / 54.4*U` 式中:I——导线中通过的最大电流(A) L——导线的长度(M) U`——充许的电源降(V) S——导线的截面积(MM2) 五、铜导线载流量与载流量(A)大致关系:导线截面(mm2 ) 载流量(A) 1 9 1.5 14 2.5 23 4 32 6 48 10 60 16 90 25 100 35 123 导线截面的选择 ㈠导线选择的内容 导线选择的内容包括型号及敷设方式的选择、导线截面的选择两大部分。 型号:可反映导线的材料和绝缘方式。如BX型表示铜芯橡皮线。BLX型则表示铝芯橡皮线。BV型表示铜芯塑料线;BLV型则表示铝芯塑料线,等等。

电力电缆截面选择

电力电缆截面的选择 电力电缆截面 1 电力电缆缆芯截面选择的基本要求。 1.1 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。持续工作回路的缆芯工作温度,应符合附录A的规定。 1.2 最大短路电流作用时间产生的热效应,应满足热稳定条件。对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。 1.3 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 1.4 较长距离的大电流回路或35kV以上高压电缆,当符合上述条款时,宜选择经济截面,可按“年费用支出最小”原则。 1.5 铝芯电缆截面,不宜小于4。 1.6 水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。 2 对10kV及以下常用电缆按持续工作电流确定允许最小缆芯截面时,宜满足附录B电缆允许持续载流量(建议性基础值)、以及由附录C按下列使用条件差异影响计入校正系数所确定的允许载流量。 (1)环境温度差异。 (2)直埋敷设时土壤热阻系数差异。 (3)电缆多根并列的影响。 (4)户外架空敷设无遮阳时的日照影响。

3 不属于本规范第2条规定的其他情况下,电缆按持续工作电流确定允许最小缆芯截面时,应经计算或测试验证,且计算内容或参数选择应符合下列规定: (1)中频供电回路使用非同轴电缆,应计入非工频情况下集肤效应和邻近效应增大损耗发热的影响。 (2)单芯高压电缆以交叉互联接地当单元系统中三个区段不等长时,应计入金属护层的附加损耗发热影响。 (3)敷设于塑料保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。 (4)敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。 (5)施加在电缆上的防火涂料、包带等覆盖层厚度大于1.50mm时,应计入其热阻影响。 (6)沟内电缆埋砂且无经常性水份补充时,应按砂质情况选取大于2.0℃·m/W 的热阻系数计入对电缆热阻增大的影响。 4 缆芯工作温度大于70℃的电缆,计算持续允许载流量时,尚应符合下列规定: (1)数量较多的该类电缆敷设于未装机械通风的隧道、竖井时,应计入对环境温升的影响。 (2)电缆直埋敷设在干燥或潮湿土壤中,除实施换土处理等能避免水份迁移的情况外,土壤热阻系数宜选取不小于2.0℃·m/W。 5 确定电缆持续允许载流量的环境温度,应按使用地区的气象温度多年平均值,并计入实际环境的温升影响。宜符合表5的规定: 电缆持续允许载流量的环境温度确定(℃)表5

导线截面积的选择

导线截面积的选择 导线面积与电流的关系,选择多少平方的导线? 电流与导线横截面积成正比的关系,导线横截面积越大,允许通过的电流越大.同时,和导线电阻率有关,电阻率越大,允许通过的电流越小,即和导体的材质有关.具体能通过多大的电流,一般<<电工手册>>中都可查到.运算的公式是:允许通过的电流=(电压*导线横截面积)/(导线电阻率*导线的长度) 导线的安全载流量跟它的材质有关,你要知道精确就必须查表。如果大概的话可以这们估算:铜导线,10平方以下的6-7A/平方。 10到20平方 4-5A/平方。 20到50平方 3-4A/平方. 50平方到350平方1-2A/平方如果把各种材料制成长1米、横截面积1平方毫米的导线,在20℃时测量它们的电阻(称为这种材料的电阻率)并进行比较,则银的电阻率最小,其次是按铜、铝、钨、铁、锰铜、镍铬合金的顺序,电阻率依次增大。铝导线的电阻率是铜导线的1.5倍多,它的电阻率p=0.0294Ωmm2/m,铜的电阻率p=0.01851 Ω?mm2/m,电阻率随温度变化会有一些差异。导线截面积与电流的关系一般铜线安全计算方法是: 2.5平方毫米铜电源线的安全载流量--28A。 4平方毫米铜电源线的安全载流量--35A 。 6平方毫米铜电源线的安全载流量--48A 。 10平方毫米铜电源线的安全载流量--65A。 16平方毫米铜电源线的安全载流量--91A 。 25平方毫米铜电源线的安全载流量--120A。如果是铝线,线径要取铜线的1.5-2倍。如果铜线电流小于28A,按每平方毫米10A来取肯定安全。如果铜线电流大于120A,按每平方毫米

5A来取。导线的截面积所能正常通过的电流可根据其所需要导通的电流总数进行选择,一般可按照如下顺口溜进行确定:十下五,百上二, 二五三五四三界,柒拾玖五两倍半,铜线升级算. 给你解释一下,就是10平方一下的铝线,平方毫米数乘以5就可以了,要是铜线呢,就升一个档,比如2.5平方的铜线,就按4平方计算.一百以上的都是截面积乘以2, 二十五平方以下的乘以4, 三十五平方以上的乘以3, 柒拾和95平方都乘以2.5,这么几句口诀应该很好记吧, 说明:只能作为估算,不是很准确。另外如果按室内记住电线6平方毫米以下的铜线,每平方电流不超过10A就是安全的,从这个角度讲,你可以选择1.5平方的铜线或2.5平方的铝线。 10米内,导线电流密度6A/平方毫米比较合适,10-50米,3A/平方毫米,50-200米,2A/平方毫米,500米以上要小于1A/平方毫米。从这个角度,如果不是很远的情况下,你可以选择4平方铜线或者6平方铝线。如果真是距离150米供电(不说是不是高楼),一定采用4平方的铜线。导线的阻抗与其长度成正比,与其线径成反比。请在使用电源时,特别注意输入与输出导线的线材与线径问题。以防止电流过大使导线过热而造成事故。下面是铜线在不同温度下的线径和所能承受的最大电流表格。

KV及以上线路导线截面的选择(1)

110KV及以上线路导线截面的选择 对于110kV及以上线路,线路导线截面主要按经济电流密度选择,利用发热条件加以校验,机械强度一般都能满足,而电压损耗不是决定性条件。(一)按经济电流密度选择导线截面 S= I FM/J(mm2) I FM=P M/√3*U E*cosφ I FM――线路最大负荷电流(A) P M--线路最大负荷功率(kW) U E--线路额定电压(kV) cosφ――负荷功率因素 J--经济电流密度(A/mm2) 经济电流密度 最大负荷利用小时数 导线材料 3000以下3000-5000 5000以上铝 1.65 1.15 0.90 铜 3.00 2.25 1.75 根据以上计算本项目I FM =276A

因光伏电站利用小时低于2000小时,故: S= I FM/J(mm2)=276/1.65=167mm2 (二)、根据发热条件即:“允许电流”效验导线截面。 允许电流(安全电流)—使导线温度不超过允许温度(70℃),导线能够通过的最大电流,用I Y表示。 注:裸导线的最高允许温度为70℃ 绝缘导线的最高允许温度一般为55℃ 如果导线中通过的电流,小于等于相应环境温度下的允许电流,导线的温度就不超过70℃,反之导线的温度就可能超过70℃,且电流越大导线温度越高,至使导线接头处、导线与电器连接处,温度更高,甚至把导线烧红、烧断,造成事故或灾害。 允许电流是指某一环境温度下的允许电流,附表中所列的是标准温度(2 5℃)下的允许电流,它乘以允许电流校正系数K,就是相应温度下的允许电流,即I Y= I BY×K 根据允许电流选择导线截面时,导线允许电流I Y必须满足下列条件: I Y≥IFM 即:新选择导线的允许电流一定大于等于线路的最大负荷电流 I FM, 裸铜线、裸铝线及铜芯铝线的持续容许电流

高压电缆选型

按照以下情况而定: 1?根据电缆敷设的电压等级、使用地点及使用环境,选择电缆的绝缘方式(如聚氯乙烯、交链聚乙、橡胶绝缘烯等); 2?根据电缆的敷设环境,选择电缆外壳保护方式(如钢带铠装、钢丝铠装等); 3?根据电缆使用的电压等级,选择电缆的额定电压; 4?根据电缆回路额定电流,选择电缆的截面。 5?所谓10KV电缆选型不考虑载流量,是指该供电系统的短路电流热稳定值比较高,按此热稳定值选择的电缆最小截面已经很大(如180或240平方毫米截面),在此截面的载流量范围内,无论负荷电流的大小,都是按热稳定最小截面选择电缆。但是如果负荷容量额定电流大于热稳定电流确定的最小电缆截面的额定载流量,当然还是需要考虑载流量的。 10kv高压电缆载流量表如下: 向左转|向右转 导线截面积与载流量的计算 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。<关键点> 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5 mm2 BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A 4 mm2 BVV铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=< I /(5~8)>=0.125 I ~0.2 I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是 I=P/Ucosф=6000/220*0.8=34(A) 但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。所以,上面的计算应该改写成I=P*公用系数/Ucosф=6000*0.5/220*0.8=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。

35KV及以上线路导线截面的选择

35KV 及以上线路导线截面的选择 对于35KV 及以上线路,线路导线截面主要按经济电流密度选择,利用发热条件加以校验,机械强度一般都能满足,而电压损耗不是决定性条件。 (一)按经济电流密度选择导线截面 S= IFM/J (MM2) IFM=PM/√3UECOS φ IFM――线路最大负荷电流(A) PM--线路最大负荷功率(KW ) UE--线路额定电压(KV ) COS φ――负荷功率因素 J--经济电流密度(A/MM2) 经济电流密度 导线材料 最大负荷利用小时数 3000以下 3000-5000 5000以上 铝 1.65 1.15 0.90 铜 3.00 2.25 1.75 (二)、根据发热条件即:“允许电流”效验导线截面。 允许电流(安全电流)—使导线温度不超过允许温度(70℃),导线能够通过的最大电流,用IY 表示。 注:裸导线的最高允许温度为70℃ 绝缘导线的最高允许温度一般为55℃ 如果导线中通过的电流,小于等于相应环境温度下的允许电流,导线的温度就不超过70℃,反之导线的温度就可能超过70℃,且电流越大导线温度越高,至使导线接头处、导线与电器连接处,温度更高,甚至把导线烧红、烧断,造成事故或灾害。 允许电流是指某一环境温度下的允许电流,附表中所列的是标准温度(25℃)下的允许电流,它乘以允许电流校正系数K ,就是相应温度下的允许电流,即IY(相应)= IBY(标准)×K 根据允许电流选择导线截面时,导线允许电流IY 必须满足下列条件: IY≥IFM 即:新选择导线的允许电流一定大于等于线路的最大负荷电流IFM , 裸铜线、裸铝线及铜芯铝线的持续容许电流 附表 (空气温度为+25℃,导线温度为+70℃) 导线额定截面(mm2) 导线型号 TJ LJ LGJ LGJQ LGJJ 屋内 露天 露天

电缆截面选择的注意事项(改).

关于电缆截面选择的注意事项 摘要:本文结合建筑电气设计的实践经验,详细探讨配电设计中对于低压电缆截面选择遇见的设计问题,并提出相应措施,以供类似工程的电气设计参考。 前言:据《低压配电设计规范》GB50054-2011第3.2.2条规定,选择导体截面,应符合1 按敷设方式及环境条件确定的导体载流量,不应小于计算电流; 2 导体应满足线路保护的要求;笔者根据自已多年工作实践中遇到的几个容易忽视的问题,谈谈以下自已的看法并对这些问题加以分析。 1、不同工作温度的电缆,电线共用电缆槽盒内敷设时导体截流量的降低系数的适用问题 实际工程中我们经常利用金属线槽作为电缆,电线的主要敷设方式,有的设计人员把低压电力电缆,电线共用金属线槽多回路成束敷设,然后把电缆、电线沿线槽敷设时初始载流量允许值乘以《民用建筑电气设计规范》JGJ 16-2008表7.4.4-1 多回路或多根多芯电缆成束敷设的校正系数,作为各回路的电缆,电线设计载流量。笔者认为这种载流量计算方法并不能符合《布线系统载流量》GB/T 16895.15-2002第523.4条“电缆束的降低系数适用于具有相同最高运行温度的绝缘导体或电缆束,含有不同允许最高运行温度的绝缘导体或电缆束,束中所有绝缘导体或电缆的载流量应根据其中允许最高运行温度最低的那根电缆的温度来选择,并用适当的电缆束降低系数来校正”这一规定。

例如BV导线或VV电缆与YJV电缆共用线槽敷设时,BV导线或VV电缆的最高运行温度为70度,而YJV电缆的最高运行温度为90度,那么YJV电缆的初始载流量应按最高运行温度70度时的载流量选取,然后再乘以“多回路或多根多芯电缆成束敷设的校正系数”。比如《建筑电气常用数据》04DX101-1图集6-6页查得YJV-4*35+1*16电缆单回路敷设在线槽内,环境温度35度时的载流量为122A,由于YJV电缆与BV或VV电缆共用线槽成电缆束敷设,所以YJV-4*35+1*16电缆载流量由04DX101-1图集6-9页查得仅为93A,即工作温度70时YJV电缆载流量仅为90度工作温度时的载流量的75%,导致了未能充分利用YJV电缆截面。 《布线系统载流量》GB/T 16895.15-2002表52-B2注释1)“表52-C1至52-C4的敷设方法B1和B2给出的载流量值仅指单回路而言,当在电缆槽盒内敷设多回路时,不论槽盒内有无隔板,表52-E1中的电缆束降低系数都是适用的”。由此条文可以得知,当YJV电缆与BV电线、VV电缆共用线槽敷设时,不论线槽内有无隔板分隔电缆与电线回路,YJV电缆应按允许最高运行温度70度时的载流量来选择,并用适当的电缆束降低系数来校正载流量。 2、沿电缆槽盒内敷设的电缆束含有不同导体截面的绝缘导体或 电缆时,应沿不同金属线槽敷设,以免小截面电缆过负荷 大多设计人员习惯将同一路径不同大小截面的电缆共用金属线槽成束敷设,并以电缆的初始载流量乘以“多回路或多根多芯电缆成束敷设的校正系数”,这种计算方式同样不符合《布线系

高压电缆截面选择计算书

电缆截面选择计算 1.计算条件 A.环境温度:40℃。 B.敷设方式: 穿金属管敷设; 金属桥架敷设; 地沟敷设; 穿塑料管敷设。 C.使用导线:铜导体电力电缆 6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 导线的载流量 1)载流量的校正 A.温度校正 K1=√(θn-θa)/(θn-θc)式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正

国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2= 3)载流量的校正系数 K=K1×K2 电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表 表2 1kV PVC绝缘电力电缆载流量表

3×50mm2115813×300mm2375263表3 1kV XLPE绝缘电力电缆载流量表 电缆规格 空气中 40℃(A)电缆桥架中 40℃(A) 电缆规格 空气中 40℃(A 电缆桥架 中40℃(A) 3×4mm233233×70mm2176123 3×6mm241293×95mm2213149 3×10mm257403×120mm2246172 3×16mm276533×150mm2279195 3×25mm298683×185mm2319223 3×35mm2119833×240mm2374262 3×50mm21431003×300mm2426298 短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 配电线路的短路保护协调 S≥I×√t/K

怎样选择导线截面

怎样选择导线截面 第一节 简单实用的导线安全载流量估算口决: 由于导线的工作温度除与导线通过的电流有关,还与导线的散热条件和环境温度有关,所以导线的允许载流量并非某一固定值。敷设方式不同,环境温度不同,其允许载流量也不相同。 通过长期的实践,总结出了导线安全电流口诀:10下五;100上二;25、35四三界;70、95两倍半;穿管、温度八九折;裸线加一半;铜线升级算。 该口诀解释如下: 10mm 2以下各规格的电线 ,如2.5mm2 4mm2 6mm 2 10mm 2,每平方毫米可以通过5A 电流;100mm 2以上各规格的电线,如120mm 2 150mm 2 185mm 2,每平方毫米可以通过2A 电流;25mm 2的电线每平方毫米可以通过4A 电流,35mm 2的电线 每平方毫米可以通过3A 电流;70mm 2、95mm 2 的电线每平方毫米可以通过2.5A 电流;如果电线需穿电线管或经过高温地方时,其安全电流需打折扣,即安全电流再乘以0.8或0.9;架空的裸线可以通过较大的电流,即在原来的安全电流上再加上一半的电流;铜线升级算是指,每种规格的铜线可以通过的电流与高一级规格的铝线可以通过的电流相同,即2.5平方毫米的铜线可以代替4平方毫米的铝线,4平方毫米的铜线可以代替6平方毫米的铝线。 这个估算口诀简单易记,估算的安全载流量与实际非常接近,在我们选择导线时很有帮助。如果我们知道了负荷的电流,就可很快算出使用多大截面的导线。 第二节 怎么快速估算各种负荷的额定电流: 各种负荷电流,可由下列式子计算: (1)单相纯电阻电路 I= U P (1) (2)单相含电感电路 I=ΦUCOS P (2) (3)三相纯电阻电路 I=U P 3 (3) (4)三相含电感电路 I=ΦUCOS P 3 (4) 上面几个式子中,P 为负荷功率,单位为W (瓦);U L 是三相电源的线电压,单位为V (伏);COS φ是功率因数。 (一)、常用单相负荷电流的估算: 我们平常使用的单相用电设备一般为感性负荷,其功率因数按0.8计算,则以上的公式(2)可做如下计算: I= A V W COS U P 6.58 .02201000≈?=?φ 为了估算方便,该计算结果

10kV电动机回路电缆截面选择表

电动机功率(kW)额定电流(A) 线路长度 备注50m 300m 600m 220 16 70mm270mm2最小截面按 70mm2考虑 250 18 70mm270mm2 280 20 70mm270mm2 315 22 70mm270mm2 355 25 70mm270mm2 400 28 70mm270mm2 450 31 70mm270mm2 500 45 70mm270mm2 560 50 70mm270mm2 630 55 70mm270mm2 800 67 70mm270mm2 1000 76 70mm270mm2 1250 92 70mm270mm2 1800 126 70mm270mm2 2000 139 95mm295mm2 2500 173 120mm2120mm2 2800 194 150mm2150mm2 3150 210 150mm2150mm2 3550 235 185mm2185mm2 4000 264 240mm2240mm2 4500 298 95mm2X2 95mm2 X2 两根并用 5000 328 120mm2 X2 120mm2 X2 5600 365 120mm2 X2 120mm2 X2 6300 416 150mm2 X2 150mm2 X2 7100 466 185mm2 X2 185mm2 X2 8000 523 240mm2 X2 240mm2 X2 9000 583 240mm2 X2 240mm2 X2 10000 643 300mm2 X2 300mm2 X2 14000 897 240mm2 X3 240mm2 X3 注:电动机外壳的接地线截面: 铜导体:≥50 mm2; 钢导体:≥120 mm2。

电线截面选择

一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。<关键点> 如:2.5mm2BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A、4mm2BVV 铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S==0.125I~0.2I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种是电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。 不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220×0.8=34(A) 但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。所以,上面的计算应该改写成 I=P×公用系数/Ucosф=6000×0.5/220×0.8=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得 。由表53可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm2及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm2mm’导线,载流量为2.5×9

如何正确选择导线截面

如何正确选择导线截面 一、按允许载流量选择 I AL > I CA 其中I CA为线路的计算电流,I AL导线的允许载流量。 对I AL的选择: 1、对降压变压器的高压侧导线,取一次侧额定值; 2、电容器线的引入线,因有涌流的情况,选择 1.35倍; 对中性线的选择: 1、一般要求:S o>S①; 2、对三次谐波电流突出的线路,S> = S① 对保护线的选择: GB50054-1995规定,S o <= 16MM S PE= 16 MM 16MM 2< = S o < = 35MM S PE> 16 MM S o> = 16MM S P E= 0.5* S ① 二、按允许电压损失选择导线和截面 步骤为: 1、取导线或电缆的电抗平均值,6-10KV架空线取 0.35 Q /KM,35KV以上取0.4 Q/KM;低压线路取0.3 Q/KM,穿管及电缆线路取0.08 Q /KM。求出无功负荷在电抗上引起的电压损失。 △° q i l i 10U 2n i 1

2、根据△ U R=A L A L -A U X = 5- △U X 计算出当前负荷在线路上的有功电压损 其中:r 为导线的电导率,铜取0.053KM Q MlM 铝取 0.0320.053KM/ Q MM 3、根据算出的截面积S,查出r0和x0,即单位长度的导线的电 阻和电抗值。计算线路的电压损失,与允许电压损失进行比较,看是 否满足要求。 例:某厂从总降压变压器架设一条 10K V 的架空线向车间1和车 间2供电,各车间负荷及长度如图。已知导线采用铝绞线,全长截面 相同,线间几何距离为1M 允许电压损失为5%环境温度为25度, 按允许电压损失选择电线截面并校验。 0 3KM 1 1.5KM 2 800+J560 500+J200 KVA KVA 失。 由U R r0 2 10U p i l i ,推出S P i l i i 1 10rU 2N

导线截面的选择

导线截面的选择 输电导线截面的选择 1。1 为了保证供电安全,可靠,经济合理和供电质量的要求,必须正确合理地选择输电导线的型号和截面。根据所处的电压等级和使用环境要按以下原则确定:1。1。1。按长时允许电流选择导线的截面 1。1。2。按允许电压损失选择导线的截面 1。1。3。按经济电流密度选择导线的截面 1。1。4。按机械强度选择导线的截面 1。1。5。按短路时的热稳定条件选择导线的截面 1。2 各种导线截面的选择条件 1。2。1。高压架空导线因受自然条件的影响很大,机械强度必须满足要求,但散热条件好,允许温度高,可根据线路的长短和通过电流的大小,按允许电压损失和长时允许电流来选择。 1。2。2。高压电缆机械强度较高,但散热条件差,所以必须考虑短路时的热稳定性。 1。2。3。低压导线和电缆,对负荷电流大,线路长的干线,应按正常时的允许电压损失初选其截面。对经常移动的橡套电缆,应按机械强度初选。对负荷电流较大,但线路较短的按长时允许电流初选。初选的电缆截面还应按其它条件校验。 总之,在选择导线时,应在诸多的选择条件中,确定一个有可能选择出最大截面的条件首先进行初选,再按其它条件校验,这样可使计算简便,避免返工。 由于计算导线截面载流量需要条件较多,算起来比较麻烦,在实际工作中很不实用,在要求不太高的场合,一般用图表法就能满足。使用图表法需要注意系数的调整。以下是在工

作中采集常用的一些数据,供参考使用。 2。1 长时允许电流选择导线的截面 2。1。1。导线的长时允许电流应不小于实际流过导线的最大长时工作电流。 架空裸绞线载流量 铜绞线 载流 量 铝绞 线 载流 量 铝钢 芯 载流量 TJ-450LGJ- 16 105 TJ-670LGJ- 25 135 TJ-1095LGJ- 35 170 TJ16130LJ-1 6105LGJ- 50 220 TJ-25180LJ-2 5135LGJ- 70 275 TJ-35220LJ-3 5170LGJ- 95 335 TJ-50270LJ-5 0215LGJ- 120 380 TJ-70340LJ-7 0265LGJ- 150 445

kV电缆选型及截面选择

1.电缆选型 绝缘材料 考虑电缆线路安全以及施工管理方便,并考虑以往的运行维护经验、电缆选用交联聚乙烯电缆。 交联聚乙烯电力电缆具有较好的电性能和物理性能,耐热性能好、软化点高、热变形小,有优异的热稳定性和老化稳定性;随着制造技术的不断完善,如采用聚乙烯高纯净化、导体屏蔽、绝缘层、绝缘屏蔽三层同时共挤、干式硬化法,加上防水的纵向防水层,护套选用了具有防水性能良好的聚乙烯护套,表面有导电石墨涂层等措施对于防止早期的电缆由于绝缘气隙、杂质、水分等产生的水树生长起了良好的作用。同时XLPE电缆可耐小半径弯曲,重量轻、安装简便、安全可靠、与充油电缆相比,其接续与终端处理也比较容易。因此安装费用也较低廉,从安全及环境保护来看,交联聚乙烯绝缘没有油料渗漏,以及防暴性能较好的优点。 因此考虑到电缆线路的安全及施工,运行维护方便,并结合以往电缆线路的运行经验,本工程电缆选用交联聚乙烯绝缘电缆,绝缘标称厚度16.5mm。 金属护套 电缆的防水构造以铅包或皱纹铝包效果最好,铅套电缆的优点是柔软,弯曲性能、密封性和耐腐蚀性好,便于敷设,也便于电缆附件的安装,适用于防水、防潮以及防腐蚀性要求较高的场合。皱纹铝包的优点是机械强度高。铝包与皱纹铝包相比较,相同截面情况下铅套的电缆外经小,耐腐蚀性好,同时铅套对施工有利,缺点是电缆单位自重较重。根据福州局已有电缆工程运行情况及本工程的特点,推存采用化学稳定性好的铅包电缆。 外护套 规程规定在潮湿、含化学腐蚀环境或易受谁浸泡的电缆,金属护套上尚应有挤塑外套,以保护金属护套免受腐蚀。目前常用的电缆挤塑外护套材料有聚乙烯(PE)或聚氯乙烯(PVC)。 聚氯乙烯耐环境应力开裂性能比聚乙烯好,且在燃烧时分解的氯气有助于阻燃,故一般多采用聚氯乙烯,但聚氯乙烯对化学腐蚀的耐受性能不及聚乙烯,在燃烧时会析出含有氯化氢等有毒的气体。本工程电缆埋设多位电缆沟以及隧道,电缆受环境应力影响小,宜选用耐化学腐蚀的聚乙烯护套,并具有防白蚂蚁、防鼠害特性。

导线选择参考

线截面选择 从配电变压器到用电负荷的线路有架空线路和电缆线路两种形式。无论室内或室外的配电导线及电缆截面的选择方法是一样的。 10.3.1选择导线截面的原则 1.电力电缆缆芯截面选择的基本要求 (1)最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。 (2)最大短路电流作用时间产生的热效应,应满足热稳定条件。 (3)连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 (4)较长距离的大电流回路或35kV以上高压电缆,当符合上述条件时,宜选择经济截面,可按“年费用支出最小”原则。 (5)铝芯电缆截面,不宜小于4mm2。 (6)水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。 导线截面的选择应同时满足机械强度、工作电流和允许电压降的要求。其中导线承受最低的机械强度的要求是指诸如导线的自重、风、雪、冰封等而不致于断线;导线应能满足负载长时间通过正常工作最大电流的需要;及导线上的电压降应不超过规定的允许电压降。一般公用电网电压降不得超过额定电压的5%。电力电缆芯截面选择不当时,造成影响可靠运行、缩短使用寿命、危害安全、带来经济损失等弊病,不容忽视。电缆缆芯持续工作温度,关系着电缆绝缘的耐热寿命,一般按30~40年使用寿命,并依据不同绝缘材料特性确定工作温度允许值。当工作温度比允许值大时,相应的使用寿命缩短,如交联聚乙烯工作温度较允许值增加约8℃,对应载流量增加7%,则使用寿命降低一半。电缆缆芯持续工作温度,还涉及影响缆芯导体连接的可靠性,需考虑工程实际可能的导体连接工艺条件来拟定。 短路电流作用于缆芯产生的热效应,满足不影响电缆绝缘的暂态物理性能维持继续正常使用,且使含有电缆接头的导体连接能可靠工作,以及对分相统包电缆在电动力作用下不致危及电缆构造的正常运行,这就统称为符合热稳定条件。否则会出现了油纸绝缘铅包被炸裂、绝缘纸烧焦、电缆芯被弹出、电缆端部冒烟等故障。 “年费用支出最小”原则的评定方法,是参照原水电部82电计字第44号文颁发“电力工程经济分析暂行条例”,该文件推荐的年费用支出B的表达式如下:B=0.11Z+1.11N。式中Z-投资;N-年运行费。 系数是基于取经济使用年限为25年和施工年数按一年来计算的。限制铝芯小截面的使用,是基于过去工程实践中采用小于4~6mm2易出现损伤折断的缘故。对35kV以上高压单芯电缆、电缆使用方式造成附加发热、散热变差的情况,一般宜直接用计算或测试方式来确定允许载流量。 2.电缆载流量的测试 测试应具有科学性的主要特征是:电缆在稳定地持续电流作用下,反映测试特点的条件,应足以等效实际工况的有关影响因素,包含其环境温度应基本稳定。以400~500Hz中频励磁系统自动调节回路用的电缆为例,计入中频情况比工频时邻近效应与集肤效应较为增大影响,要比同截面在工频时的载流量降低至0.68~0.99倍;截面大时降低程度较显。单芯高压电缆交叉互联接地方式,其单元系统的三个区段,在工程实践中往往难以均等,一般可按下列公式计入金属护层的附加损耗影响。 Ps=ΔWs(ΔL/L)2 式中:Ps——电缆金属护层的附加损耗率;ΔWs——电缆金属护层两端完全接地时的金属护层环流损耗占缆芯导体损耗的比值;ΔL——该单元系统划分三区段中最大与最小长度之差;L——该单元系统三个区段长度之和。 塑料管较金属管的管材热阻系数大,且表面散热性差,用作电缆保护管时,对截流量的影响不容忽视。槽盒内电缆载流量校正系数K随盒体材料导热性、壁厚、电缆占积率和结构特征等因素而异。料包带用于阻止电缆延燃时,覆盖层厚度一般在1.5mm 以内,涂料、包带用作耐火防护时,或者采用石棉泥、防火包等构成较厚实的耐火层情况,伴随的热阻增大影响则不容忽视。电缆沟内埋砂时,砂的热阻系数不仅与砂粒的粗细以及其中土、细石等含量有关,还受含水量影响,但含水量不能只按初始条件,应考虑运行温度较高时的水份迁移影响。 3.环境温度的影响 国内外工程实践都曾显示,缆芯工作温度大于70℃的电缆直埋敷设运行一段时间后,由于电缆表皮温度在约50℃情况下,电缆近旁水份将逐渐迁移而呈干燥状态,导致热阻增大,出现缆芯工作温度超过额定值的恶性循环,影响电缆绝缘老化加速,以致发生绝缘击穿事故。 直埋敷设路由位于水泥或石板的路面下,其保水性对防止土壤水份迁移有相当作用。但沿通道近旁若有植树时,树根的吸水因素又易造成土壤干燥。一般对缺乏保水覆盖层情况的防止水份迁移对策,可采取经常性浇水或并行设置冷却水管,但经济上不